Relativity tutorial - Saturday 11th of July 2020
 Any queries contact me at libby@iitm.ac.in

1. Perform a Galilean transformation on the wave equation. Find the general solution to the resulting partial differential equation. Interpret the solutions.
Answer: The Galilean transformation in the x direction is $x^{\prime}=x-v t$ and $t^{\prime}=t$. Therefore,

$$
\begin{aligned}
\frac{\partial}{\partial x} & =\frac{\partial x^{\prime}}{\partial x} \frac{\partial}{\partial x^{\prime}}+\frac{\partial t^{\prime}}{\partial x} \frac{\partial}{\partial t^{\prime}}=\frac{\partial}{\partial x^{\prime}} \\
\frac{\partial}{\partial t} & =\frac{\partial x^{\prime}}{\partial t} \frac{\partial}{\partial x^{\prime}}+\frac{\partial t^{\prime}}{\partial t} \frac{\partial}{\partial t^{\prime}}=-v \frac{\partial}{\partial x^{\prime}}+\frac{\partial}{\partial t^{\prime}} \\
\Rightarrow \frac{\partial^{2}}{\partial x^{2}} & =\frac{\partial^{2}}{\partial x^{\prime 2}} \\
\frac{\partial^{2}}{\partial t^{2}} & =v^{2} \frac{\partial^{2}}{\partial x^{\prime 2}}-2 v \frac{\partial^{2}}{\partial x^{\prime} \partial t^{\prime}}+\frac{\partial^{2}}{\partial t^{\prime 2}} \\
\Rightarrow & {\left[\left(1-\frac{v^{2}}{c^{2}}\right) \frac{\partial^{2}}{\partial x^{\prime 2}}+2 \frac{v}{c^{2}} \frac{\partial^{2}}{\partial x^{\prime} \partial t^{\prime}}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{\prime 2}}\right] \phi\left(x^{\prime}, t^{\prime}\right)=0 . }
\end{aligned}
$$

Postulate a solution $f\left(x^{\prime}-m t^{\prime}\right)$

$$
\begin{align*}
\left(1-\frac{v^{2}}{c^{2}}\right)+2 m \frac{v}{c^{2}}-m^{2} \frac{1}{c^{2}} & =0 \tag{1}\\
\Rightarrow m=\frac{2 v \pm \sqrt{4 v^{2}+4\left(c^{2}-v^{2}\right)}}{-2} & = \pm(c \mp v) . \tag{2}
\end{align*}
$$

Speed changes with the frame as if wave in a fixed medium a.k.a. the aether.
2. [Halzen and Martin: 6.9] Maxwell's equations of classical electrodynamics are, in vacuo,

$$
\begin{array}{ll}
\boldsymbol{\nabla} \cdot \mathbf{E}=\rho, & \boldsymbol{\nabla} \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0 \\
\boldsymbol{\nabla} \cdot \mathbf{B}=0, & \boldsymbol{\nabla} \times \mathbf{B}-\frac{\partial \mathbf{E}}{\partial t}=\mathbf{j}
\end{array}
$$

in rationalized Heaviside-Lorentz units. Show that these equations are equivalent to the following covariant equation for A^{μ} :

$$
\square A^{\mu}-\partial^{\mu}\left(\partial_{\nu} A^{\nu}\right)=j^{\mu}
$$

with $j^{\mu}=(\rho, \mathbf{j})$, and where $A^{\mu}=(\phi, \mathbf{A})$, the four-vector potential, is related to the electric and magnetic fields by

$$
\mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t}-\boldsymbol{\nabla} \phi, \quad \mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A} .
$$

Ans: First we write Ampere's law in terms of ϕ and \mathbf{A}

$$
\begin{align*}
& \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \mathbf{A}-\frac{\partial}{\partial t}\left(-\frac{\partial \mathbf{A}}{\partial t}-\boldsymbol{\nabla} \phi\right)=\mathbf{j} \\
& \Rightarrow-\nabla^{2} \mathbf{A}+\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})+\frac{\partial^{2} \mathbf{A}}{\partial t^{2}}+\frac{\partial}{\partial t} \boldsymbol{\nabla} \phi=\mathbf{j} \because \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \mathbf{A}=-\nabla^{2} \mathbf{A}+\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A}) \\
& \Rightarrow \square \mathbf{A}+\boldsymbol{\nabla}\left(\frac{\partial \phi}{\partial t}+\boldsymbol{\nabla} \cdot \mathbf{A}\right)=\mathbf{j} \because \square=\frac{\partial^{2}}{\partial t^{2}}-\nabla^{2} \\
& \Rightarrow \square A^{i}-\partial^{i}\left(\partial_{\nu} A^{\nu}\right)=j^{i}, \tag{4}
\end{align*}
$$

where $\partial^{\mu}=\left(\frac{\partial}{\partial t},-\boldsymbol{\nabla}\right)$ and $i=1,2$, and 3 . Next we write Gauss' Law in terms of A^{μ}

$$
\begin{align*}
\boldsymbol{\nabla} \cdot\left(-\frac{\partial \mathbf{A}}{\partial t}-\nabla \phi\right) & =\rho \\
\Rightarrow \square \phi-\frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial}{\partial t} \boldsymbol{\nabla} \cdot \mathbf{A} & =\rho \\
\Rightarrow \square \phi-\frac{\partial}{\partial t}\left(\frac{\partial \phi}{\partial t}+\boldsymbol{\nabla} \cdot \mathbf{A}\right) & =\rho \\
\Rightarrow \square A^{0}-\partial^{0}\left(\partial_{\nu} A^{\nu}\right) & =j^{0} \tag{5}
\end{align*}
$$

so combining Eqs. (3) and (4) one gets

$$
\square A^{\mu}-\partial^{\mu}\left(\partial_{\nu} A^{\nu}\right)=j^{\mu}
$$

as required. End of this part of the question.
Further, show that in terms of the the antisymmetric field strength tensor

