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Monte Carlo Techniques – Introduction

It is a numerical technique for calculating probabilities and related
quantities by using sequences of random numbers.
The usual procedure:

1. Generate a sequence of random values r1, r2, ..., rn according
to uniform distribution, 0 < r < 1.

2. Use this to determine another sequence x1, x2, ..., distributed
according to some pdf f(x) in which one is interested.

3. The values of x are treated as simulated measurements, and
used to compute probabilities for x to be in a certain region,
e.g. P (a < x < b) =

∫ b
a f(x)dx.

MC calculation ⇔ integration

The technique is most useful when other methods are not feasible
to do the integration, e.g. integration of a joint pdf f(~x) over a
complicated region.
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Basic Ingredients

At least four crucial ingredients needed to understand the basic
Monte-Carlo Strategy:

1. Random variables,

2. probability distribution functions (PDF),

3. moments of a PDF

4. and its pertinent variance σ2.
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Example-1

Consider tossing of two dice:
What are the outcomes and their corresponding probabilities?

It will yield following possible outcomes:
{2,3,4,5,6,7,8,9,10,11,12} → These values are called the
“domain”.

The corresponding probabilities are:
{1/36, 2/36, 3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36,
1/36}

One cannot tell beforehand whether the outcome of a toss will be
3 or 5 or any other number in this domain =⇒ Randomness of
the outcome. The only thing we can tell beforehand is that an
outcome has a certain probability.

Hence, Random variables are characterized by a domain which
contains all possible values that the random value may take. This
domain has a corresponding PDF.
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Example-2

Consider the radioactive decay of an α-particle from a certain
nucleus.
Suppose we have a GM counter that registers every 10 ms whether
an α-particle reaches the counter. 1 observation = 1 hit, no
observation = 0.
If we repeat this experiment for a long time the outcomes of the
experiment will be truly random =⇒ can not form a specific
pattern from the above observations.
The only possibility to say something about the outcome is given
by the PDF. In this case it is well-known exponential function:

1

µ
exp

(
−x
µ

)
µ is the half-life of the nucleus that decays.
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Random Numbers, PDF, CDF, ...

I Random numbers are numerical approximations to the
statistical concept of stochastic variables, sometimes just
called random variables.

I A stochastic variable can be either continuous or discrete.
Let’s denote it here as, X, Y etc...

I The domain is the set D = {x} of all accessible values that
the variable can have, so that X ∈ D.

I The probability distribution function (PDF) is a function p(x)
on the domain, such that,
in descrete case p(x) = Prob(X = x) and

in case of continuous, Prob(a ≤ X ≤ b) =
∫ b
a p(x)dx.

Must be Positive: 0 ≤ p(x) ≤ 1
and Normalized:

∫
x∈D p(x)dx = 1.
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Random Numbers, PDF, CDF, ...

I Also interest to us is the cumulative distribution function
(CDF), P(x), given by
P (x) = Prob(X ≤ x) =

∫ x
−∞ p(x

′)dx′

=⇒ p(x) = d
dxP (x)

I The n-th moment of the PDF p is defined as
〈xn〉 ≡

∫
xnp(x)dx

The first moment 〈x〉 = µ is called the “mean”: 〈x〉 = µ.

I Similarly, the n-th central moment is defined as:
〈(x− 〈x〉)n〉 ≡

∫
(x− 〈x〉)n p(x)dx

The 2nd central-moment (variance) is:

σ2X = V ar(X) =
〈

(x− 〈x〉)2
〉

=
〈
x2
〉
− 〈x〉2.
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PDF of a function
Let Y = h(X) be a function of X.
If pX(x) is pdf of X, What is pdf of Y , pY (y)?

Consider cases when h(X) is invertible, so that it has to be strictly
monotonous.
Construct CDF of Y , considering only the case where h increases:

PY (y) = Prob(Y ≤ y) = Prob(h(x) ≤ y)

= Prob(X ≤ h−1(y)) = PX(h−1(y))

So, PDF of Y :

pY (y) =
d

dy
PY (y) =

d

dy
PX(h−1(y))

Similarly, for decreasing h,

pY (y) = pX(h−1(y))| d
dy
h−1(y)|
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Random Number Generation
Goal is to generate a sequence of numbers which are distributed
randomly according to a uniform probability distribution.
Desired Property:

I Long Periodicity: e.g. if a 32-bit interger is used the period
should be close to 231 − 1 = 2147483647.

