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Outline of the course

* Monday — introduction

* the need for relativity; Lorentz transforms; basic consequences; four vectors;
proper time;

* Tuesday — kinematics and decays

* kinematics; Fermi Golden rule; Lorentz invariant phase space; two-body
decays

 Wednesday — more decays and cross sections
* three-body decay; Dalitz plots; cross section calculations; pseudorapidity

* Thursday - tutorial



Additional resources

* Books

* A.P. French — Special Relativity (Taylor & Francis)
* D. Griffiths — Introduction to Elementary Particles (Wiley)
M. Thomson — Modern Particle Physics (Cambridge)

* Lecture courses

* Relativity — M. Tegmark
* https://ocw.mit.edu/courses/physics/8-033-relativity-fall-2006/

e Relativistic kinematics — K. Mazumdar — Xlth SERC School on EHEP
* https://www.niser.ac.in/sercehep2017/

* Quantum Field Theory —S. Coleman
* https://arxiv.org/abs/1110.5013
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An apology

Normally | would like to give this type
of course as chalk’n’talk but given the
large amount of material and the
virtual setting | am using slides.

| will try to slow myself down. A good
way to do that is ask questions, please
stop me any time that something is
not clear.
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If v is the number of qualified physics
teachers, and c is the number of unqualified
science teachers, this factor reduces to zero



A bit of history

* Relativity is not new

* “The fundamental laws of physics are the same in all frames of
reference moving with constant velocity with respect to one another”

e Galileo Galilei 1632 AD

) t =t

Vv

Can always rotate and translate to this scenario

t=t’=0 when x=x"=0



Classical physics

* Newtonian physics is unchanged e.g.

2,1 2(v 2
FX’:mOI ,): :md (X ZVXt)zmd—;(zFx
dt dt dt

* But classical electrodynamics is not

* Maxwell’s equations in a vacuum lead to
0°E 1 0°E
ox>  ¢? at’

(1_v2jazé ,V OE 10

= 0= E(x,t) = Af (x—ct) + Bg(x +ct)

+ - 0= E'(X' t) = f'(X =[ctv]tY+§' (X +[ctv]t
CZ 6X!2 CZ axratr C2 81:!2 ( ) ( [ ] ) g( [ ] )

Tutorial problem 1



Einstein’s postulate

Finding evidence for the medium ‘aether’ that the waves travelled
through was not forthcoming c.f. Michelson-Morley experiment

So Einstein dispensed with it and amended Galilean relativity with

1) “The fundamental laws of physics are the same in all frames of
reference moving with constant velocity with respect to one another

(inertial)”
2) “The speed of light is the same in all inertial frames”
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Toward the Lorentz transformations

* Light pulse at t=t’=0

With Einstein’s postulate this

jv|> leads to two ways to define
(’[', f’) the distance travelled by light
g\Q R in each frame that is equal
& (t.7)
i >
Sy (ct)?= |’
XX
\}
\y
A}
A}
- 2 1212 n2 _ |
t=t’=0 when x=x"=0 = (Ct) —|1”| — (Ct) —

Lorentz transformation ensures this relationship



Lorentz transformation

* The transform between inertial frames

ct’ y —yB 0 Olfct] [ yet—yBx
X' — 0 O x —y3Ct + ¥ X
= vy = 7Pty where,B:X and y= L
y' 0 0 1 0|y y C 1- f°
2] | 0 0 0 1|z]| | Z |

* Time now frame dependent
* Whenv<<c, 3 — 0andy—1, and Lorentz — Galilean transformation
e Derivation in back up



Reminder of the basic consequences

Inverse transform: S moves with velocity —v in the x” directionin S’ i.e. } —> —f3

ct ct'| [ 8 0 O]lct'] [yct’'+yB8x"
X | _ Al X' _ w v 0 0f X _ ypct’ + X'
y y'| |0 0 1 0y y

. 'z |10 0 0 1) 72| | 4 |

Time dilation: time interval observed in S for a clock at fixed position x’ =0 is

ct,—ct, =y (ct’,—ct’, ) =>At=yAt’

v > 1 therefore ‘a moving clock runs slow’ i.e. cosmic ray muons



Basic consequence ||

At time t what length x, to x, is measured in S for a stick of length I’ on x’
axis that is at rest in S” with ends at x,” and x,’

ct’ y —yB8 0 Offct] | yct—yBx
X' vy 0 0] X —yfct + ¥ X
vilo o 1olyl | v

2| | O O 0 1|z | z |

Length contraction:
X' =X =y (X=X, )=>1"=yl

v > 1 so the stick appears shorter

There is much fun to be had with these, e.g. twin paradox, but not the
thrust of these lectures so we will move on to the language of relativity



Natural units

As you are aware in particle physics we dispense with [kg, m, s] and use
[h, ¢, GeV']| and we go further to just use GeV by settingh =c =1

So | am getting bored of writing ¢ so | will drop it unless | am making a
specific point in the lectures

Table 2.1 Relationship between S.1. and natural units.

