Relativity tutorial - Saturday 11th of July 2020 Any queries contact me at libby@iitm.ac.in

1. Perform a Galilean transformation on the wave equation. Find the general solution to the resulting partial differential equation. Interpret the solutions.

Answer: The Galilean transformation in the x direction is x' = x - vt and t' = t. Therefore,

$$\begin{aligned} \frac{\partial}{\partial x} &= \frac{\partial x'}{\partial x} \frac{\partial}{\partial x'} + \frac{\partial t'}{\partial x} \frac{\partial}{\partial t'} = \frac{\partial}{\partial x'} \\ \frac{\partial}{\partial t} &= \frac{\partial x'}{\partial t} \frac{\partial}{\partial x'} + \frac{\partial t'}{\partial t} \frac{\partial}{\partial t'} = -v \frac{\partial}{\partial x'} + \frac{\partial}{\partial t'} \\ \Rightarrow \frac{\partial^2}{\partial x^2} &= \frac{\partial^2}{\partial x'^2} \\ \frac{\partial^2}{\partial t^2} &= v^2 \frac{\partial^2}{\partial x'^2} - 2v \frac{\partial^2}{\partial x' \partial t'} + \frac{\partial^2}{\partial t'^2} \\ \Rightarrow & \left[\left(1 - \frac{v^2}{c^2} \right) \frac{\partial^2}{\partial x'^2} + 2 \frac{v}{c^2} \frac{\partial^2}{\partial x' \partial t'} - \frac{1}{c^2} \frac{\partial^2}{\partial t'^2} \right] \phi(x', t') = 0 \;. \end{aligned}$$

Postulate a solution f(x' - mt')

$$\left(1 - \frac{v^2}{c^2}\right) + 2m\frac{v}{c^2} - m^2\frac{1}{c^2} = 0$$
(1)

$$\Rightarrow m = \frac{2v \pm \sqrt{4v^2 + 4(c^2 - v^2)}}{-2} = \pm (c \mp v) .$$
 (2)

(3)

Speed changes with the frame as if wave in a fixed medium a.k.a. the aether.

2. [Halzen and Martin: 6.9] Maxwell's equations of classical electrodynamics are, in vacuo,

$$\nabla \cdot \mathbf{E} = \rho, \quad \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$
$$\nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} = \mathbf{j},$$

in rationalized Heaviside-Lorentz units. Show that these equations are equivalent to the following covariant equation for A^{μ} :

$$\Box A^{\mu} - \partial^{\mu} \left(\partial_{\nu} A^{\nu} \right) = j^{\mu} ,$$

with $j^{\mu} = (\rho, \mathbf{j})$, and where $A^{\mu} = (\phi, \mathbf{A})$, the four-vector potential, is related to the electric and magnetic fields by

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \boldsymbol{\nabla}\phi , \quad \mathbf{B} = \boldsymbol{\nabla} \times \mathbf{A} .$$

Ans: First we write Ampere's law in terms of ϕ and **A**

$$\nabla \times \nabla \times \mathbf{A} - \frac{\partial}{\partial t} \left(-\frac{\partial \mathbf{A}}{\partial t} - \nabla \phi \right) = \mathbf{j}$$

$$\Rightarrow -\nabla^2 \mathbf{A} + \nabla \left(\nabla \cdot \mathbf{A} \right) + \frac{\partial^2 \mathbf{A}}{\partial t^2} + \frac{\partial}{\partial t} \nabla \phi = \mathbf{j} \because \nabla \times \nabla \times \mathbf{A} = -\nabla^2 \mathbf{A} + \nabla \left(\nabla \cdot \mathbf{A} \right)$$

$$\Rightarrow \Box \mathbf{A} + \nabla \left(\frac{\partial \phi}{\partial t} + \nabla \cdot \mathbf{A} \right) = \mathbf{j} \because \Box = \frac{\partial^2}{\partial t^2} - \nabla^2$$

$$\Rightarrow \Box A^i - \partial^i \left(\partial_\nu A^\nu \right) = \mathbf{j}^i , \qquad (4)$$

where $\partial^{\mu} = \left(\frac{\partial}{\partial t}, -\nabla\right)$ and i = 1, 2, and 3. Next we write Gauss' Law in terms of A^{μ}

$$\nabla \cdot \left(-\frac{\partial \mathbf{A}}{\partial t} - \nabla \phi \right) = \rho$$

$$\Rightarrow \Box \phi - \frac{\partial^2 \phi}{\partial t^2} - \frac{\partial}{\partial t} \nabla \cdot \mathbf{A} = \rho$$

$$\Rightarrow \Box \phi - \frac{\partial}{\partial t} \left(\frac{\partial \phi}{\partial t} + \nabla \cdot \mathbf{A} \right) = \rho$$

$$\Rightarrow \Box A^0 - \partial^0 \left(\partial_{\nu} A^{\nu} \right) = j^0, \qquad (5)$$

so combining Eqs. (3) and (4) one gets

$$\Box A^{\mu} - \partial^{\mu} \left(\partial_{\nu} A^{\nu} \right) = j^{\mu} ,$$

as required. End of this part of the question.

