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Introduction!

2!

What is Machine Learning? !
•  A method of data analysis that automates analytical model building!
-  Based on the idea that computers can learn from data, recognize 

patterns, and make decisions with minimal human intervention.!
-  Has made big advancement recently because of new computing 

technologies. !
   Example Applications you are familiar with:!

•  Online recommendation offers, such as from google, Amazon, Netflix !
•  Fraud Detection!
•  Spam detection in email!
•  Recognizing hand-written letters and digits!
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Popular Learning Methods!

3!

•  Supervised Learning!
-  Algorithms are trained using labeled 

examples, i.e. with desired outputs 
known!

-  Learns by comparing actual output to 
correct/known outputs to find errors 
à Modifies the model accordingly!

-  Use patterns to predict values of the 
output for an unknown data. !

-  commonly used in applications 
where historical data predicts likely 
future events!

-  Classification, Regression, Gradient 
Boosting etc..!

•  Unsupervised Learning!
-  Used against data that has no 

historical labels – unknown desired 
outputs!

-  Algorithm must figure out what is 
being shown!

-  Goal is to explore the data and find 
some structure within!

-  e.g. Detecting Anomalies!
-  Popular techniques like nearest-

neighbor mapping, k-means 
clustering!

In this talk we will discuss only supervised learning methods!
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Popular Learning Methods!

4!

•  Semisupervised Learning!
-  Similar application as supervised 

learning!
-  Uses both labeled and unlabeled data 

for training!
-  Small amount of labeled, large amount 

of unlabeled data!

•  Reinforcement Learning!
-  Often used for robotics, gaming 

and navigation!
-  the algorithm discovers through 

trial and error which actions yield 
the greatest rewards!

In this talk we will discuss only supervised learning methods!
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Multivariate Analysis Methods!

5!

•  Any statistical analysis technique 
that  analyzes many variables at 
once!

•  Normally, cut-based methods, that 
apply selections on one variables 
at a time, are robust, but result in a 
low signal efficiency !

•  MVA techniques belong to the 
family of “supervised learning” 
algorithms!

•  MVA methods make use of training 
events, for which the desired 
output is known, to determine the 
mapping function!

(images from google)!
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Multivariate Analysis Methods!

6!

•  MVA methods are used for both 
classification and regression: !
-  Classification: The mapping 

function describes a decision 
boundary!

-  Regression: The mapping 
function describes an 
approximation of the underlying 
functional behaviour defining the 
target value!

•  Example MVA techniques: !
-  Artificial Neural Network, Boosted 

Decision Trees!

e.g. learn to classify birds and animals!

(images from google)!
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Why use MVA Analysis?!

7!

In High Energy Physics Experiments, we often perform data analysis to search for some 
signals which are produced at much smaller rate than that of the backgrounds. !

Signal: Some event/object that we are interested in!
Backgrounds: Events/Objects that we are not interested, but they look very much 
similar to that of our signal. !

Cuts are not optimal!
•  Can not take 

correlations in to 
account!

•  Can lead to low signal 
efficiency and high 
background rate!
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Why use MVA Analysis?!

8!

Cuts are not optimal!
•  Can not take correlations in to account!
•  Can lead to low signal efficiency and high 

background rate!

Data generated using !
Root/tutorials/tmva/

createData.C!
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Why use MVA Analysis?!

9!

The actual boundary should be à !
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Why use MVA Analysis?!

10!

MVA!

An Example!

Combines many variables to a 
single variable, on which a cut 
can be applied depending on 
the required signal efficiency 
and purity!

(figures from TMVA userguide)!
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Neural Network!

11!

Neural connections in human brain!

Our brain uses the extremely large interconnected network of 
neurons for information processing and to model the world around us!

•  Collects inputs from other 
neurons using dendrites!

•  Sums all the inputs, and 
fires, if the value is greater 
than a threshold!

•  The fired signal is then sent 
to other neurons through the 
Axon!
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Artificial Neuron!

