Introduction to Geant4

Dr. Kavita Lalwani (Assistant Professor) Department of Physics, MNIT Jaipur Email: kavita.phy@mnit.ac.in

For Beginners: Basic Questions Q1. What we can do with Geant4?

Q 2. From where I should start with Geant4?

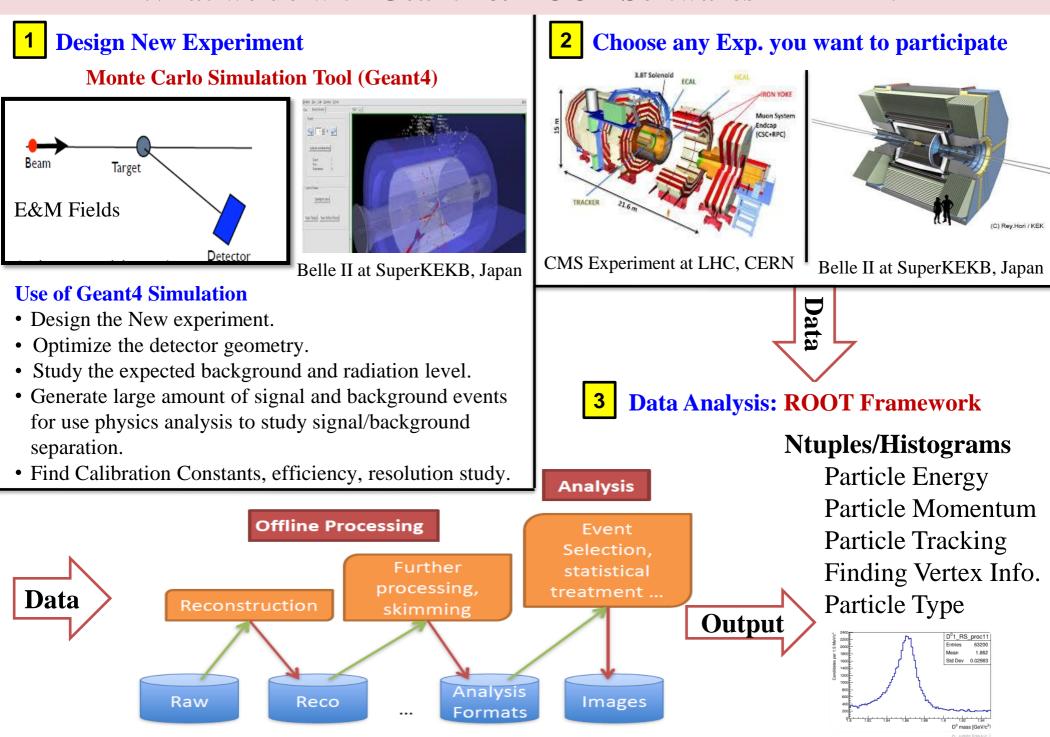
Q 3. How can we create detector Geometry in Geant4?

Q 4. How can I generate the beam of proton OR electron in Geant4?

For Experts: Advance Questions?

Q1. How can we develop complex geometry such as Specific Detector (example: Calorimeter, RPC) in Geant4?

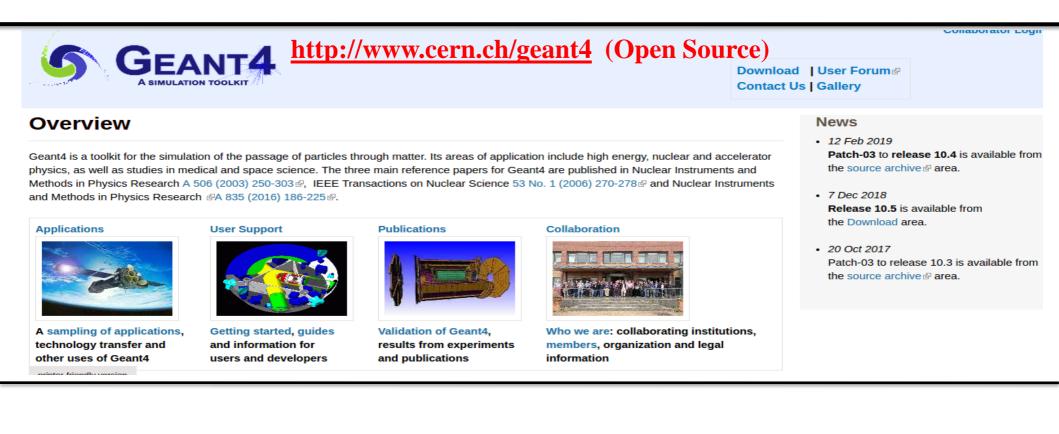
Q 2. How can we implement specific Physics List OR Physics Model ?


Q3 How can we generate differential distribution of flux/energy OR isotropic uniform spectrum of flux (eg. galactic cosmic radiation) in Geant4?