Further, show that in terms of the the antisymmetric field strength tensor

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} ,$$

Maxwell's equations take the compact form $\partial_{\mu}F^{\mu\nu} = j^{\nu}$ and that $\partial_{\nu}j^{\nu} = 0$, follows as a natural compatibility condition.

Ans: So

$$\partial_{\mu}F^{\mu\nu} = \partial_{\mu}\left(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}\right)$$
$$= \Box A^{\nu} - \partial^{\nu}\left(\partial_{\mu}A^{\mu}\right)$$
$$= j^{\nu},$$

from the first part of the question. Then,

$$\partial_{\nu}j^{\nu} = \Box \left(\partial_{\nu}A^{\nu}\right) - \Box \left(\partial_{\mu}A^{\mu}\right) = 0$$

as required.

3. The infinitesimal Lorentz transformation is given by

$$x^{\prime \mu} = x^{\mu} + \varepsilon^{\mu \nu} x_{\nu} \delta \eta ,$$

where $\varepsilon^{\mu\nu}$ is an antisymmetric tensor and $\delta\eta$ is an infinitesimal increment of rapidity. Consider $\varepsilon^{01} = 1$ and $\varepsilon^{12} = 1$. Comment on the result.

Ans: We can rewrite the infinitesimal transformation as

As $\cosh \delta \eta = 1$ and $-\sinh \delta \eta = -\delta \eta$ to $\mathcal{O}((\delta \eta)^2)$ this is equivalent to an infinitesimal boost.

Similarly $\epsilon^{12} = 1$ leads to rotation about z axis by $\delta \eta$. So all boosts and rotations can be generated from the $\epsilon^{\mu\nu}$ i.e. Lorentz group.

4. [Perkins 1.3] The values of mc^2 for the pion π^+ and muon μ^+ are 139.57 MeV and 105.66 MeV respectively. Find the kinetic energy of the muon in the decay $\pi^+ \to \mu^+ + \nu_{\mu}$ assuming the neutrino is massless.

Solution Four-momentum conservation gives:

$$p_{\pi} = p_{\mu} + p_{\nu} \; ,$$

where p_{π} , p_{μ} and p_{ν} are the four-momenta of the pion, muon and neutrino, respectively. Rearranging this expression one gets:

$$(p_{\pi} - p_{\mu})^2 = p_{\nu}^2 = 0 :: p^2 = m^2 \text{ and } m_{\nu}^2 = 0$$
$$p_{\pi}^2 + p_{\mu}^2 - 2p_{\pi}p_{\mu} = 0$$
$$m_{\pi}^2 + m_{\mu}^2 - 2E_{\mu}m_{\pi} = 0 ,$$

because $p_{\pi} = (m_{\pi}, 0)$ and $p_{\mu} = (E_{\mu}, \vec{\mathbf{p}}_{\mu})$ in the rest frame of the pion. This gives

$$E_{\mu} = \frac{m_{\pi}^2 + m_{\mu}^2}{2m_{\pi}}$$

so that the kinetic energy T is

$$T = E_{\mu} - m_{\mu} = \frac{m_{\pi}^2 + m_{\mu}^2 - 2m_{\pi}m_{\mu}}{2m_{\pi}} = \frac{(m_{\pi} - m_{\mu})^2}{2m_{\pi}} = 4.12 \text{ MeV} . [5 \text{ marks}]$$

End of this part of the solution

For a neutrino of finite but very small mass m_{ν} show that, compared with the case of the massless neutrino, the muon momentum would be reduced by a fraction

$$\frac{\Delta p}{p} = -\frac{m_{\nu}^2 \left(m_{\pi}^2 + m_{\mu}^2\right)}{\left(m_{\pi}^2 - m_{\mu}^2\right)^2} \simeq -\frac{4m_{\nu}^2}{10^4} \,,$$

where μ_{ν} is in MeV.