12!

Model of an artificial neuron!

x1

x2

x3

x4

x5

w1

w2

w3
w4
w5

f(Σwixi + b)  !
output!

“f” is called “activation function”

b is a bias term à Can be represented by a node with input “1”. !

input!
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Perceptron!

13!

x1

x2

x3

x4

x5

w1

w2

w3
w4
w5

f(Σwixi + b)  !

input!
output!

Binary output:!
            = 1, if Σwixi + b > 0!
            = 0, if Σwixi + b < 0!
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Sigmoid Neuron!

14!

x1

x2

x3

x4

x5

w1

w2

w3
w4
w5

f(Σwixi + b)  !

input!
output!

f (x) = 1
1+ e−x

Smoother output!
Small change in weight => small corresponding change in output!

This property makes the learning possible!
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Activation Functions!

15!

It determines at what threshold the neuron will fire !
OR the frequency at which a neuron fires !
Linear Function! Step Function! Rectified Linear Units (ReLU)!

Sigmoid Function! Hyperbolic Tangent!

f(x) = x! f (x) = 1, x > 0
0, x < 0

⎧
⎨
⎩

f (x) =max(0,x)

f (x) = 1
1+ e−x

f (x) = tanh(x)
f (xi ) =

exi

exi∑

Softmax !

(used in output layer of a 
multiclassification network)!
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Artificial Neural Network!

16!

x1

x2

x3

x4

x5

Output Layer!

Input Layer!

Hidden Layer! A neuron becomes useful when 
connected in a larger network!

Single hidden layer !
feed forward network!
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How Does a Network Learn?!

17!

x1

x2

x3

x4

x5

w + Δw

output + Δoutput!
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Loss Function!

18!

1. Mean Squared Error:!

Loss : measure of misclassification!

L(w,b) = 1
2

yik − ŷik( )
2

i=1

N

∑
k=1

K

∑

2. Cross Entropy:! L(w,b) = − yik log ŷik
i=1

N

∑
k=1

K

∑

Where, index “i” is for events and “k” is for output nodes!

Network Training => Minimizing Loss in an iterative way!
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Backpropagation !

19!

Propagating in the backward direction to update the weights!

Steps:!
1.  Compare the computed output to actual output and 

determine loss!
2.  Determine in which direction to change each weight to 

reduce the loss!
3.  Determine the amount by which to change the weights!
4.  Apply correction to the weights!
5.  Repeat the procedure in each iteration till the loss is reduced 

to an accepted value !
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Backpropagation!

20!

Let’s consider only one output node in the network and MSE loss function!

w
L(w,b) = 1

2
yi − ŷi( )

2

i=1

N

∑
L is a function of weights and biases!
à A hypothetical surface in weight space!

In every iteration, weights should be changed in a direction such 
that L is reduced (i.e. ΔL is –ve)!

If we choose  !

ΔL ≈ ∂L
∂wj

Δwj =∑ ∇L•Δw

Δw = −η∇L,⇒ΔL ≈ −η ||∇L ||2 ⇒ΔL < 0
Gradient descent!
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Gradient descent!

21!

Starting from an arbitrary weight vector, the weights are updated!
after every iteration “t”,!

wj (t +1) = wj (t)−η
∂L
∂wj

(t)

(figure from google)!

η is called the learning rate!
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Learning rate!

22!

Learning steps!

Local!
minimum!

Global!
minimum!

Loss!

weights!

Too small à Can be 
trapped in a local minimum!
Too Large à Can jump out 
of global minimum!

Possible to update lr as 
learning proceeds!
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Weights of hidden layer!

23!

•  The output values of hidden layer is not known, so we don’t 
know what should be the correct outputs!

•  But, the total error is related to the output values on the 
hidden layer. !

•  Thus, weights of the hidden layer are also updated in the 
same way as that of the output layers!
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Derivatives of Loss function!

24!

For a network with only one output node and one hidden layer, 
and considering MSE loss function!