Quantity [kg, m, s] [, ¢, GeV] h=c=1
Energy kg m’s? GeV GeV
Momentum kgms™! GeV/c GeV
Mass kg GeV/c? GeV
Time S (GeV/h)™! GeV!
Length m (GeV/fic)™! GeV!
Area m’ (GeV/hc)™? GeV~?
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Four vectors

So far we have seen that we must treat time differently to classical
physics and it has become relative in a similar way to space coordinates

We have a way of transforming coordinates between any two inertial
frames via the LT

St X = (4,%,y,2) =(x% x4, %3, x°)

summation convention
/ V - - -
X =A" X (A“ L, =A; InLT derlvatlon)
A contravariant four vector is one that transforms from one inertial frame to another

following LT c.f. a three-vector is defined via its behaviour under rotations
....but it doesn’t have to be (t,x,y,z)



Invariant

2
We go back to our master Eq. for SR = t% — |F|? = t'? — ‘r"

This motivates another definition — covariant four-vector

X, =(t,—X,—y,—2)
X“x, =t* =x* —y*-7°
:tr2 . X12 . y12 . Zr

IR AN
= X""X/

2

This is equivalent
to the invariance of
|72 under rotations
in Euclidean 3D



The metric and inverse L 000

This leads to the definition of the metric g =9 = o -1 00
10 0 -1 0

gﬂvxﬂxv _ gaﬁxraxrﬂ _ gaﬂAa ﬂXﬂAﬂ VXV _O 0 0 —1_

S0, =0,,A7 A =AT AL

gwgws = A" ﬂ/\a ng5 = A" ﬂAa ° Important to be comfortable

navigating this notation, as it appears
many places, but | will not be doing a
lot of index manipulation in this
course

Y o
—o,=AN" A,

=5, :(A‘l)(S AT,

where (A‘1)5 =A% =00 07



ct | ct'| |yt +yBX |
Four derivative X | _pal X |_| A+ pX

y y' y

Z _z’_ i 7 |

Consider the derivatives w.r.t. x" and t’

0 :axg+atg:yg+yﬁg:>_a :y(_g ., 0

ox' ox'ox ox ot OX ot oX'

Qzﬁanr@tGzyﬂgﬂ/g:i:_%g(_gjﬂ/g | |

ot ot'ox ot ot ox ot ot OX ot WaveeqinEMis
is an invariant!

|10 0 9 9
' cot ox oy oz EM Lorentz invariant

1 6° . :
= 00, = C—ZE—VZ =0  (d'Alembertian) Pproblem set Q2



Symmetry of Lorentz Transforms

ct’ y —yB 0 O0}[ct] [ coshn —sinhyp 0 O]fct
X| |=»6 y 0 0] x| |=sinhp coshp 0 O x
y| |0 0 1 0|yl ]| O 0 1 0]y
2] [0 0 0 1)z | O 0 0 1]z
2
COShzn—Sinhzn:yz—yz,ﬁz:i ,,gz =1

n =tanh™ (- /) = rapidity
More abstract a rotation by -in in the (ct,x) plane

But this is a useful way to write the transformation for practical reasons
(lecture 3) and to understand the symmetry of Lorentz transformation



Conservation laws and infinitesimal
transformations

Invariance of a system under a continuous transformation leads to a
conserved quantity — Noether’s theorem — so there are associated
guantities with LT, but they are not much used.

(see Sidney Coleman’s QFT lectures (6 October) for more detail about
this)

However, thinking about the infinitesimal Lorentz transformations
elucidates another important connection with symmetry groups

We define infinitesimal transformation as (Problem 3)

i M 7%
X =X"+&""X 0n



Four vectors in general

* In general a four vector a* when combined with another b*
Y7, . o -
a’b, = a b, —ab, —a,b, —a,b, =Invariant

* Further four vectors transform according to Lorentz transformations
between two inertial frames

* So far we have met space-time four vectors (and we have alluded to
some in electromagnetism) but we don’t have what we really need
the energy and momentum that form a four vector

* The first thing to consider is ‘proper time’



Proper time

A non-accelerating particle will have an inertial frame of reference
associated with it where it is at rest.

The ‘clock’ in this frame will have a time agreed upon by observers in all
other inertial frame

This is referred to as the proper time 7 c.f. the lifetime of a particle
Can we use this information to find the energy and momentum

We know that if all the laws of physics are invariant then let us use
Lagrangian formalism for this

Action =S « [ dt



Derivation of energy and momentum four
vector

Recall dimensions of action are
[Energy][t] = [GeV][GeV] = dimensionless

The only other invariant quantity we have that has dimension energy is

the mass M of the particle so we multiply by —M

dt
S=—MJdT=—M —
14

L=—-M{1-x%2—y2%— ;2

d oL oL MX | _ B
-———=0=p, = = M yx (conserved quantit — MV
dt a6, o P ey ( quantity) P=My




Energy and four-momentum

H = Z—q, L = I\/I;/()'(2+y2+z'2)+M: I\/I;/(l——2+—2j: M y

You can just

p* =My, MyV)=(E, p)
, 1 differentiate x* by 1

2. 2 2 2
— p p — M ( ‘V‘ ) M )y —5 = M to get proper velocity
/4 and multiple by M to
get the four-momenta

e -[pf =M



Recap of yesterday and plan for today

* Yesterday
* the need for relativity
e Lorentz transforms
 four vectors

e proper time and P =(My,M V) =(E, p)
* Today

* Using the four-momentum: two-body decay kinematics, centre-of-
mass and threshold

* Fermi Golden rule and Lorentz invariant phase space
* two body decay rate



What about classical physics

E=M when v=0 or as it should appear in a course on relativity
E=mct

K

minutephysics

Therefore kinetic energy is T =E-mc®
=mc’®(y-1)

= mc? \(1—,32)_% —1)

p
~ MC* E,sz when 8° <1
L 2
~my?