Solution Consider the value of the momentum:

$$|\vec{\mathbf{p}}_{\mu}| = \sqrt{E_{\mu}^2 - m_{\mu}^2}$$

where

$$E_{\mu} = \frac{m_{\pi}^2 + m_{\mu}^2 - m_{\nu}^2}{2m_{\pi}}$$

when m_{ν} is finite. Therefore,

$$\begin{aligned} |\vec{\mathbf{p}}_{\mu}| &= \sqrt{\frac{(m_{\pi}^2 + m_{\mu}^2 - m_{\nu}^2)^2 - 4m_{\pi}^2 m_{\mu}^2}{4m_{\pi}^2}} \\ &= \sqrt{\frac{m_{\pi}^4 + m_{\mu}^4 + m_{\nu}^4 - 2m_{\pi}^2 m_{\mu}^2 - 2m_{\pi}^2 m_{\nu}^2 - 2m_{\nu}^2 m_{\mu}^2}{4m_{\pi}^2}} \\ &\approx \frac{\sqrt{(m_{\pi}^2 - m_{\mu}^2)^2 - 2m_{\nu}^2 (m_{\pi}^2 + m_{\mu}^2)}}{2m_{\pi}^2} , \end{aligned}$$

where in the last step the term of the order m_{ν}^4 are considered negligible and discarded. With this expression we can write the ratio:

$$\frac{|\vec{\mathbf{p}}_{\mu}(m_{\nu})|}{|\vec{\mathbf{p}}_{\mu}(m_{\nu}=0)|} = \sqrt{1 - \frac{2m_{\nu}^2(m_{\pi}^2 + m_{\mu}^2)}{(m_{\pi}^2 - m_{\mu}^2)^2}}$$

and

$$\frac{\Delta p}{p} \approx -\frac{m_{\nu}^2 \left(m_{\pi}^2 + m_{\mu}^2\right)}{\left(m_{\pi}^2 - m_{\mu}^2\right)^2} = -\frac{4m_{\nu}^2}{10^4}$$

,

where the mass of m_{ν} is in MeV and we have used $\sqrt{1-x} = 1 - \frac{1}{2}x$, $x \ll 1$. End of this part of the solution 5. [Perkins 1.4] Deduce an expression for the energy of a γ -ray from the decay of a neutral pion, $\pi^0 \to \gamma\gamma$, in terms of the mass m, energy E and velocity βc of the pion and the angle of emission θ (relative to the direction of motion) in the pion rest frame.

Solution: The four-momenta of the two photons in the rest-frame of the pion are:

$$p_{\gamma 1(2)} = \left(E_{1(2)}^*, \vec{\mathbf{p}}_{1(2)}^* \right) = \frac{m_{\pi}}{2} \left(1, (-) \sin \theta, 0, (-) \cos \theta \right) ,$$

where we have chosen the xz plane to be that in which the two photons are. We use the Lorentz transformation to get the energies in the the laboratory frame

$$E_1 = \gamma \left(E_1^* + \beta p_{z,1}^* \right) = \frac{\gamma m_\pi}{2} \left(1 + \beta \cos \theta \right) = \frac{E}{2} \left(1 + \beta \cos \theta \right)$$
$$E_2 = \gamma \left(E_2^* + \beta p_{z,2}^* \right) = \frac{\gamma m_\pi}{2} \left(1 - \beta \cos \theta \right) = \frac{E}{2} \left(1 - \beta \cos \theta \right) ,$$

where we have used $\gamma = E/m_{\pi}$ in the last step. End this part of the solution.

Show that if the pion has spin zero, so that the angular distribution is isotropic, the laboratory energy spectrum of the γ -rays will be flat extending from $E(1 + \beta)/2$ to $E(1 - \beta)/2$.

Solution: If the distribution is isostropic it means that $\frac{dN}{d\Omega}$ is a constant, where N is the number of photons and Ω is the solid angle. Integrating over the azimuthal angle ϕ , $d\Omega = 2\pi d \cos \theta$, hence

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta} = \frac{\mathrm{d}N}{\mathrm{d}E}\frac{\mathrm{d}E}{\mathrm{d}\cos\theta} = \mathrm{constant} \Rightarrow \frac{\mathrm{d}N}{\mathrm{d}E} = \mathrm{constant},$$

because $\frac{dE}{d\cos\theta} = \pm \frac{\beta E}{2}$ = constant. The maximum and minimum energies are when $\cos\theta = \pm 1$, so the maximum and minimum are $E(1+\beta)/2$ to $E(1-\beta)/2$, respectively. **End of this part of the solution.**

Find an expression for the disparity D (the ratio of energies) of the γ -rays and show that D > 3 in half the decays and D > 7 in one quarter of them.