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}
$$

Maxwell's equations take the compact form $\partial_{\mu} F^{\mu \nu}=j^{\nu}$ and that $\partial_{\nu} j^{\nu}=0$, follows as a natural compatibility condition.
Ans: So

$$
\begin{aligned}
\partial_{\mu} F^{\mu \nu} & =\partial_{\mu}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right) \\
& =\square A^{\nu}-\partial^{\nu}\left(\partial_{\mu} A^{\mu}\right) \\
& =j^{\nu}
\end{aligned}
$$

from the first part of the question. Then,

$$
\partial_{\nu} j^{\nu}=\square\left(\partial_{\nu} A^{\nu}\right)-\square\left(\partial_{\mu} A^{\mu}\right)=0
$$

as required.
3. The infinitesimal Lorentz transformation is given by

$$
x^{\prime \mu}=x^{\mu}+\varepsilon^{\mu \nu} x_{\nu} \delta \eta,
$$

where $\varepsilon^{\mu \nu}$ is an antisymmetric tensor and $\delta \eta$ is an infintesimal increment of rapidity. Consider $\varepsilon^{01}=1$ and $\varepsilon^{12}=1$. Comment on the result.
Ans: We can rewrite the infinitesimal transformation as

$$
\begin{aligned}
& x^{\prime \mu}=\left(\delta_{\alpha}^{\mu}+\varepsilon^{\mu \nu} g_{\nu \alpha} \delta \eta\right) x^{\alpha} \\
& \Rightarrow x^{\prime}=\left(\mathrm{I}_{4}+\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \delta \eta\right) x \\
& =\left(\mathrm{I}_{4}+\left(\begin{array}{rrrr}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \delta \eta\right) x \\
& =\left(\begin{array}{cccc}
1 & -\delta \eta & 0 & 0 \\
-\delta \eta & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

As $\cosh \delta \eta=1$ and $-\sinh \delta \eta=-\delta \eta$ to $\mathcal{O}\left((\delta \eta)^{2}\right)$ this is equivalent to an infinitesimal boost.
Similarly $\epsilon^{12}=1$ leads to rotation about z axis by $\delta \eta$. So all boosts and rotations can be generated from the $\epsilon^{\mu \nu}$ i.e. Lorentz group.
4. [Perkins 1.3] The values of $m c^{2}$ for the pion π^{+}and muon μ^{+}are 139.57 MeV and 105.66 MeV respectively. Find the kinetic energy of the muon in the decay $\pi^{+} \rightarrow \mu^{+}+\nu_{\mu}$ assuming the neutrino is massless.

Solution Four-momentum conservation gives:

$$
p_{\pi}=p_{\mu}+p_{\nu},
$$

where p_{π}, p_{μ} and p_{ν} are the four-momenta of the pion, muon and neutrino, respectively. Rearranging this expression one gets:

$$
\begin{aligned}
\left(p_{\pi}-p_{\mu}\right)^{2}=p_{\nu}^{2} & =0 \because p^{2}=m^{2} \text { and } m_{\nu}^{2}=0 \\
p_{\pi}^{2}+p_{\mu}^{2}-2 p_{\pi} p_{\mu} & =0 \\
m_{\pi}^{2}+m_{\mu}^{2}-2 E_{\mu} m_{\pi} & =0,
\end{aligned}
$$

because $p_{\pi}=\left(m_{\pi}, 0\right)$ and $p_{\mu}=\left(E_{\mu}, \overrightarrow{\mathbf{p}}_{\mu}\right)$ in the rest frame of the pion. This gives

$$
E_{\mu}=\frac{m_{\pi}^{2}+m_{\mu}^{2}}{2 m_{\pi}}
$$

so that the kinetic energy T is

$$
T=E_{\mu}-m_{\mu}=\frac{m_{\pi}^{2}+m_{\mu}^{2}-2 m_{\pi} m_{\mu}}{2 m_{\pi}}=\frac{\left(m_{\pi}-m_{\mu}\right)^{2}}{2 m_{\pi}}=4.12 \mathrm{MeV} .[5 \mathrm{marks}]
$$