I Best Randomness: The correlation among the generated
numbers should be small, i.e. < xixi+l > should have a
uniform distribution for l 6= 0.

Two types of generators:

I True Random number generator: Based on physical
phenomenon, such as radioactive decay, atmospheric noise
etc..

I Pseudorandom number generator (PRNG):
Computational algorithms producing long sequences of
apparently random results.
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Pseudorandom number generator (PRNG)
I Not truly random → Always produces same sequence of

numbers if input is same.

I The series of numbers generated by these computational
algorithms is generally determined by a fixed number, called a
seed.

I Can be used as random numbers if the sequence of numbers
have good random properties

I Advantage: Speed and reproducibility

I Hence, are central in applications such as Monte Carlo
simulations

Most common: multiplicative linear congruential generator
(MLCG)

xi+1 = (axi + b) mod c.
a, b, c are large integers, determine the quality of generator.

Exercise: Write a program to generate uniform random number in
[0, 1], with a = 75, b = 0, c = 231 − 1
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Uniform random number generator - contd..

For the generator to produce different sequence of random
numbers everytime, the initial seed can be changed.
There can be a systematic way of obtaining different seeds.
e.g. We can use the current time to get a seed.
is = t6 + 70(t5 + 12{t4 + 31[t3 + 23(t2 + 59t1)]})
where,
0 ≤ t1 ≤ 59 for second
0 ≤ t2 ≤ 59 for minute
0 ≤ t3 ≤ 23 for the hour
0 ≤ t4 ≤ 31 for the day
0 ≤ t5 ≤ 12 for the month
t6 is the current year
It is roughly in the region [0, 231 − 1], and the result would be
different if the time is even one second apart.
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Mersenne Twister generator

I It is a pseudorandom number generator

I Most widely used currently

I The period length is chosen to be a Mersenne prime.

I The common algorithm is based on the Mersenne prime
219937 − 1 =⇒ a long period of 219937 − 1

I It is also relatively faster

Reference:
1) Matsumoto, M., Nishimura, T. “Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random number
generator”, ACM Transactions on Modeling and Computer
Simulation. 8 (1): 3–30 (1998)
2) Harase, S., “Conversion of Mersenne Twister to
double-precision floating-point numbers”, Mathematics and
Computers in Simulation, 161: 76–83 (2019), arXiv:1708.06018.
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Random number generator - contd..

There are several classes in ROOT to generate random numbers.
e.g.,
TRandom: A Linear Congruential Generator. Periodicity is only
231.
TRandom1: Based on the “RANLUX algorithm”. Much slower
than others.
TRandom2: Based on the “Tausworthe generator of L’Ecuyer”.
Fast, periodicity is about 1026.
TRandom3: Based on the “Mersenne Twister generator”. Fast
and long period of about 106000.
.....
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Use of MC method
Consider the evaluation of an integral using numerical methods

I =

∫ 1

0
f(x)dx ≈

N∑
i=1

wif(xi)

where, wi are weights at grid points xi (to be evaluated by, say,
Simpson’s method)
In the simple midpoint or rectangle method, wi = 1,

I =

∫ 1

0
f(x)dx ≈ h

N∑
i=1

f(xi−1/2)

Since, h = (b− a)/N = 1/N ,

I =

∫ 1

0
f(x)dx ≈ 1

N

N∑
i=1

f(xi−1/2)

xi−1/2 are midpoint values of x.
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Use of MC method

The average of a function f(x) for a given pdf p(x)

〈f〉 =
1

N

N∑
i=1

p(xi)f(xi)

If we consider a uniform pdf, i.e. p(x) = 1 for x ∈ [0, 1],

I =

∫ 1

0
f(x)dx ≈ 〈f〉

So, the integral is nothing but the average 〈f〉 evaluated using
random numbers xi distributed uniformly between 0 and 1.
This approach is often called ’crude’ or ’Brute-Force’ Monte-Carlo
method.
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Accuracy of MC method

Let’s calculate the variance σ2:

σ2f =
〈
(f − 〈f〉)2

〉
=

1

N

N∑
i=1

(f(xi)− 〈f〉)2p(xi)

for uniform distribution

σ2f =
1

N

N∑
i=1

(f(xi))
2 −

(
1

N

N∑
i=1

f(xi)