The net input to the jth hidden unit is! S j = wjl xl
l
∑ (ignoring bias)!

The output of this node is! I j = f (S j )

The equations for output node are:! S = wjI j
j
∑ and! y = f (S)

∂L
∂wj

= (y − ŷ) ∂f
∂S

∂S
∂wj

=
i=1

N

∑ (y − ŷ) ∂f
∂Si=1

N

∑ I j

ℓ runs over input connections!

Thus, for the weights of the output node:!
j runs over hidden layer nodes!
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Derivatives of Loss function!

25!

∂L
∂wjl

= (y − ŷ)∂f (S)
∂S

∂S
∂I j

∂f (S j )
∂S j

∂S j
∂wjl

=
i=1

N

∑ (y − ŷ)∂f (S)
∂Si=1

N

∑ wj

∂f (S j )
∂S j

xl

For the weights of the hidden layer node:!

The activation functions “f” need to be differentiable!
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Deep Neural Network!

26!

•  Networks with many-layer structure  - two or more hidden layers!
•  Deep learning techniques are based on stochastic gradient descent 

and backpropagation, but also introduce new ideas!
•  Deep nets have ability to build up a complex hierarchy of concepts!
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Overtraining!

27!

Overtraining is a situation where a network learns to  predict the training 
examples with very high accuracy but cannot generalize to new data. !
•  Leads to poor performance in other samples!
•  Mostly due to small training sample size, or data that is too homogenous!
•  Over sensitive to some features of the training data !

Epochs!

lo
ss
!

Test set!

Training set!

Early stopping!
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28 

•  To construct a neural network model you need to specify the following: 
•  The number of hidden layers and neurons in each layer. 
•  Activation function(eg Relu or tanh),Cost function(here cross entropy) 
•  Batch size,learning rate(here ‘adam’ optimises the learning rate for Gradient 

decent)  
•  Number of epocs, i.e. the number of training cycles. 

 

Practical information!

Lets see what this model looks like(next slide) 
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Repeat for N=30 
epoch cycles  

Calculate 
the output 
and error 

 

How  this model looks like !
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•  ROC (Receiver Operating Characteristic) Curves are a good way to  
illustrate the performance of given classifier 

•  Shows the background rejection over the signal efficiency of the remaining  
sample 

•  Best classifier can be identified by the largest AUC (Area under curve) 

ROC Curves!

Better 
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Overtraining!
Overtraining is a situation where a network learns to  predict the training 
examples with very high accuracy but cannot generalize to new data. !
•  Leads to poor performance in other samples!
•  Mostly due to small training sample size, or data that is too homogenous!
•  Over sensitive to some features of the training data !

Large difference in 
performance of training and 
testing dataset usually is an 

indicator of overtraining 
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•  If you think the model is overtrained,you can reduce the complexity of the the 
model ie reduce the number of hidden layers/neurons. 

•  Increase the training dataset.This will give the classifier more data to learn the 
correct model. 

•  You can use a feature called soft drop that randomly drops a predefined set of 
neurons during each epoch. 

How to deal with Overtraining !

•  In most neural network packages 
like Keras or  DNN in TMVA, the 
training set is further divided into a 
training and validation set. The 
training and validation are done 
over many epocs and the model 
with the least validation error is 
selected. 

•  This procedure usually 
automatically  takes care of 
overtraining. Epochs!

lo
ss
!

Test set!

Training set!

Early stopping!
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Separate H àZZ* à 2e2µ (signal*) from ZZà 2e2µ (background*) 

Input Variables used : pT of individual leptons, Delta Phi combinations of each                                      
lepton pair, eta of each lepton(total 14 variables) 

* Both signal and background mc samples taken from cms open data 

Example from Physics!
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l  5 Hidden layers with 100(relu) x 100 x 100 x 32 x 32 neurons 
l  Relu activation function  

l  Batch size 256 ,epochs = 30 
l  Early stopping with patience = 5 

 

Will be discussed in more detail at the tutorial tomorrow 

Performance !
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Boosted Decision Tree!