- Geant4 and its important features
- Geant4 Class Structure
- Method to construct a Detector Geometry
- Beam generation
- Physics List and Physics Processes
- Geant4 working flow chart
- Examples
- Applications

Note: This presentation is prepared with the training material of Geant4.

What we do with Geant4 & ROOT Softwares in EHEP?



Monte Carlo Simulation tool: Geant4 (Geometry and Tracking)

GEANT4 is a toolkit for simulation of passage of particles through matter.

- GEANT4 is written in C++
- Geant4 is mainly used for High energy Physics.
- Applications: Accelerator physics, Medical as well as Space applications.
- Using GEANT4 tool, user can build a simulation program for specific application.

Important Features of Geant4

- •Detector Geometry
- Materials involved
- Particle beam generation
- Generation of events
- Particle Tracking through matter and EM fields
- Response of detector components
- Storage of events and tracks
- Visualization
- Analysis of data

Users may construct stand-alone applications

User Classes

Mandatory

G4VUserDetectorConstruction Define materials and geometries

G4VUserPhysicsList

Define processes and production threshold (s)

G4VUserPrimaryGeneratorAction

Generation of Primary event

Action Classes (Optional)

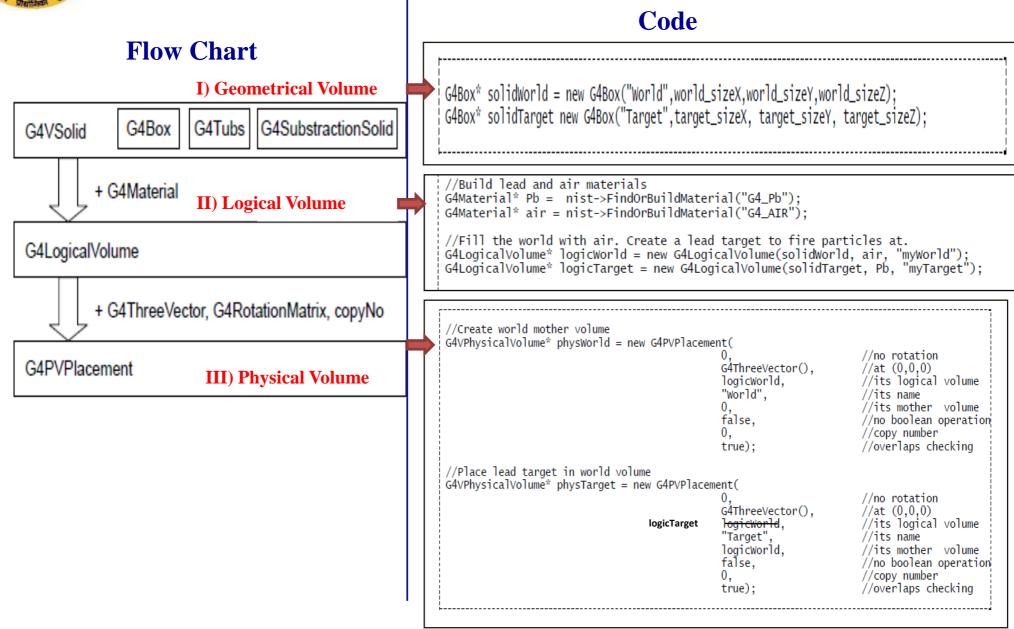
G4UserRunAction

G4UserEventAction

G4UserTrackingAction

G4UserSteppingAction

Detector Construction in Geant4


(Define Materials and Geometries)

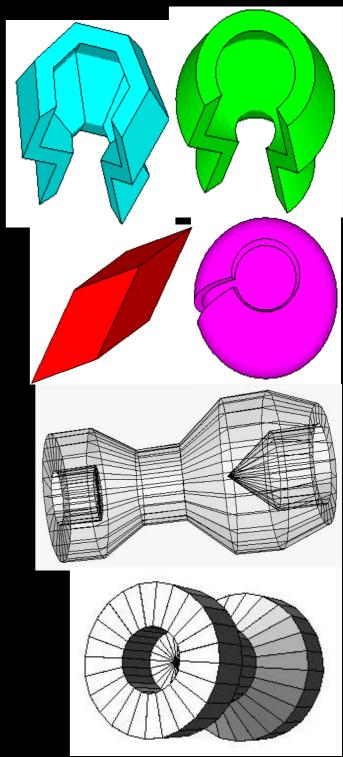
Three Volumes:

- Geometrical (G4VSolid) volumes specify shape and size.
- Logical (G4LogicalVolume) volumes specify materials.
- **Physical** (G4VPhysicalVolume) volumes specify placements in the setup.

G4VUserDetectorConstruction class

Examples of Solid in Geant4:

Geant4 geometry module supports variety of representations of shapes.


CSG (Constructed Solid Geometry) solids G4Box, G4Tubs, G4Cons, G4Trd, ... Analogous to simple GEANT3 CSG solids

Specific solids (CSG like) G4Polycone, G4Polyhedra, G4Hype, ... BREP (Boundary REPresented) solids

G4BREPSolidPolycone, G4BSplineSurface, ...

