
!
An introduction to!

Machine Learning Methods !
in !

High Energy Physics!
Arun Nayak!

Institute of Physics, Bhubaneswar!
(with help from Sanu Varghese)!

Online workshop on !
Software Tools and Techniques used in EHEP and its Applications!

MNIT, Jaipur!
12th – 19th July 2021.!

A Nayak!14 July 2021!

Introduction!

2!

What is Machine Learning? !
•  A method of data analysis that automates analytical model building!
-  Based on the idea that computers can learn from data, recognize

patterns, and make decisions with minimal human intervention.!
-  Has made big advancement recently because of new computing

technologies. !
 Example Applications you are familiar with:!

•  Online recommendation offers, such as from google, Amazon, Netflix !
•  Fraud Detection!
•  Spam detection in email!
•  Recognizing hand-written letters and digits!

A Nayak!14 July 2021!

Popular Learning Methods!

3!

•  Supervised Learning!
-  Algorithms are trained using labeled

examples, i.e. with desired outputs
known!

-  Learns by comparing actual output to
correct/known outputs to find errors
à Modifies the model accordingly!

-  Use patterns to predict values of the
output for an unknown data. !

-  commonly used in applications
where historical data predicts likely
future events!

-  Classification, Regression, Gradient
Boosting etc..!

•  Unsupervised Learning!
-  Used against data that has no

historical labels – unknown desired
outputs!

-  Algorithm must figure out what is
being shown!

-  Goal is to explore the data and find
some structure within!

-  e.g. Detecting Anomalies!
-  Popular techniques like nearest-

neighbor mapping, k-means
clustering!

In this talk we will discuss only supervised learning methods!

A Nayak!14 July 2021!

Popular Learning Methods!

4!

•  Semisupervised Learning!
-  Similar application as supervised

learning!
-  Uses both labeled and unlabeled data

for training!
-  Small amount of labeled, large amount

of unlabeled data!

•  Reinforcement Learning!
-  Often used for robotics, gaming

and navigation!
-  the algorithm discovers through

trial and error which actions yield
the greatest rewards!

In this talk we will discuss only supervised learning methods!

A Nayak!14 July 2021!

Multivariate Analysis Methods!

5!

•  Any statistical analysis technique
that analyzes many variables at
once!

•  Normally, cut-based methods, that
apply selections on one variables
at a time, are robust, but result in a
low signal efficiency !

•  MVA techniques belong to the
family of “supervised learning”
algorithms!

•  MVA methods make use of training
events, for which the desired
output is known, to determine the
mapping function!

(images from google)!

A Nayak!14 July 2021!

Multivariate Analysis Methods!

6!

•  MVA methods are used for both
classification and regression: !
-  Classification: The mapping

function describes a decision
boundary!

-  Regression: The mapping
function describes an
approximation of the underlying
functional behaviour defining the
target value!

•  Example MVA techniques: !
-  Artificial Neural Network, Boosted

Decision Trees!

e.g. learn to classify birds and animals!

(images from google)!

A Nayak!14 July 2021!

Why use MVA Analysis?!

7!

In High Energy Physics Experiments, we often perform data analysis to search for some
signals which are produced at much smaller rate than that of the backgrounds. !

Signal: Some event/object that we are interested in!
Backgrounds: Events/Objects that we are not interested, but they look very much
similar to that of our signal. !

Cuts are not optimal!
•  Can not take

correlations in to
account!

•  Can lead to low signal
efficiency and high
background rate!

A Nayak!14 July 2021!

Why use MVA Analysis?!

8!

Cuts are not optimal!
•  Can not take correlations in to account!
•  Can lead to low signal efficiency and high

background rate!

Data generated using !
Root/tutorials/tmva/

createData.C!

A Nayak!14 July 2021!

Why use MVA Analysis?!

9!

The actual boundary should be à !

A Nayak!14 July 2021!

Why use MVA Analysis?!

10!

MVA!

An Example!

Combines many variables to a
single variable, on which a cut
can be applied depending on
the required signal efficiency
and purity!

(figures from TMVA userguide)!

A Nayak!14 July 2021!

Neural Network!

11!

Neural connections in human brain!

Our brain uses the extremely large interconnected network of
neurons for information processing and to model the world around us!

•  Collects inputs from other
neurons using dendrites!