Solution The disparity D is

$$D = \frac{1 \pm \beta \cos \theta}{1 \mp \beta \cos \theta} ,$$

where the sign depends on whether $\theta < \pi/2$ or not. As the distribution is uniform in $\cos \theta$ we just need to consider one region *i.e.* $\theta < \pi/2$, which is equivalent to $\cos \theta > 0$. Also the minimum β with which you can get any events with D > 3 is 0.5, so to get many events as is the case here you need $\beta \sim 1$. Therefore, the disparity expression becomes

$$D \approx \frac{1 + \cos \theta}{1 - \cos \theta}$$

so D > 3 and D > 7 corresponds to $\cos \theta > 0.5$ (half the events) and $\cos \theta > 0.75$ (a quarter of the events), as required. End of this part of the solution

6. Question: Charged pions decay, almost 100%, by the weak process $\pi \to \mu\nu$. Neglecting the mass of the neutrino the energy of the neutrino in the rest frame of the pion is given by

$$E_{\nu}^{*} = \frac{m_{\pi}^{2} - m_{\mu}^{2}}{2m_{\pi}} \,.$$

High-energy beams of muon neutrinos are produced by allowing a tightly focused beam of charged pions to decay in a long evacuated tube, followed by a length of absorber to remove the unwanted pions and muons. By using an appropriate Lorentz transformation, show that the energy E_{ν} of the neutrino in the laboratory frame with angle θ_{ν} with respect to the pion beam direction is given by

$$E_{\nu} = \frac{E_{\nu}^*}{\gamma \left(1 - \beta \cos \theta_{\nu}\right)} \; ,$$

where β and γ are the Lorentz parameters of the pion of energy E_{π} in the laboratory frame.

Answer: The LT for the energy between the lab and rest frames of the pion is

$$E_{\nu}^* = \gamma (E_{\nu} - \beta p_{\nu}^z) ,$$

assuming the pion is moving in the z direction. Now $p_{\nu}^{z} = E_{\nu} \cos \theta_{\nu}$, so

$$E_{\nu} = \frac{E_{\nu}^{*}}{\gamma \left(1 - \beta \cos \theta_{\nu}\right)} \cdot \left[\mathbf{0.5 \ marks}\right]$$

Question: At what value of θ_{ν} is E_{ν} maximum?

Answer: The denominator will be minimised, hence E_{ν} maximised, when $\cos \theta_{\nu} = 1 \Rightarrow \theta_{\nu} = 0$ [0.5 marks].

Question: Show that the maximum value of E_{ν} depends linearly on E_{π} for $E_{\pi} \gg m_{\pi}$. Answer: The expression for E_{ν}^{\max} is

$$E_{\nu}^{\max} = \frac{E_{\nu}^{*}}{\gamma \left(1 - \beta\right)}$$

$$= \frac{E_{\nu}^{*}}{\gamma \left(1 - \sqrt{1 - \frac{1}{\gamma^{2}}}\right)}$$

$$\simeq \frac{E_{\nu}^{*}}{\gamma \left(1 - \left[1 - \frac{1}{2\gamma^{2}}\right]\right)} \because \frac{1}{\gamma^{2}} \ll 1 \text{ if } E_{\pi} \gg m_{\pi}$$

$$\simeq 2E_{\nu}^{*} \gamma$$

$$\simeq \frac{2E_{\nu}^{*} E_{\pi}}{m_{\pi}} \because \gamma = \frac{E_{\pi}}{m_{\pi}}$$

$$\propto E_{\pi} [0.5 \text{ marks}].$$

Question: For highly relativistic pions ($\gamma \gg 1$), the neutrinos tend to be produced at very small angles. Use the small angle approximation and an appropriate approximation for β to show that

$$E_{\nu} \simeq \frac{2E_{\nu}^*\gamma}{1+\gamma^2\theta_{\nu}^2}$$

Answer: We will use $\cos \theta \simeq 1 - \frac{\theta_{\nu}^2}{2}$ as the small angle approximation

$$E_{\nu} \simeq \frac{E_{\nu}^{*}}{\gamma \left(1 - \sqrt{1 - \frac{1}{\gamma^{2}} \left[1 - \frac{\theta_{\nu}^{2}}{2}\right]}\right)}$$
$$\simeq \frac{E_{\nu}^{*}}{\gamma \left(1 - \left[1 - \frac{1}{2\gamma^{2}}\right] \left[1 - \frac{\theta_{\nu}^{2}}{2}\right]\right)}$$
$$\simeq \frac{E_{\nu}^{*}}{\gamma \left(\frac{1}{2\gamma^{2}} + \frac{\theta_{\nu}^{2}}{2} - \frac{\theta_{\nu}^{2}}{4\gamma^{2}}\right)}$$
$$\simeq \frac{2E_{\nu}^{*}\gamma}{1 + \gamma^{2}\theta_{\nu}^{2}},$$

where the third term in the denominator is dropped because it is very much smaller than the other two terms [0.5 marks].