Any order surface

Boolean solids G4UnionSolid, G4SubtractionSolid, ...

Define Materials In GEANT4

Single Element

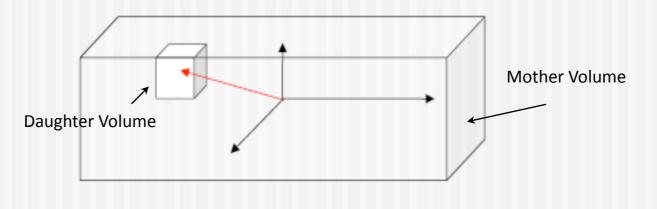
```
G4Element* hydrogen =
   new G4Element("Hydrogen", symbol="H", z=1, a=1.01*g/mole);
G4Element* oxygen =
   new G4Element("Oxygen", symbol="0", z=8, a=16.00*g/mole);
```

Assemble elements into molecule:

```
G4Material* H2O =
    new G4Material("Water", density=1.000*g/cm3,n_comps=2);
G4int number_of_atoms;
H2O->AddElement(hydrogen, number_of_atoms=2);
H2O->AddElement(oxygen, number_of_atoms=1);
```

Compounds are mixture of elements not bound into molecules and can be specified

```
G4Element* nitrogen =
    new G4Element("Nitrogen",symbol="N",z= 7., a=14.01*g/mole);
G4Element* oxygen =
    new G4Element("Oxygen",symbol="O",z=8., a=16.00*g/mole);
G4Material* Air =
    new G4Material("Air",density=1.290*mg/cm3,ncomp=2);
    Air->AddElement(nitrogen, fracMass=70.0*perCent);
    Air->AddElement(oxygen, fracMass=30.0*perCent);
```

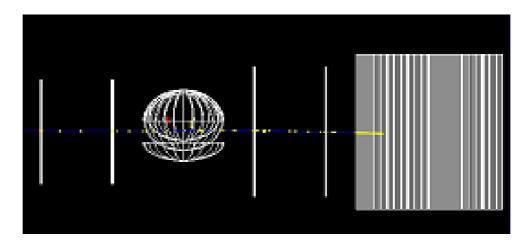


Placement (Physical Volume)

Mother and daughter volumes

A volume is placed in its mother volume

- Position and rotation of the daughter volume is described with respect to the local coordinate system of the mother volume
- The origin of the mother's local coordinate system is at the center of the mother volume

One or more volumes can be placed in a mother volume


Beam Generation in Geant4

Primary Event Generator Action Class

Set particle type, position and energy of beam

particleGun = new G4ParticleGun(n_particle);
particleGun->SetParticleDefinition(
 particleTable->FindParticle(particleName="gamma"));
particleGun->SetParticleEnergy(1173.2*keV);
particleGun->SetParticlePosition(G4ThreeVector(0.0, 0.0, 0.0));

Proton Pencil Beam in PCT (Geant4 Visualization)

GPS (General Particle Source)

Example: Simulation of Proton Galactic Cosmic Ray Spectrum in Geant4

Input GCR spectrum thrown on Spherical detector geometry

General Particle Source (GPS)

- The G4GeneralParticleSource (GPS) is part of the Geant4 toolkit for Monte-Carlo, high-energy particle transport.
- Specifically, it allows the specifications of the spectral, spatial and angular distribution of the primary source particles

Angular Distribution

The **angular distribution** is used to control the directions in which the particles emanate from/incident upon the source point.

In general there are three main choices, isotropic, cosine-law or user-defined.

The top-level /gps/direction command uses direction **cosines** to specify the primary particle direction, as follows:

 $egin{aligned} P_x &= -\sin heta\cos\phi\ P_y &= -\sin heta\sin\phi\ P_z &= -\cos heta \end{aligned}$