End of this part of the solution

For a neutrino of finite but very small mass m_{ν} show that, compared with the case of the massless neutrino, the muon momentum would be reduced by a fraction

$$
\frac{\Delta p}{p}=-\frac{m_{\nu}^{2}\left(m_{\pi}^{2}+m_{\mu}^{2}\right)}{\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}} \simeq-\frac{4 m_{\nu}^{2}}{10^{4}}
$$

where μ_{ν} is in MeV .
Solution Consider the value of the momentum:

$$
\left|\overrightarrow{\mathbf{p}}_{\mu}\right|=\sqrt{E_{\mu}^{2}-m_{\mu}^{2}}
$$

where

$$
E_{\mu}=\frac{m_{\pi}^{2}+m_{\mu}^{2}-m_{\nu}^{2}}{2 m_{\pi}}
$$

when m_{ν} is finite. Therefore,

$$
\begin{aligned}
\left|\overrightarrow{\mathbf{p}}_{\mu}\right| & =\sqrt{\frac{\left(m_{\pi}^{2}+m_{\mu}^{2}-m_{\nu}^{2}\right)^{2}-4 m_{\pi}^{2} m_{\mu}^{2}}{4 m_{\pi}^{2}}} \\
& =\sqrt{\frac{m_{\pi}^{4}+m_{\mu}^{4}+m_{\nu}^{4}-2 m_{\pi}^{2} m_{\mu}^{2}-2 m_{\pi}^{2} m_{\nu}^{2}-2 m_{\nu}^{2} m_{\mu}^{2}}{4 m_{\pi}^{2}}} \\
& \approx \frac{\sqrt{\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}-2 m_{\nu}^{2}\left(m_{\pi}^{2}+m_{\mu}^{2}\right)}}{2 m_{\pi}^{2}}
\end{aligned}
$$

where in the last step the term of the order m_{ν}^{4} are considered negligible and discarded. With this expression we can write the ratio:

$$
\frac{\left|\overrightarrow{\mathbf{p}}_{\mu}\left(m_{\nu}\right)\right|}{\left|\overrightarrow{\mathbf{p}}_{\mu}\left(m_{\nu}=0\right)\right|}=\sqrt{1-\frac{2 m_{\nu}^{2}\left(m_{\pi}^{2}+m_{\mu}^{2}\right)}{\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}}}
$$

and

$$
\frac{\Delta p}{p} \approx-\frac{m_{\nu}^{2}\left(m_{\pi}^{2}+m_{\mu}^{2}\right)}{\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}}=-\frac{4 m_{\nu}^{2}}{10^{4}}
$$

where the mass of m_{ν} is in MeV and we have used $\sqrt{1-x}=1-\frac{1}{2} x, x \ll 1$.

End of this part of the solution

5. [Perkins 1.4] Deduce an expression for the energy of a γ-ray from the decay of a neutral pion, $\pi^{0} \rightarrow \gamma \gamma$, in terms of the mass m, energy E and velocity βc of the pion and the angle of emission θ (relative to the direction of motion) in the pion rest frame.
Solution: The four-momenta of the two photons in the rest-frame of the pion are:

$$
p_{\gamma 1(2)}=\left(E_{1(2)}^{*}, \overrightarrow{\mathbf{p}}_{1(2)}^{*}\right)=\frac{m_{\pi}}{2}(1,(-) \sin \theta, 0,(-) \cos \theta),
$$

where we have chosen the $x z$ plane to be that in which the two photons are. We use the Lorentz transformation to get the energies in the the laboratory frame

$$
\begin{aligned}
& E_{1}=\gamma\left(E_{1}^{*}+\beta p_{z, 1}^{*}\right)=\frac{\gamma m_{\pi}}{2}(1+\beta \cos \theta)=\frac{E}{2}(1+\beta \cos \theta) \\
& E_{2}=\gamma\left(E_{2}^{*}+\beta p_{z, 2}^{*}\right)=\frac{\gamma m_{\pi}}{2}(1-\beta \cos \theta)=\frac{E}{2}(1-\beta \cos \theta)
\end{aligned}
$$

where we have used $\gamma=E / m_{\pi}$ in the last step. End this part of the solution.
Show that if the pion has spin zero, so that the angular distribution is isotropic, the laboratory energy spectrum of the γ-rays will be flat extending from $E(1+\beta) / 2$ to $E(1-\beta) / 2$.
Solution: If the distribution is isostropic it means that $\frac{\mathrm{d} N}{\mathrm{~d} \Omega}$ is a constant, where N is the number of photons and Ω is the solid angle. Integrating over the azimuthal angle ϕ, $\mathrm{d} \Omega=2 \pi \mathrm{~d} \cos \theta$, hence

$$
\frac{\mathrm{d} N}{\mathrm{~d} \cos \theta}=\frac{\mathrm{d} N}{\mathrm{~d} E} \frac{\mathrm{~d} E}{\mathrm{~d} \cos \theta}=\text { constant } \Rightarrow \frac{\mathrm{d} N}{\mathrm{dE}}=\text { constant }
$$

because $\frac{\mathrm{d} E}{\mathrm{~d} \cos \theta}= \pm \frac{\beta E}{2}=$ constant. The maximum and minimum energies are when $\cos \theta= \pm 1$, so the maximum and minimum are $E(1+\beta) / 2$ to $E(1-\beta) / 2$, respectively.

End of this part of the solution.