2



https://www.youtube.com/channel/UCUHW94eEFW7hkUMVaZz4eDg

Four-momenta and massless particles

So we have shown two ways — based upon proper time — that

p“ =(E, p)

is the representation of energy and momentum relativistically.

Special case m=0
EZ—\F)\Z =m* = E =|p| when m:Ozgzlzﬁ

Not so special case at LHC unless particle masses at EW scale—W, Z, Hand t
— mass makes little difference in calculations so assuming m=0 hence E=p
often chosen



Example: two-body decay, opening angle (and
some B physics)

Figure from CMS-PAS-BPH-20-001
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Example: two-body decay, opening angle (and

some B physics)

C :
Ty O
B L B 1 : E v - -4
I A1 Is -~ % < =
Vi " 0 i ==l Ve
i, R'E H, W W H, L
ki = o = = -Iil = - a W
Iy Vo © Vi b Vy =
kT L
¢ Iy
fn o

From: T. Kuhr, CP-Violation in Mixing and the Interference of Mixing and Decay, in
Flavor Physics at the Tevatron, Springer Tracts in Modern Physics (2013)
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What is the ¢ momentum in the B rest frame?

Pg = p¢+ pJ/gy
2
:>(pB - p¢) — p?/(//

2 2 2
— Pg + p¢_2po¢:mle
2_
¢

2 2
g ~ My

2m;

2 2
:>2p8mf:m8+n1 my,,
m2 +m

:>E¢—




What is the ¢ momentum in the B rest frame?

AMZE] =(m3 +m; - mJ,V/)2

= 4m? (‘pA +m ):m +2mZ (mf —m3, )+ (m;

/-\
c_.
~~
<
v

= 4mZ[p,| =m —2mf (m} +m?,, )+(m,—m,, ) (m #my, )
_m - 2m _[(mcf'—mw) (m mJ/z//)J (m¢ My )2(m¢+m3/‘//)2

= |p,|= 2;5 (mé —(mwtmj,w)z)(mB —(m¢—mw)2)




A important formula for any 1—>2+3 process

1) B, :Ziml\/(mf —(m, +m, )2)(m12 —(m, —m, )2) =|B,| (2¢>3)

? b= 2m, E



Centre of mass frame

How to find the boost to the centre-of-mass (CM) frame?

In general Z =CM

— total total

In the original frame Z b =P

_‘p

So we can resolve all orlglnal frame momenta into L and ||, then

look for a boost to make ZN: poM =0 = ZN:y( p, — BE )= yZN: b, = ,ByZN: E
=1 =1 =1

N B N N
LI Z_l:ﬁ Z_l:(r’n,i + r’u) Z_;(ﬁ ) 5o
73 :ﬂ:%Ei N ZN:Ei :IiEi ET
=1 i




KL and muon detector
Resistive Plate Counter (barrel outer layers)

e S L P Y
y=1.04

— B
particle dentiication () = yBx €ty ~130 um

Prox. focusing Aerogel RICH (forward)

Vertex Detector P, . B _
2 layers Si Pixels (DEPFET) + . e Here z-B _15 pS

4 layers Si double sided strip DSSD ’#

’(.

EM Calorimeter
Csl(Tl), waveform sampling electronics

\\

\\

.

electrons (7 GeV)

- . positrons (4 GeV)
Central Drift Chamber

Smaller cell size, long lever arm

Figure belle2.org
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O— O P L=
{a) 2 % “_p()\s
Threshold production o
ore ter
Bevatron was a fixed target (one proton c/
at rest) p+p experiment with the goal of 0
inducing (b) O—s O ®
ptp->p+p+p+p »
. Before After
What IS the energy Of the beam at Fig. 3.6 p+p > p+p +p +p (a) In the lab frame; (b) in the CM frame.
threshold? Griffiths, Introduction to Elementary Particles

In lab frame before collision

u = p . 2 = 2 =2 = 2 2
pTotaI - (Ebeam + mp’ pbeam) = pTotaI p,u,TO'[BJ - (Ebeam + mp) _| pbeam| - Ebeam _| pbeam| + mp + 2mpEbeam

:>s:2m§+2E m,

beam

In CM frame after collision at threshold (all particles at rest)
= Pl = (4m ,0) = s =16m’ If colliding beams CM and lab
Equating s equivalent
E._=7m * —
— Epeam p — Ebeam — Zmp
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Griffiths” suggestions

1) To get the energy of a particle, when you know its
momentum (or vice versa) use the invariant

Ez_mz — m?2
2) If you know the energy and momentum of a partlcle,
and you want to determine its velocity, use ,B p/E
3) Use four-vector notation, and exploit the invariant
dot product p* = m?

4) If the problem seems cumbersome in the lab frame
try analysing it in the CM system



Fermi’s Golden Rule (number 2)

* We are now in a position to start thinking about calculations of the most
important quantities in HEP: I"and o

* Fermi Golden rule is the key: Sec. 2.3 Thomson derivation

27T 2 .
_ density of states
Transition rate — W T mif ‘ /O(E )\ available for energy E
h 1 (phase space factor)

Matrix element of transition i—f (‘mif ‘2 = KWf ‘Vif |l//i>‘2)
* |m;|2maybe unknown

e extreme case it is a constant so the kinematics of the final state is purely governed
by p(E)

* Therefore, we need to calculate p(E) to understand the dynamics of the
matrix element



Density of states

 State of motion of a single particle with a momentum between 0 to p confined to
volume V is specified by a point in 6-D phase space (X,y,z,p,,p,,P,)

* Limit to which a momentum and spatial coordinate can be specified is h from the
uncertainty principle

* Elemental volume of phase space is h3

* Therefore, the number of states available to an individual particle, N,, is:

V
(27h)?