35!
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Decision Trees!

36!

Root!
node!

•  Sequential application of cuts 
splits the data into nodes!

•  Each cut depends on cuts in 
previous nodes!

•  Final nodes (leafs) classify an 
event as signal or background!

•  Final leafs are reached after a 
given maximum number of 
nodes!

•  Advantage:!
-  Easy to understand/interpret!
-  Training is fast!
- Good performance with 

multivariate data!

x < c1! x > c1!

y < c2! y > c2! y < c3! y > c3!

z < c4! z > c4!

B!

B!

S! S!

S!
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Decision Trees!

37!

Root!
node!

x < c1! x > c1!

y < c2! y > c2! y < c3! y > c3!

z < c4! z > c4!

B!

B!

S! S!

S!

•  Nodes:!
-  The data is split based on a 

value of one of the input 
features at each code!

•  Leaves:!
-  Terminal nodes!
-  Represent a class label or 

probability!
-  When the outcome is a 

continuous variable it is 
considered a regression tree. !

•  The splits are created recursively !
-  The process is repeated until 

some stop condition is met !
-  Ex: depth of tree, no more 

information gain, etc... !
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Example Application in HEP!

38!

Signal/Background!
•  Go through all variables and find best 

variable and value to split events.!
•  For each of the two subsets repeat the 

process!
•  Proceeding in this way a tree is built.!
•  Ending nodes are called leaves.!

Criterion for “Best” Split!

•  SignalPurity, P, is the fraction of the weight 
of a leaf due to signal events.!

•  Gini: Note that Gini is 0 for all signal or all 
background. Wi is the weight of event “i”.!

•  The criterion is to minimize Gini_left + 
Gini_right of the two children from a parent 
node !

MiniBooNE experiment!
arXiv: 0408124!
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Tree Boosting!

Boosting:!
•  The general idea is to use the weak learning method several times to 

get a succession of hypotheses, each one refocused on the events 
that the previous ones found difficult and misclassified!
-  producing a very accurate prediction rule by combining rough and 

moderately inaccurate!

l ( ŷi , yi )
Ω( f t )
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Tree Boosting!

40!

obj = l ( yi , ŷi )+ Ω( f k )
k =1

K

∑
i =1

n

∑

Procedure:!
•  Each tree is created iteratively!
•  The tree’s output (f(x)) is given a weight (w) relative to its accuracy!
•  Events which are misclassified, increase their weights!
•  Build a new tree, repeat the procedure for several trees !
•  The final score of an event is the weighted average of scores from all trees!

•  This means that samples that are difficult to classify receive increasing larger 
weights until the algorithm identifies a model that correctly classifies these 
samples!

•  The goal is to minimize an objective function !

ŷ = wk f k (x )
k
∑ ,

              is the loss function (distance between truth and prediction value for ith sample)!
              is the regularization function (it penalizes the complexity of the kth tree)!
l ( ŷi , yi )
Ω( f t )

f k ∈ F Space of functions containing 
all regression tree!
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Types of Boosting!

41!

There are many different ways of iteratively adding learners to minimize a loss function!
!
Most common boosting algorithms are!
!
•  AdaBoost!
-  Adaptive Boosting!
-  One of the early methods!

•  Gradient Boosting (GradBoost)!
-  Uses gradient descent to create new learners!
-  The loss function should be differentiable!
-  http://statweb.stanford.edu/~jhf/ftp/trebst.pdf!

•  XGBoost (Xtreme gradient Boosting)!
-  One type of gradient boosting !
-  Very popular and widely used currently!
-  Chen and Guestrin: https://arxiv.org/abs/1603.02754 !
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AdaBoost!

42!

arXiv: 0408124!
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AdaBoost!

43!

Change the weight of each event by!

Normalize weights!
Repeat training for Ntrees!
The score of a given event is:!