)2

or
σ2f =

(〈
f2
〉
− 〈f〉2

)
which is nothing but a measure of the extent to which f deviates
from its average over the region of integration.
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Accuracy of MC method - contd..
Let’s consider the previous result for a fixed value of N as “one
measurement”.
Suppose we recalculate the average and variance for a series of M
different measurements. Then, we can write the integral as the
average of M such averages:

〈I〉M =
1

M

M∑
l=1

〈f〉l

Considering the probability of correlated events to be zero, the
variance of these series of measurements will be

σ2M ≈ 1

M

(〈
f2
〉
− 〈f〉2

)
=

σ2f
M

i.e., the standard deviation

σM ∼
1√
M

Thus, the aim of Monte Carlo calculations is to have σM as small
as possible after M samples.
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Accuracy of MC method - contd..

Let’s compare it to any numerical integration based on Taylor
expansion, e.g., trapezoidal rule.
The error goes as O(hk), k = 2 for trapezoidal rule.
where, h = (b− a)/N , the step size.
That means, the error goes as ∼ N−k.

Consider integration in higher dimension: Suppose integration
volume is a hypercube with side L and dimension d.
The number of points in the cube: N = (L/h)d. =⇒ the error
∼ N−k/d.

If we perform the same integration using MC method, the error
σ ∼ 1/

√
N .

Thus, for dimention d > 2k MC method has better accuracy than
the traditional numerical integration methods.
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Exercises

1. Calculate the value of the integral and error using uniform
sampling Monte Carlo program, for 106 sampling points:

I =

∫ 1

0
x2dx

2. Perform the following integration using a brute force Monte
Carlo program and compare to the exact result:

I =

∫ 1

0

dx

1 + x2

Find the accuracy of the integral as function of number of MC
samples N .
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Example: Particles in a box

Let, time t = 0, there are N particles on the
left side. One particle can pass through the
hole per unit time. After some time the
system reaches its equilibrium state with
equally many particles in both halves, N/2.

We can simulate this system. Assume, all
particles in left have equal probability to go to
right.
At a given t, nl particles in left and
nr = N − nl particles in right.
For each time step, ∆t, the probability to
move right is nl/N .
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Example: Particles in a box (2)

Steps to simulate:

I loop over time steps, choose tmax > N

I for each ∆t, generate an uniform r.n. 0 < x < 1

I if x < nl/N , move one particle from left to right, else move
one from right to left.

Analytic solution: nl(t) = N
2 (1 + e−2t/N ) (derive it)
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Exercise: The nucleus 210Bi decays through β-decay to 210Po.
210Po further decays through emision of an α-particle to 206Pb,
which is a stable nucleus. 210Bi has a mean lifetime of 7.2 days
while 210Po has a mean lifetime of 200 days. Suppose, at time t=0
we have 104 210Bi nuclei and zero 210Po nuclei. Write a simulation
program to compute the number 210Po nuclei remaining as a
function of time. Plot this distribution as a function of time.

If a nucleus X decays to a daughter nucleus Y which can also
decay, we get the coupled equations

dNX(t)

dt
= − ωXNX(t)

dNY (t)

dt
= − ωYNY (t) + ωXNX(t)

where ω = 1
τ .

Analytic solution:
NY (t) = ωX

ωY −ωXN
0
X(e−ωX t − e−ωY t) +N0

Y e
−ωY t (derive it)
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Central Limit Theorem
Suppose we generate a series of random variables xi from a pdf
p(x). The mean and standard deviation of p(x) are µ and σ,
respectively. Compute the mean of m such values

z =
x1 + x2 + ...+ xm

m

In the limit m→∞, the pdf of new variable z will be a normal
distribution:

p̃(z) =
1√

2π(σ/
√
m)

exp

(
− (z − µ)2

2(σ/
√
m)2

)
The mean of p̃(z) is the mean of p(x) and the variance of p̃(z) is
the variance of p(x) divided by m. i.e.,

σm =
σ√
m
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Sum of two uniform random numbers
We know pdf f(z) of the sum z = x+ y is

f(z) =

∫ ∞
−∞

g(x)h(z − x)dx =

∫ ∞
−∞

g(z − y)h(y)dy

If x and y are uniformly distributed between 0 and 1,

f(z) =

∫ 1

0
h(z − x)dx

We know, zmin = 0 and zmax = 2.
h(z − x) = 1 for some range of z and 0 otherwise.
Let’s consider two ranges, 0 < z ≤ 1 and 1 < z < 2.

