Standard Model and Beyond

S Uma Sankar

Department of Physics Indian Institute of Technology Bombay Mumbai, India <u>Email</u>: uma@phy.iitb.ac.in

Set of ten lectures on SM available on "indiacms.res.in" at 2020_LECTURE_SERIES

Need to login. login-id: indiacms and password: IndiaCMS20

- It is a gauge theory, based on the symmetry group $SU(3)_c \times SU(2)_L \times U(1)_Y$, with Spontaneous Symmetry Breaking.
- It is a renormalizable Quantum Field Theory.
- Of the four fundamental forces, it explains strong, electromagnetic and weak interactions.
- Some of its important predictions are
 - **1** Logarithmic scaling violations
 - 2 Weak Neutral Currents
 - **3** Weakening of Strong force at higher energies
 - 4 W^{\pm} and Z^0 gauge bosons
 - 5 Fundamental scalar Higgs boson

All these predictions are experimentally verified.

- To understand what is meant by Gauge Theory, let us look at the simpler theory of Quantum Electrodynamics (QED).
- Consider $\psi(x)$, which denotes the quantum field for an electron.
- Its Lagrangian is given by

$$\mathcal{L} = \bar{\psi}(x)i\gamma^{\mu}\partial_{\mu}\psi(x) - m\bar{\psi}(x)\psi(x).$$

It is easy to see that this Lagrangian is invariant under the phase transformation

$$\psi(x) \to \psi'(x) = e^{i\alpha}\psi(x)$$
 (α a real constant).

- Since α is a constant, the electron field ψ(x), at every space-time point, undergoes the same phase transformation
- Such a transformation is called global phase transformation.

Local Phase (or Gauge) Transformation

- Global phase transformations are restrictive. The phase of the electron field has to be set to be the same at all points in the universe.
- We demand the freedom to set the phase of the electron in our neighbourhood.
- That is: We want α to be α(x) (NOT a constant but a function of space-time).
- The mass term in the Lagrangian is still invariant but the kinetic term changes because ∂_{μ} acting on $\psi'(x)$ leads to an extra term $-(\partial_{\mu}\alpha(x))\psi(x)$.
- The invariance of the Lagrangian, which was present when α was a constant, is now lost when α is made a function of space-time.

- We now insist that the Lagrangian should be invariant under local phase transformations also.
- \blacksquare Obviously, the original $\mathcal L$ is not, so we need to modify it.
- We saw that in the local phase transformation of the original \mathcal{L} , we get an extra term containing $\partial_{\mu}\alpha$.
- We need to introduce a new term in the Lagrangian, whose change under local phase transformation, cancels the above term.
- The modified Lagrangian is

$$\mathcal{L}' = ar{\psi}(x)[i\gamma^{\mu}\partial_{\mu} + eA_{\mu}(x)]\psi(x) - mar{\psi}(x)\psi(x),$$

where a vector field $A_{\mu}(x)$ is introduced.

- The modified Lagrangian \mathcal{L}' is invariant under local phase transformations, if we make the transformation $A'_{\mu}(x) = A_{\mu}(x) + (1/e)\partial_{\mu}\alpha(x)$, while transforming $\psi(x)$.
- The field *A*_µ(*x*) and its transformation properties are precisely those electromagnetic field of classical electrodynamics.
- We require the existence of electromagnetism by demanding local phase invariance of the Lagrangian.
- The transformation on $\psi(x)$ is a unitary transformation, involving one real function $\alpha(x)$.
- Hence, the symmetry transformation in QED is called U(1) symmetry.

Lagrangian of QED

- We want the electromagnetic field to be dynamic field.
- We need to add a kinetic term for it, which must be invariant under the U(1) symmetry.
- We define field strength tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$.
- It is trivial to see that $F_{\mu\nu}$ is invariant under the $A_{\mu}(x) \rightarrow A'_{\mu}(x)$ transformation.
- The Lagrangian for QED is

$$\mathcal{L}_{ ext{QED}} = ar{\psi}(x)[i\gamma^{\mu}\partial_{\mu} + eA_{\mu}(x)]\psi(x) - mar{\psi}(x)\psi(x) - rac{1}{4}F^{\mu
u}F_{\mu
u}.$$

- As Dirac once boasted, it explains most of Physics and all of Chemistry.
- Symmetry does not allow a mass term for $A_{\mu}(x)$.