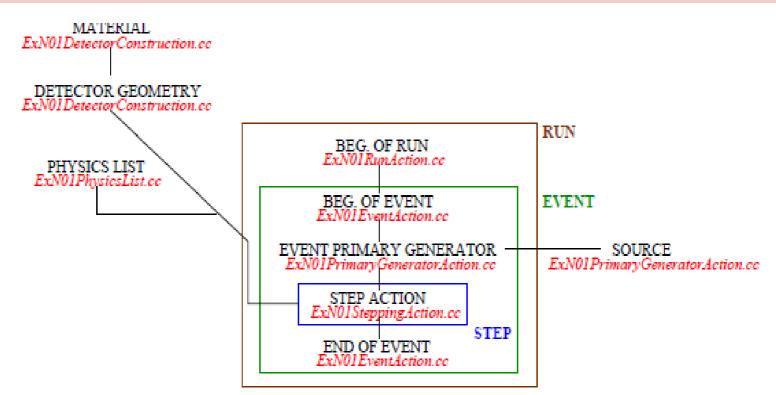
Energy Distribution

	Та	ble 1 Energy distribution commands.¶	
Spectrum	Abbreviation	Functional Form	User Parameters
mono- energetic	Mono	$I \propto \delta(E-E_0)$	Energy E_0
linear	Lin	$I \propto I_0 + m imes E$	Intercept $I_0,$ slope m
exponential	Exp	$I \propto \exp(-E/E_0)$	Energy scale-height E_0
power-law	Pow	$I \propto E^{lpha}$	Spectral index α
Gaussian	Gauss	$I = (2\pi\sigma)^{-rac{1}{2}} \exp[-(E/E_0)^2/\sigma^2]$	Mean energy E_0 , standard deviation σ
bremsstrahlung	Brem	$I = \int 2E^2 [h^2 c^2 (\exp(-E/kT) - 1)]^{-1}$	Temperature T
black body	Bbody	$I \propto (kT)^{rac{1}{2}} E \exp(-E/kT)$	Temperature T (see text)
cosmic diffuse gamma ray	Cdg	$I \propto [(E/E_b)^{lpha_1}+(E/E_b)^{lpha_2}]^{-1}$	Energy range E_{\min} to E_{\max} ; energy E_b and indices α_1 and α_2 are fixed (see text)

Physics Processes in Geant4 (Overview)

- ✓ Geant4 provides a wide variety of physics components for use in simulation.
- ✓ Physics components are coded as processes.
- A process is a class which tells a particle how to interact with Detector material.
- User may write his own processes derived from Geant4 process.

✓ Processes are grouped into


- Electromagnetic
- Hadronic

D

Model acronym	Model name	Energy ranges	Incoming particles applicabilities
LHEP	Low-High Energy Parameterized	0-100 TeV	All hadrons
PRECO	Pre-compound	0-100 MeV	Protons, neutrons
BERT	Bertini cascade	0-15 GeV	Protons, neutrons, pions, kaons, hyperon
BIC	Binary cascade	0-5 GeV	Protons, neutrons, pions
BIC_Ion	BinaryLightIon cascade	0-5 GeV/u	Ions
INCL	Intra-Nuclear Cascade Liege	150-3000 MeV	Protons, neutrons, pions, kaons, light ion
QGSP	Quark Gluon String + PRECO	10-10 ⁵ GeV	Protons, neutrons, pions, kaons
FTFP	Fritiof + PRECO	3-10 ⁵ GeV	Protons, neutrons, pions, kaons, hyperon
CHIPS	Chiral Invariant Phase Space	0-100 TeV	All hadrons
G4QMD	Quantum molecular dynamics	10-10 ⁴ MeV/u	Protons, neutrons, ions
Abrasion	Abrasion-ablation model	10 ² -10 ⁴ MeV/u	Ions

Flow Chart in Geant4

Run

- In Geant4, a run is a collection of events which share the same detector and physics conditions.
- A run consists of one event loop.
- At the beginning of a run, geometry is optimized and cross- section tables are calculated according to materials appear in the geometry and the cut-off values defined.
- A run starts with BeamOn() method of G4RunManager.

Event

- An event is the basic unit of simulation in Geant4.
- G4Event class represents an event.
- It has following objects at the end of its successful processing.
- -List of primary vertices and particles (as input)
- -Hits and Trajectory collections (as output)

Track

- Track is a snapshot of a particle.
- G4TrackingManager manages processing a track, a track is represented by G4Track class.

Visualization of Detector Geometry

Visualization Drivers:

- OpenGL
- OpenInventor
- HepRep
- DAWN
- VRML
- RayTracer
- gMocren
- ASCIITree

What can be Visualized?

- Geometrical components
- Particle trajectories

Geant4 Examples

From where I should start in Geant4?

Basic Examples

- Simple Geometry with few solids
- Calorimeter
- Tracker etc

Extended Examples

- Demonstration of Geant4 specific usage
- Electromagnetic
- Event Generator Classes
- Analysis
- Medical Applications

Advanced Examples

- Simulation of real experimental set-up: CMS Hadron Calorimeter;
- Advanced Medical applications
- Hadron Therapy
- LINAC

See many more updated examples in Geant4 webpage

Physics List/Processes in Detail

Q. Why do we need Physics list ?

Answer: The concept of a physics list comes because GEANT4 can not offer a single modeling algorithm to cover the entire energy domain from zero to the TeV scale, for all known processes and particles.

To set up the physics environment in Geant4, we need to choose (a) particle and (b) physics process that will be assigned to each particle.

Q How many physics lists are there in Geant4?

Pre-packaged PhysicsLists

The Geant4 toolkit encompasses a number of pre-assembled PhysicsLists in geant4/source/physics_lists/

...don't expect to be exempt from understanding Geant4 physics in depth!