Case-1: 0 < z ≤ 1, h(z − x) = 1 when z − x ≥ 0 or x ≤ z.
=⇒

∫ 1
0 h(z − x)dx =

∫ z
0 dx = z

Case-2: 1 < z < 2, h(z − x) = 1 when z − x ≤ 1 or x ≥ z − 1
=⇒

∫ 1
0 h(z − x)dx =

∫ 1
z−1 dx = 2− z

Thus, f(z) triangular with peak at 1.
25



Addition of random numbers

Exercise-1: Generate two independent uniform random numbers x
and y, distributed between 0 and 1. Plot the distribution of
z = x+ y and show that your distribution matches to the one
derived in last slide.

Exercise-2: Generate N(≥ 20) independent uniform random
numbers, between 0 and 1. Then, plot the distribution of
z =

∑
xi
N . What distribution do you get? Verify your result against

central limit theorem.

Exercise-3: Repeat exercise-2 for a mixture of Exponential and
Poission distributed random numbers.

Exercise-4: Repeat exercise-2 for Breit-Wigner and Landau
(separately) distributed random numbers. Does it obey C.L.T?
Why not? Find the reason.

26



Variable Transformation

Given uniform random numbers xi in [0, 1], find yi that are
distributed according to some pdf f(y) by finding a suitable
transformation.
Using conservation of probabilities:

p(x)dx = f(y)dy =⇒ dx = f(y)dy
=⇒ x(y) = F (y) =

∫ y
−∞ f(y′)dy′

=⇒ y = F−1(x).

Example: Transformed uniform distribution:
Suppose we need f(y) = 1

b−a , a ≤ y ≤ b.

p(y)dy = dy
b−a = dx

=⇒ x(y) =
∫ y
a

dy′

b−a
=⇒ y = a + (b− a)x
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Example of the transformation method

Exponential pdf
Assume f(y) = e−y, and p(x) = 1 for x ∈ [0, 1].

=⇒ dx = f(y)dy = e−ydy
=⇒ x(y) =

∫ y
0 e
−y′dy′ = 1− e−y

=⇒ y(x) = − ln(1− x)

When x is generated uniformly, y will be exponentially distributed.
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Example of the transformation method

Gaussian pdf
Difficult to find the inverse, since the cdf is error function:

F (x) = erf(x) = 2
π

∫ x
0 e
−t2dt

Solution: Generate uniform distribution p(φ) = 1 for φ ∈ [0, 2π]
and exponential f(t) = e−t for t ∈ [0,∞]. From this we will
obtain two gaussian distributions g(x) and g(y).

1
2π p(φ)dφf(t)dt = g(x)dx g(y)dy

=⇒ e−tdtdφ = e−(x
2+y2)/2dxdy

This is a coordinate transformation from polar (ρ, φ) with ρ =
√

2t
to rectangular (x, y).

=⇒ x =
√

2t cos(φ) y =
√

2t sin(φ)

x and y will be distributed with Gaussian pdf.
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Exercise: Consider a uniform 10-cm long rod. One end of the rod
is held at 0oC and the other at 100oC so that the temperature
along the rod is expected to vary lineraly from 0oC to 100oC.
Simulate the data that would be obtained by measuring the
temperature at regular intervals along the rod.

Assume that the parent population is described by the equation

T = a0 + b0x

with a0 = 0oC and b0 = 10oC/cm, and that 10 measurements
are made at 1-cm intervals from x = 0.5 to x = 9.5 cm, with
negligible uncertainties in xi and uniform measuring uncertainties
in Ti of σT = 1.0oC/cm.
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Exercise: Consider an exponential pdf (e.g. representing the decay
of a certain type of unstable particles).

f(t; τ) =
1

τ
e−t/τ

Suppose we have data for n decays and we want to estimate the
value of τ . We can use the Maximum Likelihood method and
maximize the log-likelihood function with respect to τ :

L(τ) =

n∏
i=1

f(ti; τ) =⇒ logL(τ) =

n∑
i=1

f(ti; τ) =

n∑
i=1

(
log

1

τ
− ti
τ

)
Thus,

∂logL(τ)

∂τ
= 0 =⇒ τ̂ =

1

n

n∑
i=1

ti

You can also show that 〈τ̂〉 = τ , i.e. τ̂ is an unbiased estimator for
τ .