Find an expression for the disparity D (the ratio of energies) of the γ-rays and show that $D>3$ in half the decays and $D>7$ in one quarter of them.
Solution The disparity D is

$$
D=\frac{1 \pm \beta \cos \theta}{1 \mp \beta \cos \theta}
$$

where the sign depends on whether $\theta<\pi / 2$ or not. As the distribution is uniform in $\cos \theta$ we just need to consider one region i.e. $\theta<\pi / 2$, which is equivalent to $\cos \theta>0$. Also the minimum β with which you can get any events with $D>3$ is 0.5 , so to get many events as is the case here you need $\beta \sim 1$. Therefore, the disparity expression becomes

$$
D \approx \frac{1+\cos \theta}{1-\cos \theta}
$$

so $D>3$ and $D>7$ corresponds to $\cos \theta>0.5$ (half the events) and $\cos \theta>0.75$ (a quarter of the events), as required. End of this part of the solution
6. Question: Charged pions decay, almost 100%, by the weak process $\pi \rightarrow \mu \nu$. Neglecting the mass of the neutrino the energy of the neutrino in the rest frame of the pion is given by

$$
E_{\nu}^{*}=\frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}}
$$

High-energy beams of muon neutrinos are produced by allowing a tightly focused beam of charged pions to decay in a long evacuated tube, followed by a length of absorber to remove the unwanted pions and muons. By using an appropriate Lorentz transformation, show that the energy E_{ν} of the neutrino in the laboratory frame with angle θ_{ν} with respect to the pion beam direction is given by

$$
E_{\nu}=\frac{E_{\nu}^{*}}{\gamma\left(1-\beta \cos \theta_{\nu}\right)}
$$

where β and γ are the Lorentz parameters of the pion of energy E_{π} in the laboratory frame.
Answer: The LT for the energy between the lab and rest frames of the pion is

$$
E_{\nu}^{*}=\gamma\left(E_{\nu}-\beta p_{\nu}^{z}\right)
$$

assuming the pion is moving in the z direction. Now $p_{\nu}^{z}=E_{\nu} \cos \theta_{\nu}$, so

$$
E_{\nu}=\frac{E_{\nu}^{*}}{\gamma\left(1-\beta \cos \theta_{\nu}\right)} \cdot[\mathbf{0 . 5} \text { marks }]
$$

Question: At what value of θ_{ν} is E_{ν} maximum?
Answer: The denominator will be minimised, hence E_{ν} maximised, when $\cos \theta_{\nu}=1 \Rightarrow$ $\theta_{\nu}=0 \quad$ [0.5 marks].
Question: Show that the maximum value of E_{ν} depends linearly on E_{π} for $E_{\pi} \gg m_{\pi}$. Answer: The expression for $E_{\nu}^{\max }$ is

$$
\begin{aligned}
E_{\nu}^{\max } & =\frac{E_{\nu}^{*}}{\gamma(1-\beta)} \\
& =\frac{E_{\nu}^{*}}{\gamma\left(1-\sqrt{1-\frac{1}{\gamma^{2}}}\right)} \\
& \simeq \frac{E_{\nu}^{*}}{\gamma\left(1-\left[1-\frac{1}{2 \gamma^{2}}\right]\right)} \because \frac{1}{\gamma^{2}} \ll 1 \text { if } E_{\pi} \gg m_{\pi} \\
& \simeq 2 E_{\nu}^{*} \gamma \\
& \simeq \frac{2 E_{\nu}^{*} E_{\pi}}{m_{\pi}} \because \gamma=\frac{E_{\pi}}{m_{\pi}} \\
& \propto E_{\pi}[\mathbf{0 . 5} \text { marks }] .
\end{aligned}
$$

Question: For highly relativistic pions $(\gamma \gg 1)$, the neutrinos tend to be produced at very small angles. Use the small angle approximation and an appropriate approximation for β to show that

$$
E_{\nu} \simeq \frac{2 E_{\nu}^{*} \gamma}{1+\gamma^{2} \theta_{\nu}^{2}}
$$

Answer: We will use $\cos \theta \simeq 1-\frac{\theta_{\nu}^{2}}{2}$ as the small angle approximation

$$
\begin{aligned}
E_{\nu} & \simeq \frac{E_{\nu}^{*}}{\gamma\left(1-\sqrt{1-\frac{1}{\gamma^{2}}}\left[1-\frac{\theta_{\nu}^{2}}{2}\right]\right)} \\
& \simeq \frac{E_{\nu}^{*}}{\gamma\left(1-\left[1-\frac{1}{2 \gamma^{2}}\right]\left[1-\frac{\theta_{\nu}^{2}}{2}\right]\right)} \\
& \simeq \frac{E_{\nu}^{*}}{\gamma\left(\frac{1}{2 \gamma^{2}}+\frac{\theta_{\nu}^{2}}{2}-\frac{\theta_{\nu}^{2}}{4 \gamma^{2}}\right)} \\
& \simeq \frac{2 E_{\nu}^{*} \gamma}{1+\gamma^{2} \theta_{\nu}^{2}}
\end{aligned}
$$

where the third term in the denominator is dropped because it is very much smaller than the other two terms [0.5 marks].
Question: On the same diagram, sketch the values of E_{ν} for $\theta_{\nu}=0$ and $\theta_{\nu}=15 \mathrm{mrad}$, as E_{π} varies between 5 and 25 GeV .
Answer: We have already shown for $\theta_{\nu}=0$ there is a linear relationship between E_{ν} and E_{π}. The constant of proportionality is

$$
\frac{E_{\nu}^{*}}{2 m_{\pi}}=\frac{m_{\pi}^{2}-m_{\mu}^{2}}{m_{\pi}^{2}}=0.438
$$

Therefore, for E_{π} in the range 5 to $25 \mathrm{GeV}, E_{\nu}\left(\theta_{\nu}=0\right)$ varies linearly between 2.2 and 11.0 GeV .