_ total phase space volume 1

N. —
elementary volume (27h)

g jdxdydz dp, dp, dp, = Id3p

* For a system of n particles the number of available final states, N,, is the product
of the individual particles:

N, :[(2\7/[)3] jli[dspi (h=1)



Phase space

* The phase space factor is defined as the number of states per unit energy interval
per unit volume (V=1)

p(E)

dE (2;; 3” dEjH P

 However, not all momenta are independent because of momentum conservation so
there is the constraint:

(Z of j —P =0 where P is the total momentum

e Can be accommodated by integrating over n-1 particles

P(E):( 3(n ) dEjH P;




Phase space continued
* This can be re-expressed more usefully using Dirac o0 functions to take care of the
Write the momentum conservation as:

momentum conservation
n-1
_(P_Zpijzo SO J.dgpn5|:pn _(P_ plj:|:1
- p(E)= de = —— [P po—| P~ 3P
(272_)3(n —1) dE | (272_)3(n -1) dE - [ n - |

e polP-2o

[N

n—

I
[EEN




Phase space continued

* This can be re-expressed more usefully using Dirac o0 functions to take care of the
momentum conservation

Energy conservation gives Z E-E=0s0 jdEé(Z E — Ej =1
I=1 I=1

n

- p(E)= (27;)13‘” = de pdEé{ —gpi}(ZEi—Ej

=1

:(27[)13(“) de p({ Zp,} (EE —Ej as dd—Ejf(E)dE: f (E)

Only problem this is
not Lorentz invariant




Ensuring Lorentz invariance

2
* Fermi’s golden rule: W = Zﬂ‘mif‘ p(E)
* If p(E) is not Lorentz invariant then neither is | M| 2

* Consider a single massive particle moving with energy E in a volume V which is
described by a wavefunction w normalised to || w|2dV=1

* This normalisation implies that the particle density is 1/V for a stationary
observer

* However, if the particle speed is relativistic then there will be a contraction by a
factor 1/yin the direction of motion so the particle density appears to be 'V

 Normalising the wavefunctions to v’ — /7w ensures the particle density becomes
Invariant



Ensuring Lorentz invariance

For the transition rate we can redefine the matrix element to be;

M, [ =|m,| f[zmjyjczf[zmiyic2 = |m, | f[zEjf[in
j=1 i=1 j=1 i=1

where j represents particles in the initial state so the transition rate to a single final state becomes

dW =27 l‘l\[/lszz )13(n1)(fl[‘jzgéi5[gpi—PJ5(iEi—Ejj

Integrate over all final states to get:

2 2
M. M
=W = 27 ‘ 'f‘ 13(n - ( dzé’ 5(Zpi jﬁ(ZE Ej j ‘ f‘ @, (E)
HZEJ. = - HZE
j=1

Lorentz invariant phase space

@, (E)= 3(n_1)fHdp' (Z::pi‘Pjé(gEi_Ej

Factor 2 later




Recap and plan for today

* Monday and yesterday
e the need for relativity, Lorentz transforms and four vectors
e proper time and p* =(My,M V) =(E, p)
* Using the four-momentum: two-body decay kinematics, centre-of-mass
and threshold
* Fermi Golden rule and Lorentz invariant phase space

* Today
* two body decay rate
* Dalitz plot
* Cross section
e Pseudorapidity



Ensuring Lorentz invariance

For the transition rate we can redefine the matrix element to be;

M, [ =|m,| f[zmjyjczf[zmiyic2 = |m, | f[zEjf[in
j=1 i=1 j=1 i=1

where j represents particles in the initial state so the transition rate to a single final state becomes

dW =27 l‘l\[/lszz )13(n1)(fl[‘jzgéi5[gpi—PJ5(iEi—Ejj

Integrate over all final states to get:

2 2
M. M
=W = 27 ‘ 'f‘ 13(n - ( dzé’ 5(Zpi jﬁ(ZE Ej j ‘ f‘ @, (E)
HZEJ. = - HZE
j=1

Lorentz invariant phase space

@, (E)= 3(n_1)fHdp' (Z::pi‘Pjé(gEi_Ej

Factor 2 later




Showing that it is invariant

To show that this Lorentz invariant consider the Lorentz transformations
for boost is in z direction:

py=p, P,=p, P.=7(p,-PE) E'=y(E-pBp,)
dp! dE P
L _—yll-fB— |=y|1- B2
dp, y( ﬂdpj 7( ﬂEj

+m® | = ‘+m° : _ P
pz dpz [IZX);Z pl J pz (izxy;z pl ] E

dp; p,\ 7(E-Bp,) FE
2 |1 gBFz | = -
dp, 7( ﬁEj

N[

E E
4 3R/ 3
_ dp; _dp, . dp’ _dp

E' E FE E




2 body phase space
2o (Zo-epee

5(p1+p2—P)5(E1-|—E2—E)

5(p,+p,)S(E, +E,—E) in centre of mass frame

(2r)’ 7 4EE,
1 j4ﬂ|p1| d|p1|5(E LE E)
(2z) 7 4EE, 1
1 ¢|p,|dE
87[2_“ 1||EZ 15(E +E E) as ||01|d|p1|—EdE from E2 p% =m



2 body phase space

To do the integral we need to write E, in terms of E;, m, and m,. In the centre of mass frame .-.