Define for mth tree!
arXiv: 0408124!
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ε-Boost (shrinkage)!

44!

Change the weight of the ith event as!

ε is a constant of the order of 0.01!

Normalize weights!

The score for a given event is!

renormalized, but 
unweighted, sum of the 

scores over individual trees.!

Both the boosting algorithms minimize 
the expectation value of the loss function:!

L(F , y ) = e − yF (x )

Where y = 1 for signal, !
                         -1 for background!

F (x ) = ΣN treei =1 f i (x )
f i (x ) =1
f i (x ) = −1

If event lands 
on signal leaf!

If event lands on 
background leaf!

arXiv: 0408124!
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Gradient Boosting!

45!

•  Exponential loss has the shortcoming that it lacks robustness in 
presence of outliers or mislabelled data points!
•  The performance of AdaBoost therefore is expected to degrade 

in noisy settings !
•  The GradientBoost algorithm attempts to cure this weakness by 

allowing for other, potentially more robust, loss functions without 
giving up on the good out-of-the-box performance of AdaBoost !

(ref: TMVA userguide)!
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Gradient Boosting!

46!

•  Current TMVA implementation uses the binomial log-likelihood loss:!

!
•  Minimization is performed using steepest-descent approach!
•  Implementation in TMVA: Calculate the current gradient of the loss function 

and then grow a regression tree whose leaf values are adjusted to match the 
mean value of the gradient in each region defined by the tree structure – 
www.jstor.org/stable/2699986!

•  Iterating this procedure yields the desired set of decision trees which 
minimizes the loss function !

•  Robustness can be enhanced by reducing the learning rate of the algorithm 
(shrinkage), which controls the weight of the individual trees!

(ref: TMVA userguide)!
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Stochastic Gradient Boosting!

47!

•  Introduce a resampling procedure using random subsamples of 
the training events for growing trees – called “Bagging”!

•  The sample fraction used in each iteration can be controlled 
through a parameter, typical values to get best results are 0.5—0.8.!

•  Stability against statistical fluctuations!
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Example!

48!

•  Same signal,background and input variables as the DNN example. !
•  XGBoost Algorithm trained on 600 trees, Depth=3 ,learning rate = 0.1, 

with bagged boost. !

             Details will be discussed in  the tutorial tomorrow !
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Summary!

49!

•  Machine learning methods, such as neural network and boosted 
decision trees are heavily used in high energy physics data 
analysis!
-  In particular, in the experiments at LHC!
-  Achieves much better performance than the cut based analyses with 

same amount of data!
-  Not only the signal to background separation, but also better object 

identification!
•  This lecture discussed only basic concepts about Artificial 

Neural Network and Boosted Decision Trees, with their example 
applications HEP problems.!
o  Could not cover many more advanced tools, such as CNN, RNN, 

graph neural network etc.., that are currently being used.!
o  There will be a hands-on session tomorrow with some practical 

examples!
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50!
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Thanks!

51!
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Supervised Learning!

52!

Supervised learning is a method where we use the training data (with multiple 
features) xi to predict a target variable yi.!
!
Model & Parameters:!
Model usually refers to the mathematical structure by which the prediction yi is 
being made from the input xi. !
A common example is the liner model: yi = Σωijxj!
The prediction value can have different interpretations,  depending on the task, 
i.e. regression or classification!
ω are the undetermined part that we need to learn from data!
!
Objective Function:!
A function that measures how well the model fit the training data!
Consists two parts, Training loss and Regularization terms:!
                                 obj(θ) = L(θ) + Ω(θ)!
L measures how predictive our model is with respect to our training data!
Common choices for L are “mean squared error, logistic loss etc..”!

L(θ ) = Σ( yi − ŷi )
2

L(θ ) = Σ[ yi ln(1+e
− ŷi )+ (1− yi )ln(1+e

ŷi )]
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Regularization term!

53!

The regularization term controls the complexity of the model, !
which helps us to avoid over-fitting!

(ref: XGBoost userguide)!