Q. Now generate a set of r.n. based on the above pdf (using a
certain value of τ) and compute τ̂ . Show that τ̂ approaches τ in
the limit of large n.
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Difficulties in the transformation method
Suppose we want to generate random numbers distributed
according to the pdf:

p(y) = A(1 + ay2) for − 1 ≤ y < 1

A is constantto normalize p(y), i.e.∫ 1

−1
p(y)dy = 1

So, we have,

x =

∫ y

−1
A(1 + ay2)dy, x ∈ [0, 1]

That gives,
x = A(y + ay3/3 + 1 + a/3)

So, to get y,we must solve the third-degree equation.
Analytic solution may not always be possible, numerical
calculations are necessary.
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Steps for transformation method

1. Decide on the range of y. If range is ∞, use some reasonable
finite limits.

2. Normalize the Prob. density. If range has been adjusted
renormalize it with that range using the same analytic or
numerical integration routine which is used find the y.

3. Generate a random variable x drawn from the uniform
distribution

4. Integrate the normalized prob. function p(y) from lower limit
to the value y = y, where y satisfies the equation
x =

∫ y
ylow

p(y)dy

MC method needs large no. of events. Performing integration
everytime is computing intesive. One can perform integrations only
once and make tables of y vs x. If needed use interpolation
methods to get points in-between.
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Importance Sampling
Suppose we want to perform the integration:

I =

∫ b

a
f(y)dy

Assume p(y) is a pdf whose behavior resembles that of function
f(y) in interval [a, b]. Normalization condition on p(y) is∫ b

a
p(y)dy = 1

Rewriting the integral

I =

∫ b

a
f(y)dy =

∫ b

a
p(y)

f(y)

p(y)
dy

Random numbers are generated from a uniform distribution p(x)
with x ∈ [0, 1]. By performing change of variables, we get

x(y) =

∫ y

a
p(y′)dy′

Inverting x(y), we will get y(x).
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Importance Sampling – contd..
With this change of variables,

I =

∫ b

a
p(y)

f(y)

p(y)
dy =

∫ b̃

ã

f(y(x))

p(y(x))
dx

MC integration of this gives,∫ b̃

ã

f(y(x))

p(y(x))
dx =

1

N

N∑
i=1

f(y(xi))

p(y(xi))

Note the change in integration limits from a and b to ã and b̃.

The advantage of this method is, if p(y) follows closely f , the
integrand becomes smooth (or close to constatnt) and we can
sample over relevant values for the integrand.
=⇒ The accuracy would be much higher.

The variance of f̃ = f(y(x))/p(y(x)) is given by,

σ2 =
1

N

N∑
i=1

(
f̃
)2
−

(
1

N

N∑
i=1

f̃

)2
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Exercise: Apply the method of importance sampling to compute
the integral

∫ 1
0 e

x dx. Use p(x) = 2
3(1 + x) and generate

random numbers with this probability distribution in the interval
[0,1]. Using these random numbers, evaluate the integral and
estimate the gain in efficiency with respect to the Brute-Force
Monte Carlo method.

If y is distributed uniformly, by using variable transformation
y = 2

3x + 1
3x

2 =⇒ x2 + 2x − 3y = 0
=⇒ x = − 1 +

√
1 + 3y

For x in [0,1] =⇒ y in [0,1].
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Acceptance-Rejection Method

Consider a pdf f(x)
with its maximum height fmax.
Enclose the pdf in a box

I Generate
a uniform random number
x, between [xmin, xmax].

I Generate
a 2nd independent
uniform random number
y, between [0, fmax].

I If y < f(x),
accept x, otherwise
reject x and repeat.
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Example of Acceptance-Rejection Method

f(x) = 3
8(1 + x2)

(−1 ≤ x ≤ 1)

Normalize histogram of
acceptedx values.
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Example of Acceptance-Rejection Method

Example: Compute the value of π

Throw random numbers in to a unit
square x ∈ [0, 1], y ∈ [0, 1]. Compare
the areas of the unit square and the
quarter of the unit circle (x2 + y2 < 1)
centred around the region. The ratio =
π/4.
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Application of MC method in Particle Physics
Examples:
I Generate pdf g(a) of a function a(x1, ...xn) of random

variables xi that are distributed with pdfs fi(xi). e.g. to
estimate some properties of g(a).

I MC event generator:
e.g., Consider proton-proton scattering, pp → X. The theory
predicts the probability for a particular event to occur as a
function of certain variables (say scattering angle, momenta of
output particles etc..). MC program is constructed to
generate values of those variables of the output particles.
e.g. PYTHIA, HERWIG etc..