•  Sums all the inputs, and
fires, if the value is greater
than a threshold!

•  The fired signal is then sent
to other neurons through the
Axon!

A Nayak!14 July 2021!

Artificial Neuron!

12!

Model of an artificial neuron!

x1

x2

x3

x4

x5

w1

w2

w3
w4
w5

f(Σwixi + b) !
output!

“f” is called “activation function”

b is a bias term à Can be represented by a node with input “1”. !

input!

A Nayak!14 July 2021!

Perceptron!

13!

x1

x2

x3

x4

x5

w1

w2

w3
w4
w5

f(Σwixi + b) !

input!
output!

Binary output:!
 = 1, if Σwixi + b > 0!
 = 0, if Σwixi + b < 0!

A Nayak!14 July 2021!

Sigmoid Neuron!

14!

x1

x2

x3

x4

x5

w1

w2

w3
w4
w5

f(Σwixi + b) !

input!
output!

f (x) = 1
1+ e−x

Smoother output!
Small change in weight => small corresponding change in output!

This property makes the learning possible!

A Nayak!14 July 2021!

Activation Functions!

15!

It determines at what threshold the neuron will fire !
OR the frequency at which a neuron fires !
Linear Function! Step Function! Rectified Linear Units (ReLU)!

Sigmoid Function! Hyperbolic Tangent!

f(x) = x! f (x) = 1, x > 0
0, x < 0

⎧
⎨
⎩

f (x) =max(0,x)

f (x) = 1
1+ e−x

f (x) = tanh(x)
f (xi) =

exi

exi∑

Softmax !

(used in output layer of a
multiclassification network)!

A Nayak!14 July 2021!

Artificial Neural Network!

16!

x1

x2

x3

x4

x5

Output Layer!

Input Layer!

Hidden Layer! A neuron becomes useful when
connected in a larger network!

Single hidden layer !
feed forward network!

A Nayak!14 July 2021!

How Does a Network Learn?!

17!

x1

x2

x3

x4

x5

w + Δw

output + Δoutput!

A Nayak!14 July 2021!

Loss Function!

18!

1. Mean Squared Error:!

Loss : measure of misclassification!

L(w,b) = 1
2

yik − ŷik()
2

i=1

N

∑
k=1

K

∑

2. Cross Entropy:! L(w,b) = − yik log ŷik
i=1

N

∑
k=1

K

∑

Where, index “i” is for events and “k” is for output nodes!

Network Training => Minimizing Loss in an iterative way!

A Nayak!14 July 2021!

Backpropagation !

19!

Propagating in the backward direction to update the weights!

Steps:!
1.  Compare the computed output to actual output and

determine loss!
2.  Determine in which direction to change each weight to

reduce the loss!
3.  Determine the amount by which to change the weights!
4.  Apply correction to the weights!
5.  Repeat the procedure in each iteration till the loss is reduced

to an accepted value !

A Nayak!14 July 2021!

Backpropagation!

20!

Let’s consider only one output node in the network and MSE loss function!

w
L(w,b) = 1

2
yi − ŷi()

2

i=1

N

∑
L is a function of weights and biases!
à A hypothetical surface in weight space!

In every iteration, weights should be changed in a direction such
that L is reduced (i.e. ΔL is –ve)!

If we choose !

ΔL ≈ ∂L
∂wj

Δwj =∑ ∇L•Δw

Δw = −η∇L,⇒ΔL ≈ −η ||∇L ||2 ⇒ΔL < 0
Gradient descent!

A Nayak!14 July 2021!

Gradient descent!

21!

Starting from an arbitrary weight vector, the weights are updated!
after every iteration “t”,!

wj (t +1) = wj (t)−η
∂L
∂wj

(t)

(figure from google)!

η is called the learning rate!

A Nayak!14 July 2021!

Learning rate!

22!

Learning steps!

Local!
minimum!

Global!
minimum!

Loss!

weights!

Too small à Can be
trapped in a local minimum!
Too Large à Can jump out
of global minimum!

Possible to update lr as
learning proceeds!

A Nayak!14 July 2021!

Weights of hidden layer!

23!

•  The output values of hidden layer is not known, so we don’t
know what should be the correct outputs!

•  But, the total error is related to the output values on the
hidden layer. !

•  Thus, weights of the hidden layer are also updated in the
same way as that of the output layers!