1
2 _ 2 2 2 2 2 2 2 2\2
pi=p;=E -m =E,-m; :>E2:(E1 —m +m2)

0, (8)= oo [P0 e+ (£ mi e mi) )= 2 [P B 0 )

To integrate over E, we use the relation jdE 5 g(E; ))

dEl

1

with g(E,) = E, +(Ef —m} +mZ)° - E

d_gzl_l_El(ElZ_le_'_mzZ)_E:E2+E1: E :;_g—l :E
dE, E, E, Yoo E
1

Two-body Lorentz invariant phase space is @, (E) = R
7T



Two body decay rate a—>1+2

Let's consider two-body decay of particle a mass m,, so E =m_ in CM frame

1 pp

87° E

P/ =|p* is the momentum of the decay products of the rest frame a

Also, if M. |© depends on the relative angle of the final state particles to the spin of the initial state
dQ_ 1 P9,

dr 3278 m,

Two-body Lorentz invariant phase space is @, (E) =

do,(m,,Q)=o,(m,,Q)

a’

2
"V'if‘ 1 1 |I°*| 1 |p*|
W=Ir=2 dd, (M, Q) =2 M. [2dQ = M. [?dQ
ﬂ-‘- 2E . )=27 2m_327° m, Jl a 327° m.? -“ a

L \/(mj ~(m, +m2)2)(mj —(m, —m, )2)

2m,

and |p*=



<|

A Fig 11.6 Thomson
u

<|

Pion decay -

w

Two of the three main decay modes for the 7t™. The decay &= — v,y (not shown) has a comparable
branching ratio to that form™ — e™Vv,.

So Feynman rules will lead to a well defined weak current for the

lepton and quark part, but describing the strong non-perturbative
binding in the initial state is impossible analytically

M, oc

I T
J u,quarks Jleptons

oC Fﬂ jlgptons
oc TP, Jiepans (T, 1S piON decay constant)

Lorentz invariance gives us the answer



gW” p, [T(p,)7" = 7*)(py)]

Pion decay e (g
=M ( ij DT @77 i 0= 77) (p+ )
1( g f. 2
8[ - j | 2(P-P)(P-P,) — P*(P:-P,) |

Now we can use the four-momentum conservation to write

P=p,+P,= P-p, =P + PP, = PP, and similarly p.p, =m/ + p,.p,

m? —m?

) 2

oc| 2(p,. P,)(M} + Py p,) =M (p.. pz)} If m=0 the pion would never decay

2 2 2 2
oC m”;m' j{Z m|2+m”;m' j—mi}

2 2
Ocm|2£“|7r |

Also, p* =(p, + p2)2 =m.=m’+2p.p, = p,.-p, =

2



Pion decay

1 P p
T3 m,’ J M, Fdc2
2 2 2 2 2 2
_ 12 12(mﬂ m,)4ﬂ1 ngfﬂ m? m: —m,
32z °m = 2m_ 8\ m, 2

f2 [ Ou 4 2,2 2\2 F(” —>ev) B mZ(mZ —m?)*
> ml(mﬁ_ml) — — 2, 2\ 2
Zm *{ 4m,, [(7z—>pv) m(m;,—m)



Dalitz plot

Considering a scalar or pseudoscalar decaying into a three-body final
state how many variables are required to describe it?

3 four-momenta = 12 variables
Constraints:

Energy-momentum conservation =4
Particle masses = 3

Orientation of decay plane choice = 3

12-10 = two-independent variables
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P, My
Dalitz plot PO P

pg: m3

* Following (and figures) from PDG kinematics review general form with
just the kinematic constraints - energies in rest frame of M and o, 3
and v are Euler angles to define the orientation

1 1

Al = - 2 AE+ dE~ do d(cos 3) dvy
25 Tonz 41 B dEs dad(cosf) d
(p +p;)° =m
ir = —2 - 1; .4 |2 dE; dFs - ‘
(27)° 8M P=p,+p,+p;
1 1 :>(pi+pj)ZZ(P_pk)ZZMZ"‘mi_ZP'pk

> . 9
= A [* dmTy dmig

(27)3 32M3 Lmg =M?+mi —2ME,



Dalitz plot
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s, (GeV¥c?)

Observation of a narrow pentaquark state, Pc(4312)+, and of

Do - K TI+T[- two-peak structure of the Pc(4450)+, PHYS. REV. LETT. 122
S (2019) 222001
BaBar PRL 105 (2010) 081803

3F | R 2
~ «+ Q) S G
i J 5 <
h interference 4524 =
: X
8 ‘ T}
102 =
D 22_ S
Z ; 3
20 g
<10 : 5
11 < 181 =

L, L

mzKp

s. (GeV?/c?) &
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https://doi.org/10.1103/PhysRevLett.122.222001

Observation of a narrow pentaquark state, Pc(4312)+, and of

Do 3 W rrhrr two-neak structure of the Pc(4450)+, PHYS. REV. LETT. 122
+ =0 + '_*ﬂ
BaBar PRL 10t _ ZD 2cD
O i : : .
= : 5
3, 1200I_— : 5
{; ; % [ —data LHCb LHCb 10° &
o= | ‘%1000-'-_ total fit Q
> O | — background =
Q ] -.% : ; %)
C Ll S goof- =
+ ! ..-8. i S
" 2 600f :
D ©
i = ©
1 400 : O
200;_ A
.o i
1 i -l L= L - .A‘H—.. J
43(}0 4250 4300 4350 4400 4450 4500 4550 4600
S M, MeV]
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https://doi.org/10.1103/PhysRevLett.122.222001

Thomson Fig. 3.5.