Question: On the same diagram, sketch the values of E_{ν} for $\theta_{\nu} = 0$ and $\theta_{\nu} = 15$ mrad, as E_{π} varies between 5 and 25 GeV.

Answer: We have already shown for $\theta_{\nu} = 0$ there is a linear relationship between E_{ν} and E_{π} . The constant of proportionality is

$$\frac{E_{\nu}^{*}}{2m_{\pi}} = \frac{m_{\pi}^{2} - m_{\mu}^{2}}{m_{\pi}^{2}} = 0.438$$

Therefore, for E_{π} in the range 5 to 25 GeV, $E_{\nu}(\theta_{\nu} = 0)$ varies linearly between 2.2 and 11.0 GeV.

For $\theta_{\nu} = 0.015$ mrad, we have

E_{π} (GeV)	5	10	15	20	25
γ	35.7	71.4	107.1	142.9	178.5
$\frac{2\gamma}{1+(0.015)^2\gamma^2}$	55.5	66.5	59.8	51.1	43.7
$E_{\nu} \; (\text{GeV})$	1.7	2.0	1.8	1.6	1.3

The plot is shown in Fig. 1 [1 mark].

Question: Comment on the result.

Answer: The spread of E_{ν} for off axis ($\theta_{\nu} = 0.015$) is much less than for the on-axis ($\theta_{\nu} = 0$). For a neutrino oscillation experiment you need to tune the value of L/E_{ν} , where L is the distance from the beam source to the detector, to be most sensitive to Δm^2 and $\sin^2 2\theta$. The parameter L is easy to control but E_{ν} is less so as E_{π} has a spread. However, by building the detector slightly off the beam axis direction the E_{ν} spread becomes less pronounced. The T2K and No ν a experiments employ this technique. [0.5 marks]

Figure 1: E_{ν} as a function of E_{π} for (solid line) $\theta_{\nu} = 0$ and (dashed line) $\theta_{\nu} = 0.015$ rad.

7. Complete the calculation of $\frac{d\Gamma}{d|\mathbf{p}_e|}$ and Γ for muon decay. Use the result for Γ to calculate g_W . (You will need to use the measured value of the muon lifetime and the muon and W masses from the PDG. Also, recall we are working in natural units.) Use the result to support the statement 'the weak interaction is stronger than the electromagnetic interaction'.

Solution: In class we showed that

$$\Gamma = \int_0^{m_{\mu}/2} \frac{4\pi d|\mathbf{p}_4|}{16(2\pi)^4 m_{\mu}} \int_{\mu/2 - |\mathbf{p}_4|}^{m_{mu}/2} d|\mathbf{p}_2| \left(\frac{g_w}{M_W}\right)^4 m_{\mu}^2 |\mathbf{p}_2| \left(m_{\mu} - 2|\mathbf{p}_2|\right) \, d|\mathbf{p}_2| \,$$

which leads to

$$\begin{split} \frac{d\Gamma}{d|\mathbf{p}_4|} &= \left(\frac{g_W}{M_W}\right)^4 \frac{m_\mu}{8(2\pi)^3} \left[m_\mu \frac{|\mathbf{p}_2|^2}{2} - \frac{2}{3}|\mathbf{p}_2|^3\right]_{m_\mu/2-|\mathbf{p}_4|}^{m_\mu/2} \\ &= \left(\frac{g_W}{M_W}\right)^4 \frac{m_\mu}{8(2\pi)^3} \left(\frac{m_\mu^3}{8} - \frac{m_\mu^3}{12} - m_\mu \frac{(m_\mu/2 - |\mathbf{p}_4|)^2}{2} + \frac{2}{3}(m_\mu/2 - |\mathbf{p}_4|)^3\right) \\ &= \left(\frac{g_W}{M_W}\right)^4 \frac{m_\mu}{8(2\pi)^3} \left(\frac{m_\mu^3}{24} - \left(\frac{m_\mu^2}{4} - m_\mu|\mathbf{p}_4| + |\mathbf{p}_4|^2\right) \left(\frac{m_\mu}{2} - \frac{m_\mu}{3} + \frac{2}{3}|\mathbf{p}_4|\right)\right) \\ &= \left(\frac{g_W}{M_W}\right)^4 \frac{m_\mu}{8(2\pi)^3} \left(\frac{m_\mu^3}{24} - \left(\frac{m_\mu^3}{24} - \frac{m_\mu^2|\mathbf{p}_4|}{6} + \frac{m_\mu|\mathbf{p}_4|^2}{6} + \frac{m_\mu^2|\mathbf{p}_4|}{6} - \frac{2m_\mu|\mathbf{p}_4|^2}{3} + \frac{2}{3}|\mathbf{p}_4|^3\right)\right) \\ &= \left(\frac{g_W}{M_W}\right)^4 \frac{m_\mu^2|\mathbf{p}_4|^2}{2(4\pi)^3} \left(1 - \frac{4|\mathbf{p}_4|}{3m_\mu}\right) \\ &\Rightarrow \Gamma &= \left(\frac{g_W}{M_W}\right)^4 \frac{m_\mu^2}{2(4\pi)^3} \int_0^{\mu/2} |\mathbf{p}_4|^2 \left(1 - \frac{4|\mathbf{p}_4|}{3m_\mu}\right) d|\mathbf{p}_4| \\ &= \left(\frac{g_W}{M_W}\right)^4 \frac{m_\mu^2}{2(4\pi)^3} \left(\frac{m_\mu^3}{24} - \frac{m_\mu^3}{48}\right) \\ &= \left(\frac{g_W}{M_W}\right)^4 \frac{m_\mu^2}{2(4\pi)^3} \left(\frac{m_\mu^3}{24} - \frac{m_\mu^3}{48}\right) \\ &= \left(\frac{m_\mu g_W}{M_W}\right)^4 \frac{m_\mu^2}{12(8\pi)^3} \\ \Rightarrow \tau &= \frac{\hbar}{\Gamma} = \left(\frac{M_W}{m_\mu g_W}\right)^4 \frac{12(8\pi)^3\hbar}{m_\mu c^2} \\ \Rightarrow g_W &= \frac{M_W}{m_\mu} \left(\frac{12(8\pi)^3\hbar}{\tau m_\mu c^2}\right)^{\frac{1}{4}} = \frac{80.38}{0.106} \left(\frac{12(8\pi)^3 \times 6.58 \times 10^{-25}}{2.20 \times 10^{-6} \times 0.106}\right)^{\frac{1}{4}} = 0.65 \,. \end{split}$$