For $\theta_{\nu}=0.015 \mathrm{mrad}$, we have

$E_{\pi}(\mathrm{GeV})$	5	10	15	20	25
γ	35.7	71.4	107.1	142.9	178.5
$\frac{2 \gamma}{1+(0.015)^{2} \gamma^{2}}$	55.5	66.5	59.8	51.1	43.7
$E_{\nu}(\mathrm{GeV})$	1.7	2.0	1.8	1.6	1.3

The plot is shown in Fig. 1 [$\mathbf{1}$ mark].
Question: Comment on the result.
Answer: The spread of E_{ν} for off axis $\left(\theta_{\nu}=0.015\right)$ is much less than for the on-axis $\left(\theta_{\nu}=0\right)$. For a neutrino oscillation experiment you need to tune the value of L / E_{ν}, where L is the distance from the beam source to the detector, to be most sensitive to Δm^{2} and $\sin ^{2} 2 \theta$. The parameter L is easy to control but E_{ν} is less so as E_{π} has a spread. However, by building the detector slightly off the beam axis direction the E_{ν} spread becomes less pronounced. The T2K and No ν a experiments employ this technique. [$\mathbf{0 . 5}$ marks]

Figure 1: E_{ν} as a function of E_{π} for (solid line) $\theta_{\nu}=0$ and (dashed line) $\theta_{\nu}=0.015 \mathrm{rad}$.
7. Complete the calculation of $\frac{d \Gamma}{d\left|\mathbf{p}_{e}\right|}$ and Γ for muon decay. Use the result for Γ to calculate g_{W}. (You will need to use the measured value of the muon lifetime and the muon and W masses from the PDG. Also, recall we are working in natural units.) Use the result to support the statement 'the weak interaction is stronger than the electromagnetic interaction'.

Solution: In class we showed that

$$
\Gamma=\int_{0}^{m_{\mu} / 2} \frac{4 \pi d\left|\mathbf{p}_{4}\right|}{16(2 \pi)^{4} m_{\mu}} \int_{\mu / 2-\left|\mathbf{p}_{4}\right|}^{m_{m u} / 2} d\left|\mathbf{p}_{2}\right|\left(\frac{g_{w}}{M_{W}}\right)^{4} m_{\mu}^{2}\left|\mathbf{p}_{2}\right|\left(m_{\mu}-2\left|\mathbf{p}_{2}\right|\right)
$$

which leads to

$$
\begin{aligned}
\frac{d \Gamma}{d\left|\mathbf{p}_{4}\right|} & =\left(\frac{g_{W}}{M_{W}}\right)^{4} \frac{m_{\mu}}{8(2 \pi)^{3}}\left[m_{\mu} \frac{\left|\mathbf{p}_{2}\right|^{2}}{2}-\frac{2}{3}\left|\mathbf{p}_{2}\right|^{3}\right]_{m_{\mu} / 2-\left|\mathbf{p}_{4}\right|}^{m_{\mu} / 2} \\
& =\left(\frac{g_{W}}{M_{W}}\right)^{4} \frac{m_{\mu}}{8(2 \pi)^{3}}\left(\frac{m_{\mu}^{3}}{8}-\frac{m_{\mu}^{3}}{12}-m_{\mu} \frac{\left(m_{\mu} / 2-\left|\mathbf{p}_{4}\right|\right)^{2}}{2}+\frac{2}{3}\left(m_{\mu} / 2-\left|\mathbf{p}_{4}\right|\right)^{3}\right) \\
& =\left(\frac{g_{W}}{M_{W}}\right)^{4} \frac{m_{\mu}}{8(2 \pi)^{3}}\left(\frac{m_{\mu}^{3}}{24}-\left(\frac{m_{\mu}^{2}}{4}-m_{\mu}\left|\mathbf{p}_{4}\right|+\left|\mathbf{p}_{4}\right|^{2}\right)\left(\frac{m_{\mu}}{2}-\frac{m_{\mu}}{3}+\frac{2}{3}\left|\mathbf{p}_{4}\right|\right)\right) \\
& =\left(\frac{g_{W}}{M_{W}}\right)^{4} \frac{m_{\mu}}{8(2 \pi)^{3}}\left(\frac{m_{\mu}^{3}}{24}-\left(\frac{m_{\mu}^{3}}{24}-\frac{m_{\mu}^{2}\left|\mathbf{p}_{4}\right|}{6}+\frac{m_{\mu}\left|\mathbf{p}_{4}\right|^{2}}{6}+\frac{m_{\mu}^{2}\left|\mathbf{p}_{4}\right|}{6}-\frac{2 m_{\mu}\left|\mathbf{p}_{4}\right|^{2}}{3}+\frac{2}{3}\left|\mathbf{p}_{4}\right|^{3}\right)\right) \\
& =\left(\frac{g_{W}}{M_{W}}\right)^{4} \frac{m_{\mu}^{2}\left|\mathbf{p}_{4}\right|^{2}}{2(4 \pi)^{3}}\left(1-\frac{4\left|\mathbf{p}_{4}\right|}{3 m_{\mu}}\right) \\
\Rightarrow \Gamma & =\left(\frac{g_{W}}{M_{W}}\right)^{4} \frac{m_{\mu}^{2}}{2(4 \pi)^{3}} \int_{0}^{\mu / 2}\left|\mathbf{p}_{4}\right|^{2}\left(1-\frac{4\left|\mathbf{p}_{4}\right|}{3 m_{\mu}}\right) d\left|\mathbf{p}_{4}\right| \\
& =\left(\frac{g_{W}}{M_{W}}\right)^{4} \frac{m_{\mu}^{2}}{2(4 \pi)^{3}}\left[\frac{\left|\mathbf{p}_{4}\right|^{3}}{3}-\frac{\left|\mathbf{p}_{4}\right|^{4}}{3 m_{\mu}}\right]_{0}^{m_{\mu} / 2} \\
& =\left(\frac{g_{W}}{M_{W}}\right)^{4} \frac{m_{\mu}^{2}}{2(4 \pi)^{3}}\left(\frac{m_{\mu}^{3}}{24}-\frac{m_{\mu}^{3}}{48}\right) \\
& =\left(\frac{m_{\mu} g_{W}}{M_{W}}\right)^{4} \frac{m_{\mu}}{12(8 \pi)^{3}} \\
\Rightarrow \tau & =\frac{\hbar}{\Gamma}=\left(\frac{M_{W}}{m_{\mu} g_{W}}\right)^{4} \frac{12(8 \pi)^{3} \hbar}{m_{\mu} c^{2}} \\
\Rightarrow g_{W} & =\frac{M_{W}}{m_{\mu}}\left(\frac{12(8 \pi)^{3} \hbar}{\tau m_{\mu} c^{2}}\right)^{\frac{1}{4}}=\frac{80.38}{0.106}\left(\frac{12(8 \pi)^{3} \times 6.58 \times 10^{-25}}{2.20 \times 10^{-6} \times 0.106}\right)=0.65 .
\end{aligned}
$$