Cross section definition

(v + vp) Ot
° o b o
A L . —9
5 ® ¢

The left-hand plot (a) shows a single incident particle of type a traversing a region containing particles of
type b. The right-hand plot (b) shows the projected view of the region traversed by the incident particle in

time Of. Va -+ Vb
Interaction

probability \5P _ ONo _ nb (Va -|—Vb)A05t
A A
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Cross section definition

Interaction rate per particle is I, = m =NVo Tux

Total rate involume V = I'=r,nV =(n,v)(nV)o =¢N,o
No. of targets

o=Number of interactions per unit time per target particle/incident flux

Now let us consider the scattering process a+b—>1+2 with 1 particle per
unit volume normalization we have




Recalling the Golden rule

Golden rule gives

1 2
7= G oy Ml PRS0 PP (B E BB
(Zﬂ)_z 2d3p d3p
= M. 1 2 5 o cELE_E_E
4EaEb(Va+Vb)-” If‘ 2E1 2E2 (pa+pb pl p2)§( a+ b | 2)
27) " d%p. d°
_(27) [Im,[ =222 5(p, +p, —p, —p, ) (E, +E, ~E,~ E,)

F 2, 2E,

Where we define the ‘Lorentz invariant’ flux F



Lorentz invariant flux: check

P, [P
E. E

a

F =4EaEb(Va+Vb)=4EaEb£ j:4(‘pa‘Eb+‘pb‘Ea)

= F? =16(EZ|p, [ + EZ|p.[* + 2E,E, |p. [P, )

Note that when p, and p, are collinear in opposite directions

= (P2 Py)" = (ELEy +[PlPy])” = EZEZ +[pu[ [po] +2E.E, .,
~F?=16((p,-p,)" (B2 ~Ip.[" ) (EZ ~[pu[*))

= F =4{(p,- p,)’ ~mim;




plzpj‘
_ . P. =P P, =—Pp;
Flux and cross section in CM *
P, =Py

Now we have a simple setup to analyse the E' +E =E +E =45
problem S

First we work out the flux:
F =4E.E; ([Vi|+|vi|) = 4E:E (pa
E

Now we can write the cross section calculation

d°p, d°p, . .
o B S (a5 -

P )4

a b

Using thea —>1 + 2

‘p* ‘ dLIPS with m_—+/s
f

6477 |p;|s

1 ‘pf
1677 b \\/_ 4\s

v o =, e




Fig. 2.2 Thomson

Mandelstam variables

time-like g2>0 space-like g%<0
P P3 P, b P P3
Identical 3
q q and 4
q cf Moller
P2 P4 = Pa P2 P Scattering
2 2 5
S:(Ol+ 02) t:(ol_pS) u:(pl_p4)
2 2 )
:(O3+ 04) :(02_p4) :(pz_pS)

Equivalent to g2 of the propagator
InCM s = (p;, + po)%= (Ef + E5)* — (p; — p;)* = (Ef + E;)*= (total energy in CM)?
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Mandelstam variables:
a couple of useful relations

S+t+U=(p+p,) +(P—Ps) +(P—Py)
=3M + My + My +M, +2( Py P, — P Ps— Py Py)
:3mf+m22+m§+m§+2p1-(p2— Ps — p4)
=3m/ +m; +m; +m; +2p,-(—=p,) P+ P, =P+ P,
=M +m; +m +m;

When all particles in the relativistic limiti.e. mZ> ~ 0 = S~ Pi- P, = Ps- Py

t=—p,-P3=—P, P,
Ur =P Py =—Py Py



Fig. 3.7 Thomson e

d(
Ditferential cross sections ’
e > .’ﬂ\\.
do-  number of particles scattered into d{2 per unit time per target particle " .\

dQ incident flux

Differential distributions contain a lot more information than the
integrated total cross section - can be w.r.t. to other variables than solid

angle too
In CM

o
p;

do 1
dQ)”  64r°s

‘2

I\/Iif




Lorentz invariant differential cross section

Elastic ep— e p in a fixed target experiment: lab frame # CM frame
Can we find a invariant formulation of the differential cross section

. 2w % .
) Ps=P¢. ¢ t:(p1_p3) =P+ P 2P, Py only
P, =P 6*p, =—p- T * % i
L T =i 2[EE-pR]
__p M S, . lastic scat.
P " Pa="Pi NB [pi] = o] =m? +m; —2| EE; ~|p; ||p; cosé’] I
dQ" =27d (cosd’") = T gr— "t
2|py|jps|  [pi| [P
:>d(7: 1 M. 2 i i 1 2 2
oo Recall \pi\:\pf\:ﬁ\/(s_(ml em,))(s—(m, -m, )

so this is a Lorentz invariant formulation in terms of s and t



Example: ete > f f

The spin-averaged matrix element for e*e—>u*u~ is ‘M ﬁ‘z =¢" (1+ cos’ 6’*)
in QED when s>>m

do 1 [P 2 do 1 N 4 X
=M [ = - = e* (1+cos? 0" ) =——(1+cos’ 6")
dQ2  64rx°s |p. dcos@  32rs 25
o T T er i JADE]

o JADE ":—uEED’W‘ J oo > —> 1ty 5 1

T ok ==l y > H H G:ﬂj‘(H Cc0S° H*)d(cosé’*)