In rationalized units $\alpha_W = g_W^2/4\pi \approx 1/30$ i.e. greater than α . It is only the massive propagator that makes it weak c.f. electroweak unification.

8. Calculate the extrema of the Dalitz plot then find a relationship for the minimum and maximum values of one Dalitz plot coordinate m_{ij}^2 if another is known. (The kinematics review in the PDG is a useful reference for this question.)

Answer: Recall that in the rest frame of M the Dalitz variables:

$$m_{ij}^2 = (p_i + p_j)^2 = (P - p_k)^2 = M^2 + m_k^2 - 2P \cdot p_k = M^2 + m_k^2 - 2ME_k .$$

Hence, the maximum of value of m_{ij} $(m_{ij,\max})$ coincides with the minimum value of E_k , which is m_k when it is rest. Therefore,

$$m_{ij,\max}^2 = M^2 + m_k^2 - 2Mm_k = (M - m_k)^2.$$

Similarly the maximum value of E_k will correspond to the minimum m_{ij} . This occurs when k is moving opposite to i and j when they are all collinear. This is analogous to two-body decay into particles of mass $(m_i + m_j)$ and m_k , which gives

$$E_{k,\max} = \frac{M^2 + m_k^2 - (m_i + m_j)^2}{2M} ,$$

Therefore,

$$m_{ij,\min}^2 = M^2 + m_k^2 - 2M \frac{M^2 + m_k^2 - (m_i + m_j)^2}{2M} = (m_i + m_j)^2.$$

For an arbitrary m_{12} you can figure out the boundary by considering the extremes which are when 1 or 2 have their maximum momentum. See the figure below.

It is convenient to work in the rest frame of the two particles of fixed rest mass (Jackson frame) so for fixed m_{12}^2 the momentum in this frame are $\mathbf{p}_1 = -\mathbf{p}_2$ and $\mathbf{P} = \mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3 = \mathbf{p}_3$. Note that the initial particle of mass M is no longer at rest. So we can write

$$m_{12}^2 = (P - p_3)^2 = (E - E_3)^2 = \left(\sqrt{M^2 + |\mathbf{p}_3|^2} + \sqrt{m_3^2 + |\mathbf{p}_3|^2}\right)^2$$

which can be rearranged to give

$$|\mathbf{p}_3|^2 = \frac{1}{4m_{12}^2} \left[m_{12}^2 - (M - m_3)^2 \right] \left[m_{12}^2 - (M + m_3)^2 \right] = \frac{1}{4m_{12}^2} \lambda(m_{12}^2, M^2, m_3^2)$$

where $\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz$. We can find the momentum of $|\mathbf{p}_1| = |\mathbf{p}_2|$ using the two-body momentum in the rest frame of a particle mass m_{12} to masses m_1 and m_2

$$|\mathbf{p}_1|^2 = |\mathbf{p}_2|^2 = \frac{1}{4m_{12}} \left[m_{12}^2 - (m_1 - m_2)^2 \right] \left[m_{12}^2 - (m_1 + m_2)^2 \right] = \frac{1}{4m_{12}^2} \lambda(m_{12}^2, m_1^2, m_2^2) .$$