- QGSP_INCLXX .
- LHEP_EMV .
- G 4PhysListFactory .
- Shielding 0
- G4GenericPhysicsList 0
- HadronPhysicsQGS BIC .
- HadronPhysicsQGSP_BERT_CHIPS . .
- HadronPhysicsQGSP_BIC_HP •
- HadronPhysicsQGSP_FTFP_BERT_{ a.
- QGSC CHIPS .
- QGSP_BERT_NOLEP .
- FTFP_BERT_EMX 0
- HadronPhysicsQGSP_BIC .
- HadronPhysicsLHEP .
- QGSP BIC .
- LHEP 0
- FTF BIC .
- HadronPhysicsQGSP_INCLXX 4
- QGSP_BERT_EMX 0
- QGSP_BIC_EMY -

- HadronPhysicsQGSP_BERT_95
- LBE
- FTFP_BERT_TRV .
- HadronPhysicsQGSC_BERT .
- G4PhysListUtil .
- HadronPhysicsQGSP .
- QGSP
- HadronPhysicsFTFP_BERT .
 - QGSP_BERT_95
- HadronPhysicsQGSP_FTFP_BERT .
- HadronPhysicsFTFP_BERT_TRV .
- HadronPhysicsCHIPS .
- OBBC 0
- HadronPhysicsQGSP_BERT_TRV .
- QGSP_FTFP_BERT_95 .
- HadronPhysicsQGSP_BERT_NOLEP .
- HadronPhysicsFTF_BIC
- HadronPhysicsCHIPS_HP .
- QGSP_FTFP_BERT_95XS .
- .

- HadronPhysicsFTFP_BERT_HP
- FTFP_BERT_HP a.
- CHIPS .
- QGSP BERT TRV .
- FTFP BERT EMV 4
- HadronPhysicsQGSC_CHIPS 0
- HadronPhysicsQGSP_BERT .
- G4HadronInelasticQBBC .
- QGSP_BERT_EMV a.
- HadronPhysicsShielding .
- QGSP_FTFP_BERT 4
- QGS_BIC 0
- QGSC_BERT .
- FTFP BERT .
- QGSP QEL 4
- HadronPhysicsQGSP_BERT_HP .
- QGSP_BERT_CHIPS -
- QGSP_BERT_HP 0
- QGSP_BERT_95XS 0
- QGSP_BIC_HP
- 27

- .

- CHIPS_HP

Physics processes in Geant4

EM physics

• Low energy processes can be used from 100eV to PeV.

2. Weak interaction physics

- Decay of subatomic particles
- Radio-active decay of nuclei

3. Hadronic physics

- Pure strong interaction valid from **0eV to TeV**
- High precision neutron package valid from **thermal energies to ~20MeV**

How to create a physics list ?

There are three options to create a physics list :-

- 1. Create and inherit it from G4VUserPhysicsList
- In this, specify all particles needed
- For each particle specify processes.
- Due to this a large number of lines of code is there and difficult to solve the problems.

2. Create and inherit from G4VModularPhysicsList

- This allows to use existing physics constructors
- Can construct own constructors

3. Reuse pre-packaged physics list directly via G4PhysicsListFactory

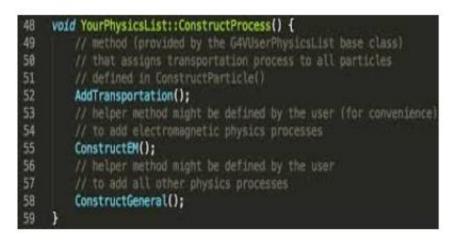
- · It is the basic Geant4 physics list interface.
- All physics list derived from this base class.
- · In this user implement two virtual methods:-

1. constructParticle() :- using this we can create all particles needed in the simulation and along with secondary particles possibly created in simulation.

2. ConstructProcess():-

using this we have to assign specific process to each particle. User can implement the SetCuts() method (optional)

G4VUserPhysicsList:CreateParticles()


- Construct particles individually one by one
- many particles in G4
- particle classes
- · Gluons, quarks, di-Quarks
- · Leptons
- Mesons
- Baryons
- Ions
- Others
- Construct particles by using helpers
- helpers are under particles
- Leptons
- Baryons
- Mesons
- lons
- Short-lived
- Excited nucleons

23	void YourPhysicsList::ConstructParticle() {
24	G4Electron::Definition();	
25	G4Gamma::Definition();	
26	G4Proton::Definition();	
27	G4Neutron::Definition();	
28	<pre>// other particle definitions</pre>	
29		
30		
31	}	

35	<pre>void YourPhysicsList::ConstructParticle() {</pre>
36	// construct baryons
37	G4BaryonConstructor baryonConstructor;
38	<pre>baryonConstructor.ConstructParticle();</pre>
39	// construct bosons
40	G4BosonConstructor bosonConstructor;
41	<pre>bosonConstructor.ConstructParticle();</pre>
42	<pre>// more particle definitions</pre>
43	
44	
45	}

G4VUserPhysicsList:constructProcess()

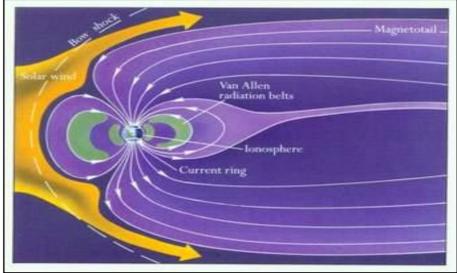
- A process in Geant4 describes reaction probability and creates final state of interaction.
- · GeneralConstruct method split into components for EM and hadronic etc.
- · Transportation must be added.