I Detector simulation program: Takes as input the momentum
vectors of the generated particles. The response of a detector
to the passage of the particles involves random processes such
as production of ionization, multiple Coulomb scattering,
electromagetic and hadronic showers, .....
Programming package: GEANT
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Markov Chain Monte Carlo
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Markov Chains
A Markov chain is a stochastic process where given the present
state, past and future states are independent.

I Consider a sequence of random variables {Xt}, t = 0, 1, ....

I Xt may have a finite or countably infinite number of possible
values, called states. The state space, S, is the set of all
possible values of Xt.

I The notation Xt = j indicates that the process is in state j
at instant t (consider descrete time steps).

I Let the probability for a state i at time t to change to a state

j at time t+ 1 is p
(t)
ij .

I The sequence {Xt}, t = 0, 1, ... is a Markov chain if

P (Xt+1 = j|Xt = i, ...X0 = x0) = P (Xt+1 = j|Xt = i)

i.e. the future, given past and present, only depends on the
present.

42



contd..

I From the previous relation one can say that the probabilistic
properties of the chain are completely determined by:
I initial distribution for X0, and
I the transition distribution p

(t)
ij .

If the transition probabilities do not depend on t, p
(t)
ij = pij ,

the Markov chain is called homogeneous.
I A Markov chain is governed by a transition probability matrix.

I Assuming n states, all integer valued, the transition matrix P
is a n× n matrix with elements pij .

I 0 ≤ pij ≤ 1 and
∑

j pij = 1.
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Example: Random walk
Consider a random walker in one dimension. The probability for
moving left or right on the line from its current position is governed
by a probability function f and xn represents its current position
at instant n, n ∈ N . Suppose the initial position x0 is distributed
according to some distribution. The positions can be related as

xn = xn−1 + wn = w1 + w2 + ...+ wn

where wi are independent random variables with probability
function f . So, {xn : n ∈ N} is a Markov chain in Z.
The position of the chain at instant n is described probabilistically
by the distribution of w1 + w2 + ...+ wn .
If f(+1) = p, f(−1) = q and f(0) = r, with p+ q + r = 1, the
transition probabilities are

P (xn, xn+1) =


p , if xn+1 = xn + 1

q , if xn+1 = xn − 1

r , if xn+1 = xn

0 , otherwise
44



Definitions

I A state is called a recurrent state if, the chain eventually
returns to the same state with probability 1. If the expected
time for return is finite, the state is called nonnull. For finite
state spaces, the recurrent states are nonnull.

I A Markov chain is irreducible if, starting from a state i any
other state j can be reached in a finite number of steps, for
all i and j. i.e. for each i and j there must exist m > 0 such
that P [Xm+n = j|Xn = i] > 0.

I A Markov chain is periodic if it can visit certain portions of
the state space only at certain regularly spaced intervals. e.g.
a state j has period d if the prob. of going from i to j in n
steps is 0 for all n not divisible by d. If every state in a
Markov chain has period 1, the chain is called aperiodic.

I An irreducible, aperiodic Markov chain with all its states
nonnull and recurrent is called ergodic.

45



Limiting theory of Markov chains

I Let π is a vector of probabilities,
πi(marginal probability) = P [Xt = i], and

∑
πi = 1.

I Then the marginal distribution of Xt+1 must be πTP.

I πTP = πT (or
∑

i pijπi = πj) =⇒ π is stationary
distribution for the Markov chain having transition probability
matrix P.

I If Xt follows a stationary distribution, then the marginal
distributions of Xt and Xt+1 are identical.

I If πipij = πjpji for a time-homogeneous Markov chain, for all
i, j ∈ S, π is a stationary distribution for the chain. And the
chain is called reversible, because the joint distribution of a
sequence of observations is the same whether the chain is run
forwards or backwards → Condition of Detailed Balance.
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contd..

I In addition, if the Markov chain is ergodic, then

lim
n→∞

P [Xt+n = j|Xt = i] = πj

I Extending further, if X1, X2, ... are realizations from an
irreducible and aperiodic Markov chain with stationary
distribution π, then Xn converges in distribution to the
distribution given by π.

