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FIG. 2: Inclusive N3LO QCD corrections to total
cross section for Drell-Yan production through a vir-
tual photon. In the bottom panel we plot the ratio to

the analytic calculation in [14].

therefore it is important to choose a su�ciently small qcutT

to suppress such power corrections.Fig. 2 demonstrates the SCET+NNLOJET predictions
being independent on qcutT for values below 1 GeV. In
fact, for all partonic channels except qg, the cross section
predictions become flat and therefore reliable already at
qcutT ⇠ 5 GeV. It is only the qg channel that requires a
much smaller qcutT , indicating more sizeable power cor-
rections than in other channels. A more detailed under-
standing of this feature could become useful when apply-
ing qT -subtraction to more complicated final states.
Also shown in the upper panel of Fig. 2 in dashed

lines are the inclusive predictions from [14], decomposed
into di↵erent partonic channels. We observe an excellent
agreement at small-qT region with a detailed compari-
son given in Tab. I. This agreement provides a fully in-
dependent confirmation of the analytic calculation [14],
and lends strong support to the correctness for our qT -
subtraction-based calculation. In the bottom panel of
Fig. 2, we plot the ratio between di↵erent partonic chan-
nels to the total inclusive N3LO corrections. We ob-
serve large cancellation between qg channel (blue) and
qq̄ channel (orange). While the inclusive N3LO correc-
tion is about �8 fb, the qg channel alone can be as large
as �15.3 fb. Similar cancellations between qg and qq̄

channel can already be observed at NLO and NNLO.
The numerical smallness of the NNLO corrections (and
of its associated scale uncertainty) is due to these cancel-
lations, which may potentially lead to an underestimate
of theory uncertainties at NNLO.In Fig. 3 we show for the first time the N3LO pre-
dictions for the Drell-Yan di-lepton rapidity distribution,
which constitutes the main new result of this letter. Pre-

Fixed Order
�pp!�⇤(fb)LO
339.62+34.06

�37.48NLO
391.25+10.84

�16.62NNLO
390.09+3.06

�4.11N3LO
382.08+2.64

�3.09 from [14]N3LO only qT -subtraction Results from [14]qg �15.32(32) �15.29qq̄ + qQ̄ +5.08(11) +4.97gg +2.17(6) +2.12qq + qQ +0.09(13) +0.17Total �7.98(36) �8.03TABLE I: Inclusive cross sections with up to N3LO
QCD corrections to Drell-Yan production through
a virtual photon. N3LO results are from the qT -
subtraction method (qcutT = 0.63 GeV) and from the
analytic calculation in [14]. Cross sections at central
scale of Q = 100 GeV are presented together with
7-point scale variation. Numerical integration errors

from qT -subtraction are indicated in brackets.

FIG. 3: Di-lepton rapidity distribution from LO to
N3LO. The colored bands represent theory uncer-
tainties from scale variations. The bottom panel is
the ratio of the N3LO prediction to NNLO, with dif-ferent cuto↵ qcutT .

dictions of increasing perturbative orders up to N3LO
are displayed. We estimate the theory uncertainty band
on our predictions by independently varying µR and µF

around 100 GeV with factors of 1/2 and 2 while elimi-
nating the two extreme combinations (7-point scale vari-
ation). With large QCD corrections from LO to NLO,
the NNLO corrections are only modest and come with
scale uncertainties that are significantly reduced [5, 7, 8].
However, as has been observed for the total cross sec-
tion, the smallness of NNLO corrections is due to cancel-
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Figure 2: The impact of mixed QCD-electroweak corrections to pp ! W
+(e+⌫) production at 13 TeV LHC on various kinematic

distributions including lepton rapidity and transverse momentum, the transverse momentum of the W -boson and the transverse

mass. NLO electroweak corrections are also shown. See text for details.

of the neutrino p?,miss
are larger than 15 GeV and that the absolute value of the positron rapidity does not exceed

|ye| < 2.4. We also set the factorization
and renormalization scales to be equal µR

= µF
= µ and choose µ = MW

/2

as the central scale for our computations.

To present the results, we write the fiducial cross section as

�pp!W
+ = �LO

+��NLO,↵s
+��NLO,↵

,+��NNLO,↵↵s
+ ....

(130)

where the first term on the right hand side is the leading order cross section, the second term is the NLO QCD

contribution, the third term is the NLO electroweak contribution and the last one is the mixed QCD-electroweak

contribution. Ellipses in Eq.(130) stand for other contributions to the cross section, e.g. NNLO QCD ones.

We show the fiducial cross sections pp ! W + X, using the cuts described above, in Table I. It follows from this

table that NLO electroweak contributions are tiny – they modify the leading order cross section by just about �0.02

percent. For comparison, we note that NNLO QCD corrections are of the order of a few percent. We note that

the smallness of these corrections is partially related to our choice of the Gµ
renormalization scheme which appears

to reduce the impact of electroweak corrections significantly. Although quite small as well, mixed QCD-electroweak

corrections turn out to be larger than the NLO electroweak ones, at least for the setup considered here.

The relative importance of mixed QCD-electroweak corrections, at least compared to NLO electroweak corrections,

is also apparent from the kinematic distributions shown in Fig. 2. These distributions are computed with the fiducial

cuts described above; results shown in Fig. 2 are obtained for µ = MW
/2. The y-axes in the lower panes correspond

to bin-by-bin ratios of NLO electroweak and mixed QCD-electroweak contributions to NLO QCD cross sections

d�i =

d��i

d�LO
+ d��NLO,↵s

.

