Gamma-ray Mass Attenuation Coefficient of Environmentally Friendly $Bi_{0.5}Na_{0.34}K_{0.11}Li_{0.05}Ti_{1-x}Ni_xO_3$ Ceramics

Olarinoye, I.O. (PhD)

Department of Physics,
School of Physical Sciences,
Federal University of Technology, Minna

OUTLINE

- Introduction
- Radiation Protection Techniques
- Shielding Materials
- $Bi_{0.5}Na_{0.34}K_{0.11}Li_{0.05}Ti_{1-x}Ni_xO_3$ Ceramics
- Objective of Study
- Materials and Method
- Results and Discussion
- Conclusion
- References

Introduction

❖Nuclear Science and technology is a conventional and rapidly expanding area of research and innovations.

Uncontrolled exposure to ionising radiation however, have deleterious effects on man, devices and the environment.

*Radiation protection techniques needs to be more sophisticated/robust and effective for radiation applications to be sustainable.

Radiation Protection Techniques

Shielding Materials

❖Nearly all materials can be used as shields but available space, dose limitation and sundry properties limit the use of many.

Lead and concrete are traditional shields with some shortfalls.

Composite materials such as glasses, alloys, ceramics, glasses *et al.* are conventionally proffered for shieling applications.

$Bi_{0.5}Na_{0.34}K_{0.11}Li_{0.05}Ti_{1-x}Ni_xO_3$ (BNKLT-xNi) Ceramics

- High density Pb-free ceramics
- Possess interesting dielectric and ferroelectric attributes
- Potential for application in electronics and radiation shielding based on the density and chemical composition
- High Bi and Ti content are strong indications for high cross section for gamma-rays and thus radiation protection applications.

Objective of Study

In view of the chemical composition of the $Bi_{0.5}Na_{0.34}K_{0.11}Li_{0.05}Ti_{1-x}Ni_xO_3$ ceramics, this study was aimed at evaluating their gammaray shielding potentials.

Materials and Method

- $Bi_{0.5}Na_{0.34}K_{0.11}Li_{0.05}Ti_{1-x}Ni_xO_3$ ceramics (BNKLT-xNi with x = 0, 0.005, 0.010, 0.015 and 0.020)
- The corresponding density of the BNKLT-xNi is 5.75, 5.85, 5.88, 5.82, and 5.79 cm^2/g
- Mass attenuation coefficient $\binom{\mu}{\rho}$: $\binom{\mu}{\rho} = \sum f_i \left(\frac{\mu}{\rho}\right)_i$ (1)
- f_i and $\left(\frac{\mu}{\rho}\right)_i$ represents the weight fraction of chemical species in the ceramics
- $^{\mu}/_{\rho}$ of the ceramics was determined at low source (photon) energies (0.365, 0.662, 1.173, and 1.332 MeV) by the use of EPICOM spreadsheet.
- The EPICOM spreadsheet is based on the Electron-Photon Interaction cross sections 2017 (EPICS2017) data library

Results and Discussion

Table 1.	μ/ρ (c	cm ² /g)	value	of the	ceramics.
----------	---------------	---------------------	-------	--------	-----------

Ceramics	$^{\mu}/_{ ho}$ (cm ² /g)
BNKT-0Ni	0.1984 - 0.0548
BNKT-0.005Ni	0.1983 - 0.0549
BNKT-0.01Ni	0.1981 - 0.0549
BNKT-0.015Ni	0.1980 - 0.0549
BNKT-0.02Ni	0.1978 - 0.0549

Mass attenuation coefficient

Figure 1. Energy dependence of MAC for the ceramics.

Comparison of the ceramics with conventional shields

Figure 2. Comparison of MAC of BNKLT-0.2Ni, BC, and RS360.

Conclusion

• The BNKLT-xNi ceramics have high photon cross section due to their Bi content and mass density.

• BNKLT-xNi ceramics superior shielding capacity compared to barite concrete and RS360 commercial glass shield.

• BNKLT-xNi ceramics have strong potential applications in gamma radiation shielding especially at low photon energies.

Bibliography

- Olarinoye, I. O., et al. "The effects of La2O3 addition on mechanical and nuclear shielding properties for zinc borate glasses using Monte Carlo simulation." Ceramics International 46.18 (2020): 29191-29198.
- Bhupaijit, Pamornnarumol, et al. "Enhanced electrical properties near the morphotropic phase boundary in lead-free Bi0. 5Na0. 34K0. 11Li0. 05Ti1-xNixO3- δ ceramics." Radiation Physics and Chemistry 189 (2021): 109716.
- Cullen, Dermott E. "EPICS2017: April 2019 status report." IAEANDS-228 (2019).
- Bashter, I. I. "Calculation of radiation attenuation coefficients for shielding concretes." *Annals of nuclear Energy* 24.17 (1997): 1389-1401.
- Kaur, Parminder, et al. "Investigation of a competent non-toxic Bi2O3–Li2O–CeO2–MoO3–B2O3 glass system for nuclear radiation security applications." *Journal of Non-Crystalline Solids* 545 (2020): 120235.

2022/03/05

THANK

YOU

FOR

LISTENING

2022/03/05