A Nayak!14 July 2021!

Derivatives of Loss function!

24!

For a network with only one output node and one hidden layer,
and considering MSE loss function!

The net input to the jth hidden unit is! S j = wjl xl
l
∑ (ignoring bias)!

The output of this node is! I j = f (S j)

The equations for output node are:! S = wjI j
j
∑ and! y = f (S)

∂L
∂wj

= (y − ŷ) ∂f
∂S

∂S
∂wj

=
i=1

N

∑ (y − ŷ) ∂f
∂Si=1

N

∑ I j

ℓ runs over input connections!

Thus, for the weights of the output node:!
j runs over hidden layer nodes!

A Nayak!14 July 2021!

Derivatives of Loss function!

25!

∂L
∂wjl

= (y − ŷ)∂f (S)
∂S

∂S
∂I j

∂f (S j)
∂S j

∂S j
∂wjl

=
i=1

N

∑ (y − ŷ)∂f (S)
∂Si=1

N

∑ wj

∂f (S j)
∂S j

xl

For the weights of the hidden layer node:!

The activation functions “f” need to be differentiable!

A Nayak!14 July 2021!

Deep Neural Network!

26!

•  Networks with many-layer structure - two or more hidden layers!
•  Deep learning techniques are based on stochastic gradient descent

and backpropagation, but also introduce new ideas!
•  Deep nets have ability to build up a complex hierarchy of concepts!

A Nayak!14 July 2021!

Overtraining!

27!

Overtraining is a situation where a network learns to predict the training
examples with very high accuracy but cannot generalize to new data. !
•  Leads to poor performance in other samples!
•  Mostly due to small training sample size, or data that is too homogenous!
•  Over sensitive to some features of the training data !

Epochs!

lo
ss
!

Test set!

Training set!

Early stopping!

A Nayak!14 July 2021!

28

•  To construct a neural network model you need to specify the following:
•  The number of hidden layers and neurons in each layer.
•  Activation function(eg Relu or tanh),Cost function(here cross entropy)
•  Batch size,learning rate(here ‘adam’ optimises the learning rate for Gradient

decent)
•  Number of epocs, i.e. the number of training cycles.

Practical information!

Lets see what this model looks like(next slide)

A Nayak!14 July 2021!

Repeat for N=30
epoch cycles

Calculate
the output
and error

How this model looks like !

A Nayak!14 July 2021!

•  ROC (Receiver Operating Characteristic) Curves are a good way to
illustrate the performance of given classifier

•  Shows the background rejection over the signal efficiency of the remaining
sample

•  Best classifier can be identified by the largest AUC (Area under curve)

ROC Curves!

Better

A Nayak!14 July 2021!

Overtraining!
Overtraining is a situation where a network learns to predict the training
examples with very high accuracy but cannot generalize to new data. !
•  Leads to poor performance in other samples!
•  Mostly due to small training sample size, or data that is too homogenous!
•  Over sensitive to some features of the training data !

Large difference in
performance of training and
testing dataset usually is an

indicator of overtraining

A Nayak!14 July 2021! 32

•  If you think the model is overtrained,you can reduce the complexity of the the
model ie reduce the number of hidden layers/neurons.

•  Increase the training dataset.This will give the classifier more data to learn the
correct model.

•  You can use a feature called soft drop that randomly drops a predefined set of
neurons during each epoch.

How to deal with Overtraining !

•  In most neural network packages
like Keras or DNN in TMVA, the
training set is further divided into a
training and validation set. The
training and validation are done
over many epocs and the model
with the least validation error is
selected.

•  This procedure usually
automatically takes care of
overtraining. Epochs!

lo
ss
!

Test set!

Training set!

Early stopping!

A Nayak!14 July 2021! 33

Separate H àZZ* à 2e2µ (signal*) from ZZà 2e2µ (background*)

Input Variables used : pT of individual leptons, Delta Phi combinations of each
lepton pair, eta of each lepton(total 14 variables)

* Both signal and background mc samples taken from cms open data

Example from Physics!

A Nayak!14 July 2021!

l  5 Hidden layers with 100(relu) x 100 x 100 x 32 x 32 neurons
l  Relu activation function

l  Batch size 256 ,epochs = 30
l  Early stopping with patience = 5

Will be discussed in more detail at the tutorial tomorrow

Performance !