I And, for any function f , and if f is integrable

lim
n→∞

1

n

n∑
t=1

f (Xt)→
∫
f(x)π(x)dx

This is another form of the ergodic theorem
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Motivation for Markov Chain Monte Carlo

I In application of Monte Carlo methods, we want to generate a
sample of random variables with a target distribution f(x).

I The methods discussed before may be able to provide an
approximate or exact sample.

I The strategy of MCMC sampling is to construct an
irreducible, aperiodic Markov chain for which the stationary
distribution equals the target distribution f .

I Asymptotically, the sample will resemble that of f .

I MCMC methods are easy to customize for very diverse and
difficult problems and, also, increasing dimensionality usually
does not slow convergence or make implementation more
complex.

I A wide variety of algorithms have been proposed for the
construction of a suitable chain.
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Metropolis-Hastings algorithm
I Suppose f(x) is our target distribution
I Generate an initial value X0, drawn at random from some

starting distribution g, with f(X0) > 0.
I Given X0, the algorithm produces a sequence of random

variables, as follows:
I Sample a candidate value from a proposal distribution,

X∗
t+1 ∼ g(X|Xt)

I Compute the Metropolis-Hastings ratio R(Xt, X
∗),

R(Xt, X
∗) =

f(X∗
t+1)

f(Xt)

g(Xt|X∗
t+1)

g(X∗
t+1|Xt)

Note: R(Xt, X
∗) is always defined, since the proposal X∗

t+1

can only occur if f(Xt) > 0 and g(X∗
t+1|Xt) > 0.

I Sample a value for Xt+1 according to

Xt+1 =

{
X∗ with probability α(Xt+1|Xt) = min{R(Xt, X

∗), 1},
Xt otherwise

I Repeat the procedure for each t
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Metropolis-Hastings algorithm

Intialize:	choose	
initial	state,	e.g.	

position	xi			

Suggest	a	move	
x*	

Compute										
R(xi,	x*)	

Is	R	≥	r?	

Accept		
xi+1	=	x*	

Reject		
xi+1	=	xi	

Generate	a	
uniformly	
distributed	

random	no.		r		
(0	<	r	≤	1)	

Collect	sample	

YES	

NO	
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MH algorithm, contd..

I When the proposal distribution is symmetric,
g(X∗|Xt) = g(Xt|X∗), the method is known as the
Metropolis algorithm.

I A chain constructed via the MH algorithm is Markov as Xt+1

depends only on Xt.
I Irreducible and aperiodic properties depends on the choice of

proposal distribution.
I If these properties are satisfied the sequence will converge to a

stationary distribution.
I Consequently, we can use the sample to compute useful

quantities, e.g. mean can be approximated using sample
averages.

I So, provided the simulation chain is run for long enough time
it should get a good approximation of the desired distribution.
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MH algorithm, contd..

I Choice of good proposal distributions can greatly enhance the
performance of the MH algorithm
I A well-chosen one can converge to stationary distribution in a

reasonable number of iterations
I Produces candidate values that are not accepted or rejected

too frequently

I Both of these factors are related to the spread of the proposal
distribution
I If g is too diffuse relative to f , the candidate values will be

rejected frequently =⇒ more iterations
I On the other hand, if it is too focused (small variance) the

chain will remain in one small region of the target distribution
for many iterations =⇒ more iterations to cover whole region

I Two general strategies to chose proposal distribution
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MH algorithm, contd..

I Independence chains: Consider the proposal distribution
g(X∗|Xt) = g(X∗) for some fixed density g.
Each candidate value is drawn indepnedently of the past
The Metropolis-Hastings ratio becomes

R(Xt, X
∗) =

f(X∗t+1)

f(Xt)

g(Xt)

g(X∗)

The resulting Markov chain is irreducible and aperiodic if
g(X) > 0 whenever f(X) > 0.

Note: R can be expressed as R = w∗/wt, where
w∗ = f(X∗)/g(X∗) and wt = f(Xt)/g(Xt). If wt is much
larger than w∗, the chain will get stuck at the current value
for long periods.
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MH algorithm, contd..
I Random Walk Chains: g(X∗|Xt) = h(X∗ −Xt), for a

symmetric distribution with pdf h.
I Common choices for h: uniform distribution, scaled standard

normal distribution, and scaled Student’s t distribution
I Example:

Hypothetical random walk
chain for sampling a 2d
target distribution using
proposed increments
sampled uniformly from a
disk centered at the
current value.

(Ref: Fig. 7.4, Givens & Hoeting)
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MH algorithm, contd..