- The term $e\bar{\psi}(x)\gamma^{\mu}\psi(x)A_{\mu}(x)$ describes the local interaction of an electron field with a photon field at the space-time point x.
- Using this interaction as the basis, Dirac was able to explain a number features in atomic physics.
- An important prediction is that electron spin magnetic moment has g = 2.
- It also predicted that electron energy levels in hydrogen atom should depend only on total j (not separately on l and s).
- In other words, ${}^{2}S_{1/2}$ and ${}^{2}P_{1/2}$ levels of hydrogen atom should be degenerate.
- Since QED is a quantum theory, we must consider higher order corrections, which occur due to multiple interactions.

One-Loop Effects in QED

The diagrams show one-loop corrections to photon propagator, electron propagator, vertex correction.

S. Uma Sankar (IITB)

Infinite and Finite Corrections in QED

- The vertex correction diagram leads to two interesting predictions:
 - **1** The 1-loop corrected electric charge of the electron is predicted to be

$$e_{1-\text{loop}} = e_{\mathcal{L}}[1 + (\alpha/\pi)\ln(\Lambda/m_e)]$$

where Λ is a high scale which $\rightarrow \infty$.

- **2** The magnetic moment of the electron receives a finite correction of the form $g[1 + \alpha/(2\pi)]$.
- The finite correction in g was predicted by Julian Schwinger and was measured by Polykarp Kusch.
- But, infinite correction in electric charge??? It was argued that this is not a serious problem.
- There will definitely be new physics at Planck scale $\Lambda = M_{\rm Pl} = 10^{22}$ MeV, meaning $(\alpha/\pi) \ln(\Lambda/m_e) \sim 0.05$.
- To match $e_{1-\text{loop}}$ to experiment, need to adjust the value of $e_{\mathcal{L}}$ by 5%.

- Fermi constructed an effective theory of β decay, which described $\Delta J = 0$ nuclear transitions.
- Gamow-Teller introduced a modification which could describe β decays $\Delta J = \pm 1$ nuclear transitions.
- Later, parity violation is incorporated into theory in the form of (V A) theory.
- All these theories were parametrized by Fermi Coupling constant G_F , which has dimensions M^{-2} .
- Is it possible to construct a fundamental theory of weak interaction based on exchange of vector bosons (as we did with QED)?

Intermediate Vector Boson Theory

- Intermediate Vector Boson hypothesis attempted to do that.
- It immediately encountered three problems:
 - **1** Exchange particle must be charged and hence must interact with photon.
 - **2** Weak interactions are parity violating and electromagnetic interactions are parity conserving.
 - 3 Exchange particles must be massive. But, local symmetry transformations require the vector bosons to be massless.
- Electroweak model (Weinberg-Salam model) could overcome all three problems:
 - **1** Expand the symmetry to SU(2) which has three free parameters and can lead to three vector bosons interacting with one another.
 - **2** Further expand the symmetry to $SU(2)_L \times U(1)$ and arrange the details so that weak is PV and EM is PC.
 - 3 Introduce an *SU*(2) doublet of complex scalars and generate Spontaneous Symmetry Breaking through Higgs Mechanism.

Weinberg-Salam (Electroweak) Model

- It is based on $SU(2)_L \times U(1)_Y$ symmetry.
- Left-chiral fermions are in SU(2)_L doublets and right-chiral fermions are SU(2)_L singlets.
- The hyper-charges Y of left-chiral and right-chiral fermions are adjusted such that both chiral projections of a fermion have the same electric charge.
- There are four free parameters (called symmetry generators) in the symmetry and hence there are four vector bosons.
- The off-diagonal generators of SU(2)_L mix to form a pair of charged vector bosons W[±]_μ.
- The diagonal generator of $SU(2)_L$ and that of $U(1)_Y$ mix to form the photon A_μ and a new weak boson Z_μ .
- One of the fields of the scalar doublet acquires non-zero vacuum expectation value leading to Spontaneous Symmetry Breaking which in turn gives rise to masses for W^{\pm} and Z.