A Nayak!14 July 2021!

Boosted Decision Tree!

35!

A Nayak!14 July 2021!

Decision Trees!

36!

Root!
node!

•  Sequential application of cuts
splits the data into nodes!

•  Each cut depends on cuts in
previous nodes!

•  Final nodes (leafs) classify an
event as signal or background!

•  Final leafs are reached after a
given maximum number of
nodes!

•  Advantage:!
-  Easy to understand/interpret!
-  Training is fast!
- Good performance with

multivariate data!

x < c1! x > c1!

y < c2! y > c2! y < c3! y > c3!

z < c4! z > c4!

B!

B!

S! S!

S!

A Nayak!14 July 2021!

Decision Trees!

37!

Root!
node!

x < c1! x > c1!

y < c2! y > c2! y < c3! y > c3!

z < c4! z > c4!

B!

B!

S! S!

S!

•  Nodes:!
-  The data is split based on a

value of one of the input
features at each code!

•  Leaves:!
-  Terminal nodes!
-  Represent a class label or

probability!
-  When the outcome is a

continuous variable it is
considered a regression tree. !

•  The splits are created recursively !
-  The process is repeated until

some stop condition is met !
-  Ex: depth of tree, no more

information gain, etc... !

A Nayak!14 July 2021!

Example Application in HEP!

38!

Signal/Background!
•  Go through all variables and find best

variable and value to split events.!
•  For each of the two subsets repeat the

process!
•  Proceeding in this way a tree is built.!
•  Ending nodes are called leaves.!

Criterion for “Best” Split!

•  SignalPurity, P, is the fraction of the weight
of a leaf due to signal events.!

•  Gini: Note that Gini is 0 for all signal or all
background. Wi is the weight of event “i”.!

•  The criterion is to minimize Gini_left +
Gini_right of the two children from a parent
node !

MiniBooNE experiment!
arXiv: 0408124!

A Nayak!14 July 2021!

Tree Boosting!

Boosting:!
•  The general idea is to use the weak learning method several times to

get a succession of hypotheses, each one refocused on the events
that the previous ones found difficult and misclassified!
-  producing a very accurate prediction rule by combining rough and

moderately inaccurate!

l (ŷi , yi)
Ω(f t)

A Nayak!14 July 2021!

Tree Boosting!

40!

obj = l (yi , ŷi)+ Ω(f k)
k =1

K

∑
i =1

n

∑

Procedure:!
•  Each tree is created iteratively!
•  The tree’s output (f(x)) is given a weight (w) relative to its accuracy!
•  Events which are misclassified, increase their weights!
•  Build a new tree, repeat the procedure for several trees !
•  The final score of an event is the weighted average of scores from all trees!

•  This means that samples that are difficult to classify receive increasing larger
weights until the algorithm identifies a model that correctly classifies these
samples!

•  The goal is to minimize an objective function !

ŷ = wk f k (x)
k
∑ ,

 is the loss function (distance between truth and prediction value for ith sample)!
 is the regularization function (it penalizes the complexity of the kth tree)!
l (ŷi , yi)
Ω(f t)

f k ∈ F Space of functions containing
all regression tree!

A Nayak!14 July 2021!

Types of Boosting!

41!

There are many different ways of iteratively adding learners to minimize a loss function!
!
Most common boosting algorithms are!
!
•  AdaBoost!
-  Adaptive Boosting!
-  One of the early methods!

•  Gradient Boosting (GradBoost)!
-  Uses gradient descent to create new learners!
-  The loss function should be differentiable!
-  http://statweb.stanford.edu/~jhf/ftp/trebst.pdf!

•  XGBoost (Xtreme gradient Boosting)!
-  One type of gradient boosting !
-  Very popular and widely used currently!
-  Chen and Guestrin: https://arxiv.org/abs/1603.02754 !

A Nayak!14 July 2021!

AdaBoost!

42!

arXiv: 0408124!

A Nayak!14 July 2021!

AdaBoost!

43!

Change the weight of each event by!

Normalize weights!
Repeat training for Ntrees!
The score of a given event is:!

Define for mth tree!
arXiv: 0408124!

A Nayak!14 July 2021!

ε-Boost (shrinkage)!

44!

Change the weight of the ith event as!

ε is a constant of the order of 0.01!