> : ~ 2S

: | + ;

s ; ) 4ra’

v | Phys.Lett.B 108 (1982) 140 | efeT 7" > Iu+lu_ = 3s

n . .
-10 -05 ) 05 10

cos ©



Rapidity
Recall [ct'] [ » -y 0 Ol[ct| [ coshy —sinhnp O
X| |- v 0 0| x| [=sinhp coshnp O
v | 0 0 1 0of|ly|l | o0 0 1
Z| |0 0 0 1)z] | O 0 O
n=y=tanh™ ()= rapidity
2y
e’ -1 1+
—tanh y= 4= =f=eV ="1X
y=F e”’ +1 p 1- 5

— yzim(ﬂj
2 \1-p

R O O O




Rapidity at the LHC

* In pp collisions the there is only a fraction of each protons
momentum associated with the partons in each collision x; and x,
such that there is a boost in beam direction (x;-X,)E ,o10n (E >>m,)

* If we define the z direction as that of the beams we can quote the
rapidity of each particle or jet in the final state

y:—ln 1+ :Eln 1+p,/E :Eln E+p,
2 \1-p) 2 \1-p,/E) 2 \E-p,
* What is y’ in an inertial frame moving in the beam direction i.e. the
CM frame?

proton




Rapidity gaps

1 |n(E'+ p;]:hn(ﬂE—ﬁpz)w(pz —ﬂE)j
=p,) 2 (r(E=Fp,)-r(p,~FE)

2
1 ((1 ﬂ)(E+pz)] 1,n(E+pz] _,n(gj
2 (W+AE-p)) 2 (E-p,

Therefore, Ay’=Ay, differences in rapidity are invariant.
Rapidity differences independent of the unknown boost in the z direction



Pseudorapidity

As already noted for quarks that fragment to jets and leptons produced
the m,,,, m << E, so they can be treated as massless

So L »

Y = Eln E+p, - Eln(lJr cosé’j | T F \[—mwﬂw -3333
2 E— P, 7 1—cos @ -l % ;E; j — =
1 cos’ 4 B L ;_EJ l; ﬂ

== sy )7 T
= pseudorapidity R

P =4/ P; + P, (complementary variable invariant under z boosts)
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Example: Drell Yan production

1_ I'IIII| I ||r||||| T I TTTTIT]

g/10

0-9) xf{x,u2=104GeV2]_; (S)
0.8} b N
D.?f— ) | 2X1X2p1-p2
0.6F

)U(xl))%(d(xl)a (%) +d(x,)d (x1>)jdx1dx2

0.5F

0.4F

Fig. 10.28, Thomson 0.3 :

0.2
015 \\ .1 Fig.18.4PDG

D 1 IIII|II| 1 Illlll-‘l-\ T Bkt 1]

10° 10~ 1
X
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In terms of observables: y and M of muons

E +E_+p_ +p-
y+:y:1|n(E3+E4+p3z+p4zj:1|n ¢ T Eq T Py T P and
ok 2 E3+E4_p3z_p4z 2

Eq + Eq R pqz o pqz
s Js
— (Xl’o O Xl) pq

——(xz,0,0,—xz)
X, + X, + X — X
y=—|n[1 2 T X 2j_—lnﬁ
2 X, + X, =X + X, "
) > . \/7:x1 —eyandx =—e"’
M* =M =S=XXS N
o e o(y, M) R S
Y, B o
dydM = dx,dx, = dx.dx, = —dx.d
X1X y (X1 X2) % % X1X2 2M X1X2




Arror®

9x1x25

A
9

‘~ (U(Xl)U(Xz) + U(XZ)U(Xl)) +

19.7 fb”! ee and pu (8 TeV

S(A0)T00) +d 00T (%) |exd

Eur. Phys. J. C 75 (2015) 147

3L mrme -
4 %' 0°F CMS YIZ—e'e, ptu 3
— (X, X, )dx.dx, S 10 1
0o g 3
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Additional slides

LT derivation
Muon decay
Recursive phase space



Lorentz transformations

 Why are they linear? c.f. rotations and translations

* Soassume o o
ct’ ct Ay, A, Ay Ay flct
X: _ A (\7) X _ A21 A22 A23 A24 X
y y Ay Ay Ay Ay ||y
| Z’ _ | z _ _A41 A42 A43 A44_ | z _
* Without any loss of generality we can rotate so that Cartesian axes

are aligned (i.e. A(0)=l,) and that v is in the x (x’) direction

e Latter means that as our transformation is invariant under rotations
about the x-axis x’ and t” cannot depend onyand zi.e.

A13 :A14 :A23 :A24 =0



Lorentz transformation

By construction x and x” axes coincide so

A, A, 0 0 [0 | A, ct’ A
Ay Ay 0 0 )11 1A, X' Ay Ay
Ay Ay Ay Agy || 0 As y' A
Ay N Ny Ay ||0] [Ag 4 A

Consider an events with x=t=0

ct'| [Ay A, 0 0]0] [ |
X| |A,, A, O 00 0
y' Ay 0 Ay Ay |y Agy + A2
Z, _A41 O A43 A44_ Z

_A43y T A442_

All events in (y’,z’) plane are simultaneous (t=t’=0) trivial comparison
separation in this plane with y=y’ and z=z" so we get



Lorentz trans!