G4VModularPhysicsList()

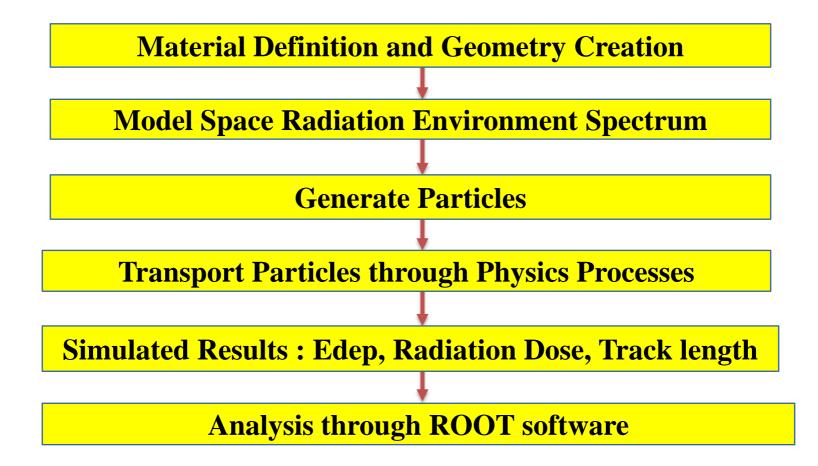
• G4VModularPhysicsList extends G4VUserPhysicsList.

 Adding Several methods:-RegisterPhysics(G4VPhysicsConstructor *) GetPhyscis(....) by index, name ,or type ReplacePhysics(G4VPhysicsConstructor *) RemovePhysics(....) by index, name, or type.

- It provides a more convenient way to create a physics list.
- Transportation is automatically added to all constructed particles.
- User is free to add or to modify existing constructors.


Applications Example: 1) Simulation of Space Radiation Environment

Space Radiation Environment

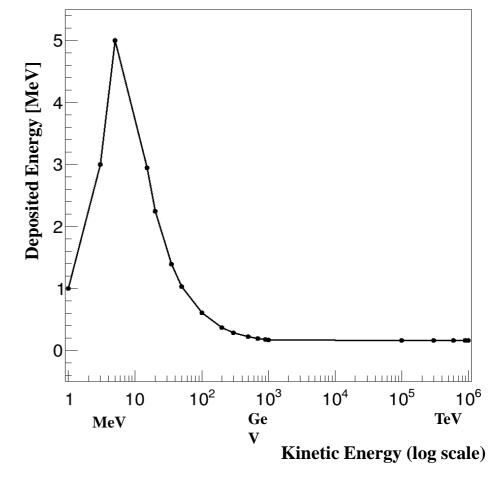

- The space radiation consists of charged particles and heavy ions, which come from the burst of solar wind created at the surface of the sun.
- The interaction of the particles and the magnetic field of earth occur and particles get deflected.
- Still some particles manage to enter the magnetosphere and become trapped.
- These trapped particles are contained in two doughnut-shaped magnetic rings around earth called the Van Allen radiation belts.
- Three main components of space radiations:
 - Trapped particles
 - Galactic Cosmic Rays (GCRs)
 - Solar Particle Events (SPEs)

The energies of space radiation lies in the range of eV to the order of few TeV.

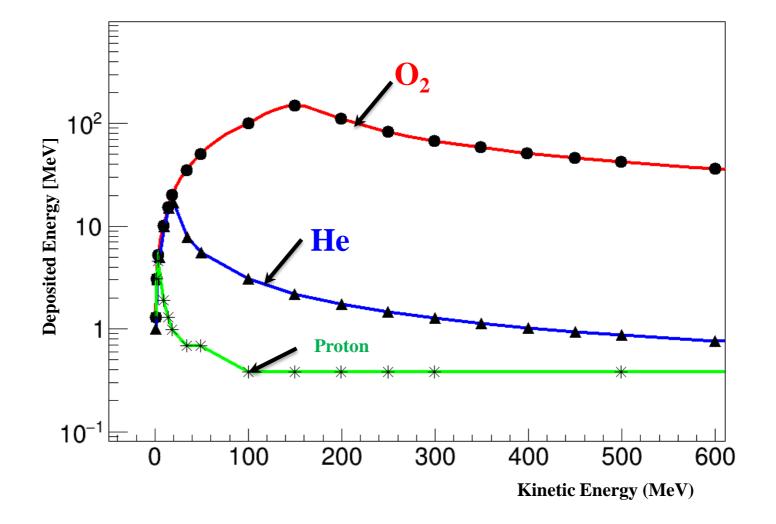
Flow chart to Model Space Radiation Environment in Geant4

- When beam of charged particles enter the detector material, they loss their energy via coulomb interactions with electrons and nucleus of the atom.
- The energy loss by charged particles in the detector material is measured through energy deposited, which is given by Bethe-Bloch formula:

$$\frac{S}{\rho} = -\frac{dE}{\rho dx} = 4\pi N_A r_e^2 m_e c^2 \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \frac{2m_e c^2 \beta^2}{I \cdot (1 - \beta^2)} - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \right]$$


• dE/dx is proportional to the inverse square of the incoming particle's velocity, and the square of its ion charge z.