S. Uma Sankar (IITB)

Predictions of Standard Model

- Electroweak model made the following four important predictions:
 - Weak neutral current interactions mediated by Z (discovered in 1973 at CERN)
 - **2** Existence of W^{\pm} and Z (discovered in 1983 at CERN)
 - 3 One-loop corrections to the relationship between masses of M_W and M_Z (verified during 1995-2005 at CERN and Fermilab)
 - 4 A fundamental scalar called Higgs boson (discovered in 2012 at CERN)
- The strong interaction part Quantum Chromodynamics is based on the symmetry group *SU*(3)_c. It made the following predictions:
 - **1** Logarithmic scaling violations (discovered in 1967 at SLAC).
 - 2 Existence of colour quantum number (confirmed at SLAC, CESR and DESY)
 - Existence of mediators of SU(3)_c symmetry called gluons (discovered in 1978 at DESY)
 - Weakening of the strength of the strong force at higher energies (confirmed at SLAC, DESY and CERN).

イロト イポト イヨト イヨト

Most Severe Problem with Standard Model

- Concerns the one-loop correction to Higgs boson mass.
- In QED, we talked about infinite correction to the electric charge of electron.
- But, we argued that it need not bother us too much.
- Similar arguments can be made for almost all of the quantities in the Standard Model, such as masses of fermions, masses of vector bosons and various coupling constants.
- The one-loop corrections to all these quanties have logarithmic divergences because the quantities are protected by approximate symmetries.
- No such symmetry exists for fundamental scalars. Hence, the one-loop corrections to the Higgs boson pose a severe problem to Standard Model.

One-Loop Corrections to Higgs Boson Mass

- The 1-loop correction to the Higgs boson propagator, comes from the above Feynman diagram and similar diagrams.
- It leads to the prediction

$$m_H^2(1-\operatorname{loop}) = m_H^2(\mathcal{L}) + \Lambda^2.$$

- Such a correction is called Quadratic divergence.
- Once again, let us imagine $\Lambda = M_{\rm Pl} = 10^{19}$ GeV.
- To match $m_H(1 \text{loop})$ with the experimental value 126 GeV, we have to do a ridiculous fine-tuning of $m_H(\mathcal{L})$ to 1 part in 10³⁴ !!!.

S. Uma Sankar (IITB)

Two Solutions to Higgs Mass Problems

- First idea is to assume that the Higgs boson is NOT fundamental scalar but is a bound state of a fermion and an anti-fermion.
- This is called Technicolor theory. It is a nice idea but the details do not work out.
- Moreover, we have seen the Higgs boson and it seems to be a fundamental scalar.
- The other idea is to impose a symmetry which relates the Higgs boson to a fermion.
- Postulate Supersymmetry which introduces a scalar for every fermion and a fermion for every scalar.
- If we insist that the rescaling of m_H should be moderate (may be of order 10 or so), then the supersymmetric partners must have masses ~ 1000 GeV. None seen at LHC.
- It is expected that the study of self-interactions of Higgs boson will throw light on the nature of the Higgs Mechanism.

S. Uma Sankar (IITB)

SERB Karyashala EHEP 2021

- Neutrinos are predicted to be massless in the Standard Model.
- Observation of neutrino oscillations showed that they have tiny masses (more than a million times smaller than the mass of electron).
- Developing a theory of neutrino masses is one of the priorities.
- There are literally hundreds of models of neutrino masses.
- How to make a distinction between any of them? Take more data.
- Different models have widely different predictions for charged lepton flavour violation (CLFV).
- Intense effort going on to observe signals of CLFV.

Some Popular Beyond Standard Model Ideas

- Parity violation and CP violation are put in by hand in the SM.
- It will be nicer if we have a model where they are generated through Spontaneous Symmetry Breaking.
- Left-right symmetric model (LRSM) does that. It also predicts right-handed weak interactions. Not seen so far.
- SM contains three different coupling constants, one each for $SU(3)_c$, $SU(2)_L$ and $U(1)_Y$.
- An ideal theory should have only one. Grand Unified Theories (GUTs) have that property at high energy and they reduce to SM at the scale of 100 GeV.
- They predict the proton to decay with a life-time of about 10³⁰ years. Not seen so far.

- At the moment, flavour physics seems to offer glimpses of physics beyond standard model.
- Standard Model has the property of lepton flavour universality (LFU).
- That is: the couplings of electrons, muons and taus to *W*[±] and *Z* are the same.
- Data from BaBar, Belle and LHC-b shows tantalizing glimpses of violation of LFU, in the form of ratios R_D/R_{D^*} and R_K/R_{K^*} .
- Measurement of (*g* − 2) of muon also shows a deviation from the prediction of SM.
- Intense experimental and theoretical effort going on to understand the source of these deviations and unravel the physics behind them.