Example: Sampling from a two-dimensional Gaussian distribution
using the Metropolis algorithm in which the proposal distribution is

an isotropic Gaussian.

(Ref: Fig. 11.9, Bishop - Pattern Recognition and Machine
Learning)
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MH algorithm, contd..

Example: scale of the proposal distribution

(Ref: Fig. 11.10, Bishop - Pattern Recognition and Machine
Learning)
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Gibbs Sampling

I Consider multidimensional target distributions

I Metropolis-Hastings sampling can be applied, but there are
challenges in constructing proposal distributions for
multidimensions

I Goal is to construct a Markov chain whose stationary
distribution approximates target distribution

I Idea is to sample one dimension at a time

I Gibbs sampler does this by sequentially sampling from
univariate conditional distributions, which are often available
in closed form
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Gibbs Sampling, contd..

I Consider a trivariate target f(x) = f(x1, x2, x3)

I Suppose, we are able to write down the conditional pdfs

f(x1|x2, x3), f(x2|x1, x3), f(x3|x1, x2)

and these can be sampled from

I Gibbs sampler proceeds by generating a sequence {X(t)}
iteratively, by sampling from conditionals

X
(t+1)
1 ∼ f(x1|X(t)

2 , X
(t)
3 )

X
(t+1)
2 ∼ f(x2|X(t+1)

1 , X
(t)
3 )

X
(t+1)
3 ∼ f(x3|X(t+1)

1 , X
(t+1)
2 )
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Gibbs Sampling, contd..

I Gibbs sampling is a simple and widely applicable Markov chain
Monte Carlo algorithm

I It can be seen as a special case of the Metropolis-Hastings
algorithm:
I Consider Gibbs sampler as a sequence that updates one

component of X at a tme
I The acceptance prob. is 1, that is why Gibbs sampler has no

accept/reject step

I Since it is a special case of MH, the convergence of MH also
applies to Gibbs
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A Simple Example

Consider the distribution

f(x, y) =
n!

x!(n− x)!
y(x+α−1)(1−y)(n−x+β−1), x ∈ 0, ..., n, y ∈ [0, 1]

Since it is hard to simulate directly from this p(x, y) it can be
easier to work with the conditional distributions.

I f(x|y) = f(x, y)/fy(y) = f(x, y)/
∫
f(x, y)dx

= f(x, y)/
(
yα−1(1− y)β−1

)
=⇒ f(x|y) ∼ Binomial(n, y)

I f(y|x) = f(x, y)/fx(x) = f(x, y)/
∫
f(x, y)dy

= f(x, y)/ n!
x!(n−x)!B(x+α, n−x+β) = y(x+α−1)(1−y)(n−x+β−1)

B(x+α,n−x+β)
=⇒ f(y|x) ∼ Beta(x+ α, n− x+ β)

Thus, it can be easy to use Gibbs sampler to simulate from the
joint distributions
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Difficulties with Gibbs sampling

In case of strongly correlated samples it might take long time to
reach the stationary distribution

(Ref: Fig. 11.11, Bishop - Pattern Recognition and Machine
Learning)
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MCMC Convergence Diagnostics
I It is important to check the convergence and mixing

properties of the chain before using it for any estimation

I Various methods to check whether the chain reached the
stationarity distribution

I One way is to perform simple graphical diagnostics
I Sample path (trace or history) plot: Plot of Xt vs t

I If poor mixing: will remain at or near the same value for many
iterations

I Well mixing: quickly moves away from its starting value and
wiggle about the region supported by f

I Autocorrelation plot
I Autocorrelation at lag ` is the correlation between iterates

that are ` iterations apart

c` =
〈An+`An〉 − 〈An〉2

〈A2
n〉 − 〈An〉2

I If poor mixing: exhibits slow decay of the autocorrelation as
the lag between iterations increases
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Example of sample path

(Ref: Fig. 7.2, Givens & Hoeting)
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Example of Autocorrelation

(Ref: Fig. 7.8, Givens & Hoeting)

64



Summary

I MCMC is a powerful tool to solve many problems that are
difficult using other numerical techniques

I This lecture was to just introduce you to some basic concepts
of MCMC

I There are many packages readily available to perform MCMC
simulation, implemening different sampling methods

I However, it is important to understand them before applying
blindly to your problems

I It is also important to check the convergence of the sample
before using it for any estimation or inference
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END
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