Visualization of Detector Geometry


Geometry: Sphere Size: Radius = 414 µm Material: Water Incoming Beam: Proton

Energy Deposited in Sphere

Effect of Charge on Energy Deposited

Geant4 based Online Software Tool: SPENVIS

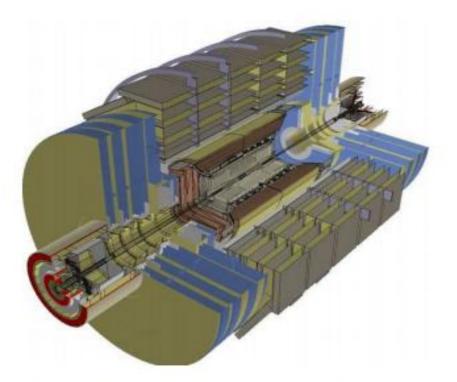
For Space Applications

https://www.spenvis.oma.be/

Current version

The current version of SPENVIS (4.6.10) was <u>released</u> on August 19, 2019.

System requirements

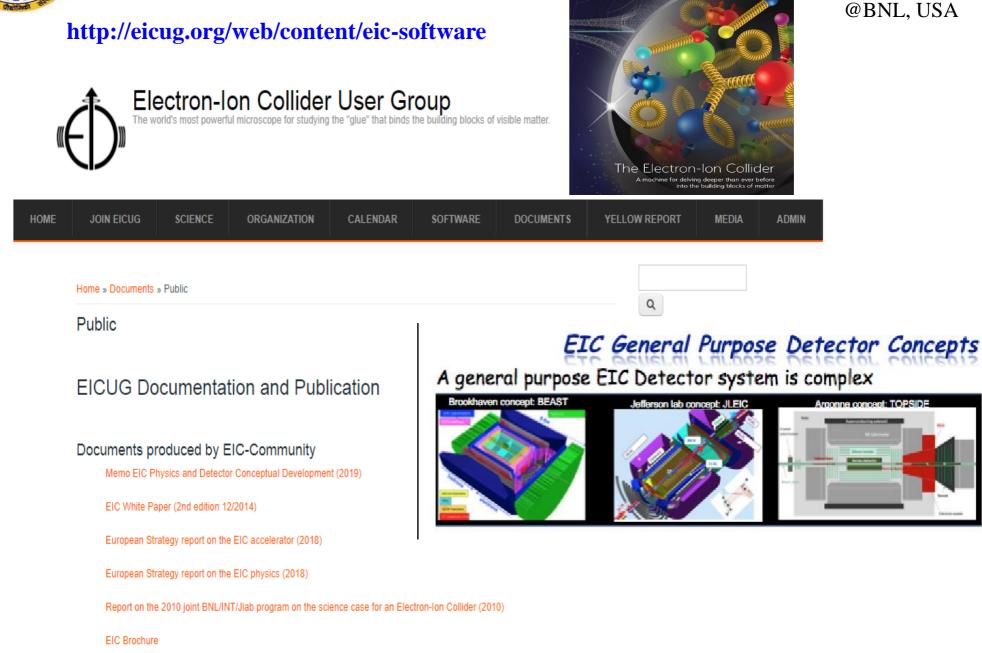

SPENVIS requires a browser with JavaScript support (tested with Firefox 23 and MS-IE 9). Some outputs require a <u>VRML/X3D plugin</u> (tested with Octaga Player 2.3.0.3).

Need help?

Beside a large set of contextual help pages, the SPENVIS system includes a forum ()) where users can exchange their experiences and tips. In case of problems, please consult our bug tracker system ()) and feel free to post any bugs.

2) **GDML File in Geant4** GEOMETRY DESCRIPTION MARKUP LANGUAGE

Geant4 can Convert CAD Files to GDML Files, Create New GDML Geometries



You can start with existing Examples: examples/extended/gdml

Figure 5: CMS detector visualized using ROOT from an automatically generated GDML file.