Now we consider m_{23}^2 in this frame

$$m_{23}^2 = (p_2 + p_3)^2 = m_2^2 + m_3^2 + E_2 E_3 - \mathbf{p}_2 \cdot \mathbf{p}_3$$

$$m_{23,\pm}^2 = m_2^2 + m_3^2 + E_2 E_3 \pm |\mathbf{p}_2| |\mathbf{p}_3|$$

where $m_{23,+}$ $(m_{23,-})$ are the maximum and minimum values. Therefore, using the invariant to write

$$E_3 = \frac{1}{2m_{12}} \left(M^2 - m_{12}^2 - m_3^2 \right)$$

and

$$E_2 = \frac{1}{2m_{12}} \left(m_{12}^2 + m_2^2 - m_1^2 \right) ,$$

we get

$$m_{23,\pm} = m_2^2 + m_3^2 + \frac{1}{4m_{12}^2} \left[\left(m_{12}^2 + m_2^2 - m_1^2 \right) \left(M^2 - m_{12}^2 - m_3^2 \right) \pm \sqrt{\lambda(m_{12}^2, M^2, m_3^2)\lambda(m_{12}^2, m_1^2, m_2^2)} \right] .$$

9. Calculate the relative rate of $B^+ \to \tau^+ \nu_{\tau}$ to $B^+ \to \mu^+ \nu_{\mu}$ decays.

Answer: The analysis of this decay is identical to that of the pion decay where an f_B decay constant would be introduced. Therefore,

$$\frac{\Gamma(B^+ \to \tau^+ \nu_{\tau})}{\Gamma(B^+ \to \mu^+ \nu_{\mu})} = \frac{m_{\tau}^2 \left(m_B^2 - m_{\tau}^2\right)^2}{m_{\mu}^2 \left(m_B^2 - m_{\mu}^2\right)^2} = \frac{1.777^2 \left(5.279^2 - 1.777^2\right)^2}{0.106^2 \left(5.279^2 - 0.106^2\right)^2} \approx 220 ,$$

the current ratio in the PDG is 169^{+206}_{-67} .

10. Calculate the threshold for the reaction

$$p + \gamma_{\rm CMB} \to \Delta^+ \to N\pi$$
,

where the average energy of a cosmic microwave background photon is 6.6×10^{-4} eV.

If there are 450 CMB photons per cm^3 and the cross section for the reaction is 0.6 mb, calculate the mean free path of a proton with an energy at the threshold for this interaction. Comment on the result.

Solution: In the CM frame the value of s at threshold is m_{Δ}^2 , which can be compare to the value in the laboratory

$$(E_p + E_{\gamma})^2 - (\mathbf{p}_p - \mathbf{p}_{\gamma})^2 = m_{\Delta}^2 \text{ (threshold when the collide head on)}$$

$$\Rightarrow m_p^2 + 2E_p E_{\gamma} + 2|\mathbf{p}_p| E_{\gamma} = m_{\Delta}^2$$

$$\Rightarrow E_p + |\mathbf{p}_p| = \frac{m_{\Delta}^2 - m_p^2}{2E_{\gamma}}$$

$$= \frac{1.235^2 - 0.938^2}{2 \times 6.63 \times 10^{-13}} \text{ in GeV}$$

$$= 4.8 \times 10^{11} \text{ GeV}$$

$$E_p = 2.4 \times 10^{11} \text{ GeV} \because E_p \gg m_p.$$

The mean free path is defined as

$$\lambda = \frac{1}{\sigma n} = \frac{1}{0.6 \times 10^{-27} \times 450} = 3.7 \times 10^{24} \text{ cm} = 3.9 \text{ Mly}.$$

Order of the distance to Andromeda so high energy cosmic rays $> 10^{20}$ eV have to be relatively local.

11. [Based on Thomson 3.7 and 3.8] (a) For the process $a + b \rightarrow 1 + 2$ the Lorentz invariant flux term is

$$F = 4 \left[\left(p_a \cdot p_b \right)^2 - m_a^2 m_b^2 \right]^{\frac{1}{2}}.$$

What is F in the non-relativistic limit $|\mathbf{v}_a| \ll c$ and $|\mathbf{v}_b| \ll c$?