In rationalized units $\alpha_{W}=g_{W}^{2} / 4 \pi \approx 1 / 30$ i.e. greater than α. It is only the massive propagator that makes it weak c.f. electroweak unification.
8. Calculate the extrema of the Dalitz plot then find a relationship for the minimum and maximum values of one Dalitz plot coordinate $m_{i j}^{2}$ if another is known. (The kinematics review in the PDG is a useful reference for this question.)

Answer: Recall that in the rest frame of M the Dalitz variables:

$$
m_{i j}^{2}=\left(p_{i}+p_{j}\right)^{2}=\left(P-p_{k}\right)^{2}=M^{2}+m_{k}^{2}-2 P \cdot p_{k}=M^{2}+m_{k}^{2}-2 M E_{k}
$$

Hence, the maximum of value of $m_{i j}\left(m_{i j, \max }\right)$ coincides with the minimum value of E_{k}, which is m_{k} when it is rest. Therefore,

$$
m_{i j, \max }^{2}=M^{2}+m_{k}^{2}-2 M m_{k}=\left(M-m_{k}\right)^{2}
$$

Similarly the maximum value of E_{k} will correspond to the minimum $m_{i j}$. This occurs when k is moving opposite to i and j when they are all collinear. This is analogous to
two-body decay into particles of mass $\left(m_{i}+m_{j}\right)$ and m_{k}, which gives

$$
E_{k, \max }=\frac{M^{2}+m_{k}^{2}-\left(m_{i}+m_{j}\right)^{2}}{2 M}
$$

Therefore,

$$
m_{i j, \min }^{2}=M^{2}+m_{k}^{2}-2 M \frac{M^{2}+m_{k}^{2}-\left(m_{i}+m_{j}\right)^{2}}{2 M}=\left(m_{i}+m_{j}\right)^{2}
$$

For an arbitrary m_{12} you can figure out the boundary by considering the extremes which are when 1 or 2 have their maximum momentum. See the figure below.

It is convenient to work in the rest frame of the two particles of fixed rest mass (Jackson frame) so for fixed m_{12}^{2} the momentum in this frame are $\mathbf{p}_{1}=-\mathbf{p}_{2}$ and $\mathbf{P}=\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}=$ \mathbf{p}_{3}. Note that the initial particle of mass M is no longer at rest. So we can write

$$
m_{12}^{2}=\left(P-p_{3}\right)^{2}=\left(E-E_{3}\right)^{2}=\left(\sqrt{M^{2}+\left|\mathbf{p}_{3}\right|^{2}}+\sqrt{m_{3}^{2}+\left|\mathbf{p}_{3}\right|^{2}}\right)^{2}
$$

which can be rearranged to give

$$
\left|\mathbf{p}_{3}\right|^{2}=\frac{1}{4 m_{12}^{2}}\left[m_{12}^{2}-\left(M-m_{3}\right)^{2}\right]\left[m_{12}^{2}-\left(M+m_{3}\right)^{2}\right]=\frac{1}{4 m_{12}^{2}} \lambda\left(m_{12}^{2}, M^{2}, m_{3}^{2}\right),
$$

where $\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z$. We can find the momentum of $\left|\mathbf{p}_{1}\right|=\left|\mathbf{p}_{2}\right|$ using the two-body momentum in the rest frame of a particle mass m_{12} to masses m_{1} and m_{2}

$$
\left|\mathbf{p}_{1}\right|^{2}=\left|\mathbf{p}_{2}\right|^{2}=\frac{1}{4 m_{12}}\left[m_{12}^{2}-\left(m_{1}-m_{2}\right)^{2}\right]\left[m_{12}^{2}-\left(m_{1}+m_{2}\right)^{2}\right]=\frac{1}{4 m_{12}^{2}} \lambda\left(m_{12}^{2}, m_{1}^{2}, m_{2}^{2}\right)
$$