2) Electron Ion Collider (Future Facility in EHEP)

3) Geant4 based Online Software Tool: GATE

https://opengate.readthedocs.io/en/latest/introduction.html

Navigation

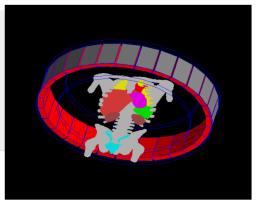
Getting started General concept Imaging application

- 1. Defining a system
- 2. Attaching the sensitive detectors
- 3. Digitizer and readout parameters
- 4. Data output
- 5. Generating and tracking optical photons
- 6. Compton camera imaging simulations: CCMod
 Radiotherapy and dosimetry applications
 Thermal therapy
 application

R

(http://root.cern.ch/download/doc/ROOTUsersGuideHTML/ch12s21.html) which generates a skeleton class designed to **loop over the entries of a tree** from your root file. Please consult the ROOT Homepage: http://root.cern.ch/ for more details. In the location of your output.root file, launch root and do the following:

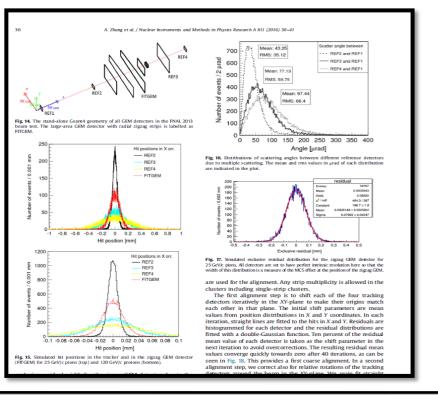
MakeClass() will automatically create 2 files : **MyAnalysis.h** (a header file) and **MyAnalysis.C** (template to loop over your events). You can run this code in ROOT by doing:

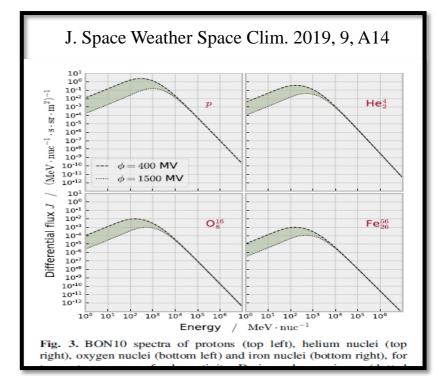

```
Root > .L MyAnalysis.C
Root > MyAnalysis t
Root > t.Loop();
```

4.2.4. Writing a counter in ROOT

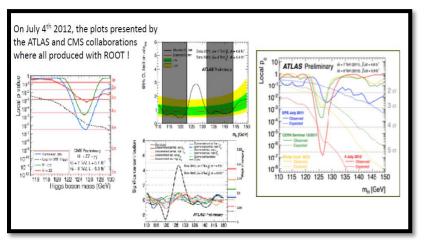
You can modify/improve the MyAnalysis.C macro by adding a counter as shown below:

```
void MyAnalysis::Loop()
{
  if (fChain == 0) return;
  Long64_t nentries = fChain->GetEntriesFast();
  Long64_t nbytes = 0, nb = 0;
  Int_t num_INITIAL = 0;
  Int_t num_DETECTED = 0;
```


📄 Katato no Mio na Iada - A



Scientific Publications available using Geant4 & ROOT


EHEP Detector Paper (Geant4 & ROOT)

Geant4 paper for Space Applications

Higgs Boson Discovery !

Geant4 for Proton Computed Tomography

proton

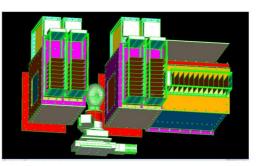
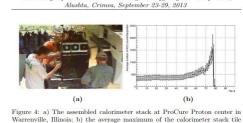



Fig.14. pCT Test Beam Setup

A Detector for Proton Computed Tomography G.Blazey, .K. Lalwani et al, FERMILAB-CONF-13-554-E

Proceedings of the "New Trends in High Energy Physics" Conference

signals (in ADC counts) versus tile number collected from 9000 200 MeV

Many more **Publications**

References

Geant4:

www.geant4.cern.ch
https://geant4.web.cern.ch/support/training_courses

Geant4 Forum https://geant4-forum.web.cern.ch/

<u>Youtube lectures</u> <u>https://www.youtube.com/watch?v=bk7eTGXq_K8</u>

Our tutorials are available at Github here

Quiz

Q.1: Which volume is used to define the material in Geant4?

a) Physical b) Solid c) Placement b) None of them

Q.2: Which is the visualization driver mostly used in Geant4?

- a) HepRep
- b) DAWN
- c) RayTracer
- d) OpenGL

Q.3: Particle beam in Geant4 is generated using

- a) Mandatory Classes
- b) Optional Classes
- c) a) and b) both are correct
- d) none of them

Quiz 4. From which class we can define a material directly?

- (a) G4AnalysisManager
- (b) G4NistManager
- (c) G4Element
- (d) G4Material

5. Which is not type of a Physics List?

- (a) G4VUserPhysicsList
- (b) G4PhysicsList
- (c) G4VModularPhysicsList
- (d) G4PhysicsListFactory

6. Which statement is correct?

- (a) a event is a collection of runs
- (b) a step is a collection of runs
- (c) a run is a collection of events
- (d) a step is a collection of events

7. Which class is used to define GPS?

- (a) G4Particle
- (b) G4ParticleGun
- (c) G4GeneralParticleSource
- (d) G4Source

Hands-on Session July 16, 2021