‘ormation
ct'] [ A
X' | Ax
y' A,
_z’_ _A41

o — O O

R O O O
>

Now consider an object with x=vtin Si.e. x’=0

o r O O

b O O O

A Ct+ AVt

A, Ct+ AVt
A, ct
A, ct

Vv
= Ay =A,=0and A, = _EAzz =—PAy,



Lorentz transformation

ct A, A, 0 0Ojct A Ct+ A X

X'| | =BAy Ay 0 0 X| | =BAxCL+A,X
v | 0 0 1 0f|ly| y
'z | 0 0 0 1§z | Z |

Note we can get the Galilean transformation from this analysis because yet

to assume constancy of cin Sand S’. So with t=t" and |r, — 14 ‘ =
r; —1r1 =

ct’ 1 0 0 Ofct ct
X' -5 1 0 0} x —Vvi + X
y' 10 010 y B y
'z |0 00 1jz|] | z



Lorentz transformation

ct A, A, 0 0Ojct A Ct+ A X

X'| | =BAy Ay 0 0 X| | =BAxCL+A,X
v | 0 0 1 0f|ly| y

'z | 0 0 0 1§z | Z |

So recall c constant gave (ct)*—|7|? = (ct')? — |7‘2

= c%? — X2 -y =2 = (A Ct+ A,X) —(=fct+x) A% —y* — 77

= C*t? =X = (AL = BPAL, ) St = (AL, — AL )X + 2( AL A,, + BAL, ) xct
= (i) A7, — B°A5, =1, (i) A5, — AL, =1, (iii) A A, + SA5, =0



Lorentz transformation
= (1) A121_132A§2 =1 (ii)Agz _A122 =1 (iii)AllAlz +:BA§2 =0
(iii) = AZAL - A5, =0 (iv)

(i), (ii) and (iv) = 1+ B°A%)[A—-A%) + B°A;, =0 Other solution?
=Ny =y= = > A, =y=>A =Py
-5
We are done
ct'| [ » —B8 0 Oflct] | yct—ypx |
X\ =78 v 0 0| x| [—yBct+yX
v | 0 0 1 0fy]| y
7] | 0 O 0 1|z | z |




Muon decay: three-body phase space

MF =28 (b )0y 00

Working in the rest frame of the 4 1.e. p, =(m ,0)
p-p,=m,E, and
Pp=P,+ Ps+ P,
= (Ps+P,)° =(p,—P,)°
= 2p; P tm; =m, —2p, - p,
m2

m
= p,- P, z7“—mﬂE2 :7“(mﬂ—2E2)

My

w

4 4
~M[ :(Q_Wj m2E,(m, _ZEZ):(I\%I_WJ m2 |p,|(m

ﬂ_(pl)
—2|p2|)

’VVVVVVVVVVVVVVVM

Vy(ps)



4 d3 '
H P (2%)4§(p2+p3+p4)§(E2+E3+E4—mﬂ)

Integrating over p; exploiting the delta function

r M(p.)|"  dp,dp,
16(27)°m,, |p,||p, + P4 ||P4)

S([po]+[P, +Pa| +]Pa]-m,)

Now for p, defining a polar angle 0 w.r.t. the outgoing electron direction p,



Change of variables

d®p, = 2z|p,[ sin&d |p,|d6 and
U2 =1p, +Pu| = [P,| +]Pa| +2]p,|Ip.|cosd
= 2udu =-2|p,||p,|sin0do

|p. |
P,

.d°p, =27 —=ud |p,|du




M (p.D|” dp,|d%,
1627)'m,  |p,f

jdu5(\p2\+u+\p4\—mﬂ)

u_

where ui=J\p2\ +lp.l" 2|0, || =[P £ [P
Now the integral will be 1 if u_<m_ —|p,|—|p,|<u,

If1P2|> P, then |p,|—[p,|<m, =p;[~p,| = |p[ <m, /2
Similarly,|p,| > |p,]




d3p my/2 > d3p mﬂ/Z g 4
dlr = 4 dp M(p) _ 4 dp E_W] mZp m_2p
16(2;;)4mﬂ|p4|2 my/£|p4| | 2” | ZH 16(27[)4mﬂ|p4|2 mﬂlé.-|p4| | 2| M, ,u| 2|( 1 | 2|)
m, /2 47de m,, /2 0 4
't[ 16(2”)4mumy/5[—lp4l | 2|(ij g 2|( -~ 2|)
You find

dr _| Yw 4m;21|p4|2 1_4|p4| and T'= M, Gw 4 m,
dp,| (M, ) 2(4z)’ 3m M, | 12(87)°

U

https://mu2e.fnal.gov/public/index.shtml



o
=
I

|

U
"

You fil

dr
dp,|

12-16th July zuza

(Arbitrary Units)

o llllIllllIllllllllllllllllllllllllllllll

mn
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+m,

E,(max) = — ~ 52.8 MeV
Free muon decay 2m,
V "w.,
4@ T e
§7
1O shape K‘ s
| ! l e
20 100
Electron Energy (MeV)

nu_2|p2|)
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Finding n-body phase space recursively

We can rewrite n-body phase space in the centre of mass frame

R, (E)= 3(“)_“_[0' P (Z::pj&(gEi—Ej as
Y O,

i=1

The second Integral is the phase space integral for n-1 particles with total
momentum -p, and total energy (E - E,)
Lorentz invariance allows this to be rewritten in terms of a system of zero

total momentum and energy &° = (E—-E_)° - p?
As an example we can go to 3-body phase space from 2-body

r ¢d’p, P 5(E)
R3(E):(2ﬂ)6'[ 2E33 1( y ° ) where &° = (E-E,)* — p;