Now we consider m_{23}^{2} in this frame

$$
\begin{aligned}
m_{23}^{2} & =\left(p_{2}+p_{3}\right)^{2}=m_{2}^{2}+m_{3}^{2}+E_{2} E_{3}-\mathbf{p}_{2} \cdot \mathbf{p}_{3} \\
m_{23, \pm}^{2} & =m_{2}^{2}+m_{3}^{2}+E_{2} E_{3} \pm\left|\mathbf{p}_{2}\right|\left|\mathbf{p}_{3}\right|
\end{aligned}
$$

where $m_{23,+}\left(m_{23,-}\right)$ are the maximum and minimum values. Therefore, using the invariant to write

$$
E_{3}=\frac{1}{2 m_{12}}\left(M^{2}-m_{12}^{2}-m_{3}^{2}\right)
$$

and

$$
E_{2}=\frac{1}{2 m_{12}}\left(m_{12}^{2}+m_{2}^{2}-m_{1}^{2}\right)
$$

we get
$m_{23, \pm}=m_{2}^{2}+m_{3}^{2}+\frac{1}{4 m_{12}^{2}}\left[\left(m_{12}^{2}+m_{2}^{2}-m_{1}^{2}\right)\left(M^{2}-m_{12}^{2}-m_{3}^{2}\right) \pm \sqrt{\lambda\left(m_{12}^{2}, M^{2}, m_{3}^{2}\right) \lambda\left(m_{12}^{2}, m_{1}^{2}, m_{2}^{2}\right)}\right]$
9. Calculate the relative rate of $B^{+} \rightarrow \tau^{+} \nu_{\tau}$ to $B^{+} \rightarrow \mu^{+} \nu_{\mu}$ decays.

Answer: The analysis of this decay is identical to that of the pion decay where an f_{B} decay constant would be introduced. Therefore,

$$
\frac{\Gamma\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)}{\Gamma\left(B^{+} \rightarrow \mu^{+} \nu_{\mu}\right)}=\frac{m_{\tau}^{2}\left(m_{B}^{2}-m_{\tau}^{2}\right)^{2}}{m_{\mu}^{2}\left(m_{B}^{2}-m_{\mu}^{2}\right)^{2}}=\frac{1.777^{2}\left(5.279^{2}-1.777^{2}\right)^{2}}{0.106^{2}\left(5.279^{2}-0.106^{2}\right)^{2}} \approx 220
$$

the current ratio in the PDG is 169_{-67}^{+206}.
10. Calculate the threshold for the reaction

$$
p+\gamma_{\mathrm{CMB}} \rightarrow \Delta^{+} \rightarrow N \pi
$$

where the average energy of a cosmic microwave background photon is $6.6 \times 10^{-4} \mathrm{eV}$.
If there are 450 CMB photons per cm^{3} and the cross section for the reaction is 0.6 mb , calculate the mean free path of a proton with an energy at the threshold for this interaction. Comment on the result.
Solution: In the CM frame the value of s at threshold is m_{Δ}^{2}, which can be compare to the value in the laboratory

$$
\begin{aligned}
\left(E_{p}+E_{\gamma}\right)^{2}-\left(\mathbf{p}_{p}-\mathbf{p}_{\gamma}\right)^{2} & =m_{\Delta}^{2}(\text { threshold when the collide head on }) \\
\Rightarrow m_{p}^{2}+2 E_{p} E_{\gamma}+2\left|\mathbf{p}_{p}\right| E_{\gamma} & =m_{\Delta}^{2} \\
\Rightarrow E_{p}+\left|\mathbf{p}_{p}\right| & =\frac{m_{\Delta}^{2}-m_{p}^{2}}{2 E_{\gamma}} \\
& =\frac{1.235^{2}-0.938^{2}}{2 \times 6.63 \times 10^{-13}} \text { in } \mathrm{GeV} \\
& =4.8 \times 10^{11} \mathrm{GeV} \\
E_{p} & =2.4 \times 10^{11} \mathrm{GeV} \because E_{p} \gg m_{p} .
\end{aligned}
$$

The mean free path is defined as

$$
\lambda=\frac{1}{\sigma n}=\frac{1}{0.6 \times 10^{-27} \times 450}=3.7 \times 10^{24} \mathrm{~cm}=3.9 \mathrm{Mly} .
$$

Order of the distance to Andromeda so high energy cosmic rays $>10^{20} \mathrm{eV}$ have to be relatively local.
11. [Based on Thomson 3.7 and 3.8] (a) For the process $a+b \rightarrow 1+2$ the Lorentz invariant flux term is

$$
F=4\left[\left(p_{a} \cdot p_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}\right]^{\frac{1}{2}}
$$