Normalize weights!

The score for a given event is!

renormalized, but
unweighted, sum of the

scores over individual trees.!

Both the boosting algorithms minimize
the expectation value of the loss function:!

L(F , y) = e − yF (x)

Where y = 1 for signal, !
 -1 for background!

F (x) = ΣN treei =1 f i (x)
f i (x) =1
f i (x) = −1

If event lands
on signal leaf!

If event lands on
background leaf!

arXiv: 0408124!

A Nayak!14 July 2021!

Gradient Boosting!

45!

•  Exponential loss has the shortcoming that it lacks robustness in
presence of outliers or mislabelled data points!
•  The performance of AdaBoost therefore is expected to degrade

in noisy settings !
•  The GradientBoost algorithm attempts to cure this weakness by

allowing for other, potentially more robust, loss functions without
giving up on the good out-of-the-box performance of AdaBoost !

(ref: TMVA userguide)!

A Nayak!14 July 2021!

Gradient Boosting!

46!

•  Current TMVA implementation uses the binomial log-likelihood loss:!

!
•  Minimization is performed using steepest-descent approach!
•  Implementation in TMVA: Calculate the current gradient of the loss function

and then grow a regression tree whose leaf values are adjusted to match the
mean value of the gradient in each region defined by the tree structure –
www.jstor.org/stable/2699986!

•  Iterating this procedure yields the desired set of decision trees which
minimizes the loss function !

•  Robustness can be enhanced by reducing the learning rate of the algorithm
(shrinkage), which controls the weight of the individual trees!

(ref: TMVA userguide)!

A Nayak!14 July 2021!

Stochastic Gradient Boosting!

47!

•  Introduce a resampling procedure using random subsamples of
the training events for growing trees – called “Bagging”!

•  The sample fraction used in each iteration can be controlled
through a parameter, typical values to get best results are 0.5—0.8.!

•  Stability against statistical fluctuations!

A Nayak!14 July 2021!

Example!

48!

•  Same signal,background and input variables as the DNN example. !
•  XGBoost Algorithm trained on 600 trees, Depth=3 ,learning rate = 0.1,

with bagged boost. !

 Details will be discussed in the tutorial tomorrow !

A Nayak!14 July 2021!

Summary!

49!

•  Machine learning methods, such as neural network and boosted
decision trees are heavily used in high energy physics data
analysis!
-  In particular, in the experiments at LHC!
-  Achieves much better performance than the cut based analyses with

same amount of data!
-  Not only the signal to background separation, but also better object

identification!
•  This lecture discussed only basic concepts about Artificial

Neural Network and Boosted Decision Trees, with their example
applications HEP problems.!
o  Could not cover many more advanced tools, such as CNN, RNN,

graph neural network etc.., that are currently being used.!
o  There will be a hands-on session tomorrow with some practical

examples!

A Nayak!14 July 2021!

References!

50!

1.  The elements of statistical learning, Hastie, Tibshirani, Friedman!
2.  http://neuralnetworksanddeeplearning.com/!
3.  https://machine-learning-for-physicists.org/!
4.  TMVA userguide!
5.  XGBoost userguide!
6.  And may more from the web….!

A Nayak!14 July 2021!

Thanks!

51!

A Nayak!14 July 2021!

Supervised Learning!

52!

Supervised learning is a method where we use the training data (with multiple
features) xi to predict a target variable yi.!
!
Model & Parameters:!
Model usually refers to the mathematical structure by which the prediction yi is
being made from the input xi. !
A common example is the liner model: yi = Σωijxj!
The prediction value can have different interpretations, depending on the task,
i.e. regression or classification!
ω are the undetermined part that we need to learn from data!
!
Objective Function:!
A function that measures how well the model fit the training data!
Consists two parts, Training loss and Regularization terms:!
 obj(θ) = L(θ) + Ω(θ)!
L measures how predictive our model is with respect to our training data!
Common choices for L are “mean squared error, logistic loss etc..”!

L(θ) = Σ(yi − ŷi)
2

L(θ) = Σ[yi ln(1+e
− ŷi)+ (1− yi)ln(1+e

ŷi)]

A Nayak!14 July 2021!

Regularization term!

53!

The regularization term controls the complexity of the model, !
which helps us to avoid over-fitting!

(ref: XGBoost userguide)!