Answer: We know that $E \approx m + \frac{1}{2}m\beta^2$ and $\mathbf{p} = m\boldsymbol{\beta}$ in the non-relativistic limit. Therefore,

$$F = 4 \left[(E_a E_b - \mathbf{p}_a \cdot \mathbf{p}_b)^2 - m_a^2 m_b^2 \right]^{\frac{1}{2}}$$

$$\approx 4 \left[\left((m_a + \frac{1}{2} m_a \beta_a^2) (m_b + \frac{1}{2} m_b \beta_b^2) - m_a m_b \beta_a \cdot \beta_b \right)^2 - m_a^2 m_b^2 \right]^{\frac{1}{2}}$$

$$\approx 4 \left[\left(m_a m_b + \frac{m_a m_b}{2} (\beta_a^2 + \beta_b^2) - m_a m_b \beta_a \cdot \beta_b \right)^2 - m_a^2 m_b^2 \right]^{\frac{1}{2}} \text{ (terms to order } \beta^2)$$

$$\approx 4 m_a m_b \left[\left(1 + \frac{1}{2} |\beta_a - \beta_b|^2 \right)^2 - 1 \right]^{\frac{1}{2}}$$

$$\approx 4 m_a m_b |\beta_a - \beta_b|$$

$$\approx 4 m_a m_b |\mathbf{v}_a - \mathbf{v}_b| .$$

(b) $F = 4|\mathbf{p}_i^*|\sqrt{s}$ in the CM frame, where \mathbf{p}_i^* is one of the initial state particle's momentum. What is F in the frame where b is at rest?

Answer: We have in general

$$F = 4 \left[(p_a \cdot p_b)^2 - m_a^2 m_b^2 \right]^{\frac{1}{2}}$$

= 4 $\left[(E_a m_b)^2 - m_a^2 m_b^2 \right]^{\frac{1}{2}}$: $p_a = (E_a, \mathbf{p}_a), \ p_b = (m_b, 0)$
= 4 $m_b \left[E_a^2 - m_a^2 \right]^{\frac{1}{2}}$
= 4 $m_b |\mathbf{p}_a|$.

12. [Griffiths 3.26] For elastic scattering of identical particles $A + A \rightarrow A + A$, show that the Mandelstam variables become

$$s = 4 \left(\mathbf{p}^2 + m^2 \right)$$

$$t = -2\mathbf{p}^2 \left(1 - \cos \theta \right)$$

$$u = -2\mathbf{p}^2 \left(1 + \cos \theta \right) ,$$

where **p** is the CM momentum of the incident particle and θ is the scattering angle.

Answer: We define the four momentum involved in $1 + 2 \rightarrow 3 + 4$ as $p_1 = (E, 0, 0, |\mathbf{p}|)$, $p_2 = (E, 0, 0, -|\mathbf{p}|)$, $p_3 = (E, 0, |\mathbf{p}| \sin \theta, |\mathbf{p}| \cos \theta|)$, $p_4 = (E, 0, -|\mathbf{p}| \sin \theta, -|\mathbf{p}| \cos \theta|)$

$$s = (p_1 + p_2)^2 = (E + E)^2 + (\mathbf{p} - \mathbf{p})^2 = 4E^2 = 4(\mathbf{p}^2 + m^2)$$

$$t = (p_1 - p_3)^2 = (E - E)^2 - |\mathbf{p}|^2(\sin^2\theta + (1 - \cos\theta)^2) = -2|\mathbf{p}|^2(1 - \cos^2\theta)$$

$$u = (p_1 - p_4)^2 = (E - E)^2 - |\mathbf{p}|^2(\sin^2\theta + (1 + \cos\theta)^2) = -2|\mathbf{p}|^2(1 + \cos^2\theta)$$

13. [Griffiths 6.8] Consider elastic scattering $a + b \rightarrow a + b$ in the lab frame (b initially at rest), assuming the target is so heavy $m_b \gg E_a$ that its recoil is negligible. Determine the differential scattering cross section.

Answer: In general in the CM frame

$$\frac{d\sigma}{d\Omega^*} = \frac{1}{64\pi^2} \frac{1}{s} \frac{|\mathbf{p}_f^*|}{|\mathbf{p}_i^*|} |\mathcal{M}|^2$$

In the situation described because $m_b \gg E_a$ the CM and the lab frame are the same i.e. $\beta_{CM} = \mathbf{p}_a/(E_a + m_b) = \beta_a/(1 + m_b/E_a) \approx 0$. Also, as the recoil can be ignored $|\mathbf{p}_i| = |\mathbf{p}_f|$ so the cross section will just depend on $s = (E_a + m_b)^2 - |\mathbf{p}_a|^2 = m_a^2 + m_b^2 + 2E_a m_b \approx m_b^2$ so

$$\frac{d\sigma}{d\Omega^*} = \frac{1}{64\pi^2 m_b^2} \left|\mathcal{M}\right|^2$$