What is F in the non-relativistic limit $\left|\mathbf{v}_{a}\right| \ll c$ and $\left|\mathbf{v}_{b}\right| \ll c$?
Answer: We know that $E \approx m+\frac{1}{2} m \beta^{2}$ and $\mathbf{p}=m \boldsymbol{\beta}$ in the non-relativistic limit. Therefore,

$$
\begin{aligned}
F & =4\left[\left(E_{a} E_{b}-\mathbf{p}_{a} \cdot \mathbf{p}_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}\right]^{\frac{1}{2}} \\
& \approx 4\left[\left(\left(m_{a}+\frac{1}{2} m_{a} \beta_{a}^{2}\right)\left(m_{b}+\frac{1}{2} m_{b} \beta_{b}^{2}\right)-m_{a} m_{b} \boldsymbol{\beta}_{a} \cdot \boldsymbol{\beta}_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}\right]^{\frac{1}{2}} \\
& \left.\approx 4\left[\left(m_{a} m_{b}+\frac{m_{a} m_{b}}{2}\left(\beta_{a}^{2}+\beta_{b}^{2}\right)-m_{a} m_{b} \boldsymbol{\beta}_{a} \cdot \boldsymbol{\beta}_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}\right]^{\frac{1}{2}} \text { (terms to order } \beta^{2}\right) \\
& \approx 4 m_{a} m_{b}\left[\left(1+\frac{1}{2}\left|\boldsymbol{\beta}_{a}-\boldsymbol{\beta}_{b}\right|^{2}\right)^{2}-1\right]^{\frac{1}{2}} \\
& \approx 4 m_{a} m_{b}\left|\boldsymbol{\beta}_{a}-\boldsymbol{\beta}_{b}\right| \\
& \approx 4 m_{a} m_{b}\left|\mathbf{v}_{a}-\mathbf{v}_{b}\right| .
\end{aligned}
$$

(b) $F=4\left|\mathbf{p}_{i}^{*}\right| \sqrt{s}$ in the CM frame, where \mathbf{p}_{i}^{*} is one of the initial state particle's momentum. What is F in the frame where b is at rest?
Answer: We have in general

$$
\begin{aligned}
F & =4\left[\left(p_{a} \cdot p_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}\right]^{\frac{1}{2}} \\
& =4\left[\left(E_{a} m_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}\right]^{\frac{1}{2}} \because p_{a}=\left(E_{a}, \mathbf{p}_{a}\right), p_{b}=\left(m_{b}, 0\right) \\
& =4 m_{b}\left[E_{a}^{2}-m_{a}^{2}\right]^{\frac{1}{2}} \\
& =4 m_{b}\left|\mathbf{p}_{\mathbf{a}}\right|
\end{aligned}
$$

12. [Griffiths 3.26] For elastic scattering of identical particles $A+A \rightarrow A+A$, show that the Mandelstam variables become

$$
\begin{aligned}
s & =4\left(\mathbf{p}^{2}+m^{2}\right) \\
t & =-2 \mathbf{p}^{2}(1-\cos \theta) \\
u & =-2 \mathbf{p}^{2}(1+\cos \theta)
\end{aligned}
$$

where \mathbf{p} is the CM momentum of the incident particle and θ is the scattering angle.
Answer: We define the four momentum involved in $1+2 \rightarrow 3+4$ as $p_{1}=(E, 0,0,|\mathbf{p}|)$, $p_{2}=(E, 0,0,-|\mathbf{p}|), p_{3}=(E, 0,|\mathbf{p}| \sin \theta,|\mathbf{p}| \cos \theta \mid), p_{4}=(E, 0,-|\mathbf{p}| \sin \theta,-|\mathbf{p}| \cos \theta \mid)$

$$
\begin{aligned}
s & =\left(p_{1}+p_{2}\right)^{2}=(E+E)^{2}+(\mathbf{p}-\mathbf{p})^{2}=4 E^{2}=4\left(\mathbf{p}^{2}+m^{2}\right) \\
t & =\left(p_{1}-p_{3}\right)^{2}=(E-E)^{2}-|\mathbf{p}|^{2}\left(\sin ^{2} \theta+(1-\cos \theta)^{2}\right)=-2|\mathbf{p}|^{2}\left(1-\cos ^{2} \theta\right) \\
u & =\left(p_{1}-p_{4}\right)^{2}=(E-E)^{2}-|\mathbf{p}|^{2}\left(\sin ^{2} \theta+(1+\cos \theta)^{2}\right)=-2|\mathbf{p}|^{2}\left(1+\cos ^{2} \theta\right)
\end{aligned}
$$

13. [Griffiths 6.8] Consider elastic scattering $a+b \rightarrow a+b$ in the lab frame (b initially at rest), assuming the target is so heavy $m_{b} \gg E_{a}$ that its recoil is negligible. Determine the differential scattering cross section.
Answer: In general in the CM frame

$$
\frac{d \sigma}{d \Omega^{*}}=\frac{1}{64 \pi^{2}} \frac{1}{s} \frac{\left|\mathbf{p}_{f}^{*}\right|}{\left|\mathbf{p}_{i}^{*}\right|}|\mathcal{M}|^{2}
$$

In the situation described because $m_{b} \gg E_{a}$ the CM and the lab frame are the same i.e. $\beta_{C M}=\mathbf{p}_{a} /\left(E_{a}+m_{b}\right)=\beta_{a} /\left(1+m_{b} / E_{a}\right) \approx 0$. Also, as the recoil can be ignored $\left|\mathbf{p}_{i}\right|=\left|\mathbf{p}_{f}\right|$ so the cross section will just depend on $s=\left(E_{a}+m_{b}\right)^{2}-\left|\mathbf{p}_{a}\right|^{2}=m_{a}^{2}+m_{b}^{2}+2 E_{a} m_{b} \approx m_{b}^{2}$ so

$$
\frac{d \sigma}{d \Omega^{*}}=\frac{1}{64 \pi^{2} m_{b}^{2}}|\mathcal{M}|^{2}
$$