(131)

In Fig. 2 we show the rapidity and transverse momentum distributions of the charged lepton as well as the transverse

4

� [pb] �LO

� (1,0)

� (0,1)

� (2,0)
� (1,1)

qq̄ 809.56(1) 191.85(1) �33.76(1) 49.9(7) �4.8(3)

qg
—

�158.08(2)
—

�74.8(5) 8.6(1)

q(g)� —
—

�0.839(2) —
0.084(3)

q(q̄)q 0
—

—
—

6.3(1) 0.19(0)

gg
—

—
—

18.1(2) —

�� 1.42(0)
—

�0.0117(4) —
—

tot 810.98(1) 33.77(2) �34.61(1) �0.5(9) 4.0(3)

Table I. The di↵erent perturbative contributions to the fidu-

cial cross section (see Eq. (2)). The breakdown into the vari-

ous partonic channels is also shown (see text).
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Figure 1. Complete O(↵
S↵) correction to the di↵erential

cross section d� (1,1)
in the anti-muon pT compared to the

corresponding result in the pole approximation and to the

factorised approximation d� (1,1)
fact . The top panels show the ab-

solute predictions, while the central (bottom) panels display

the O(↵
S↵) correction normalized to the LO (NLO QCD) re-

sult. For the full result the ratios also display our estimate

of the numerical uncertainties, obtained as described in the

text.

ject to large cancellations between the various partonic

channels. The NLO QCD corrections amount to +4.2%

with respect to the LO result, while the NLO EW cor-

rections contribute �4.3%. Also the NNLO QCD cor-

rections are subject to large cancellations, and give an

essentially vanishing contribution within the numerical

uncertainties. The newly computed QCD–EW correc-

tions amount to +0.5% with respect to the LO result.

In Fig. 1 we present our result for the O(↵
S↵) correc-

tion as a function of the anti-muon p
T . The left panels

depict the region around the Z peak, and the right pan-

els the high-p
T region. In the main panels we show the

absolute correction d� (1,1)/dp
T , while the central (bot-
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Figure 2. As Fig. 1, but for the di-muon invariant mass.
tom) panels display the correction normalised to the LO

(NLO QCD) result. Our results for the complete O(↵
S↵)

correction are compared with those obtained in two ap-

proximations. The first approximation consists in com-

puting the finite part of the two-loop virtual amplitude

in the pole approximation, suitably reweighted with the

exact squared Born amplitude. This approach precisely

follows that adopted for the charged-current DY process

in Ref. [49] (see Eq. (14) therein for the precise defini-

tion). The pole approximation, which includes factoris-

able and non-factorisable [44] contributions, requires the

QCD–EW on-shell form factor of the Z boson [40]. The

second approximation is based on a fully factorised ap-

proach for QCD and EW corrections, where we exclude

photon-induced processes throughout (see Ref. [45, 49]

for a detailed description). We see that the result ob-

tained in the pole approximation is in perfect agreement

with the exact result. This is due to the small contri-

bution of the two-loop virtual to the computed correc-

tion, as observed also in the case of W production [49].

Our result for the O(↵
S↵) correction in the region of

the peak is reproduced relatively well by the factorised

approximation. Beyond the Jacobian peak, this approx-

imation tends to overshoot the complete result, which is

consistent with what was observed in Refs. [45, 49]. As

p
T increases, the (negative) impact of the mixed QCD–

EW corrections increases, and at p
T = 500GeV it reaches

about �60% with respect to the LO prediction and �15%

with respect to the NLO QCD result. The factorised ap-

proximation describes the qualitative behaviour of the

complete correction reasonably well, also in the tail of

the distribution, but it overshoots the full result as p
T

increases.
In Fig. 2 we show our result for the O(↵

S↵) correction

as a function of the di-muon invariant mass m
µµ. The

Mixed 
QCD-EW

real matrix elements at NLO in QCD and approximations for virtual matrix elements. Finally, the

two-loop virtual matrix elements were included through an asymptotic expansion in refs. [8, 22],

and exactly in ref. [9], hence allowing for the computation of the full NLO corrections. The exact

NLO QCD corrections computed in ref. [9] modify the exact leading order prediction significantly

but in a uniform way for the dynamical scale chosen here, as it can be appreciated from Fig. 1,

from which one can observe a K factor with a very mild p? dependence. An analogous behaviour
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Figure 1: Transverse momentum distribution of the Higgs boson at the LHC with p
s = 13 TeV

computed in refs. [6, 9]. The upper panel shows absolute predictions at LO (O(↵3
s )) and NLO

(O(↵4
s )) in the full SM and in the infinite m

t approximation (EFT), as well as the NNLO (O(↵5
s ))

in the EFT. The lower panels show the ratio of the EFT and full SM predictions to their respective

LO calculations. The bands indicate theoretical errors obtained with a 7-point scale variation.

is observed in the predictions obtained within the EFT. As a consequence, the modifications of the

shape of the p? distribution of the Higgs boson due to finite m
t effects is to a good extent already

accounted for in Eq. (2.3) by the inclusion of exact leading order matrix elements. We collect in

Table 1 the inclusive cross section ⌃ for some relevant p? cuts up to both NNLO in the EFT [6] and

to NLO in the full SM [9]. We will adopt the predictions from these two references in the following

study.
Ideally, we want to combine the NNLO predictions computed in the EFT with the exact NLO

prediction. Under the assumption that the exact NNLO QCD corrections follow the pattern of

the NNLO EFT corrections, i.e. they would lead to a uniform K-factor, this can be achieved by

rescaling EFT NNLO predictions in the following way:⌃EFT-improved (1), NNLO(pcut
? ) ⌘ ⌃SM, NLO(pcut? )⌃EFT, NLO(pcut? )

⌃EFT, NNLO(pcut
? ) .

(2.4)

We quote the prediction obtained with Eq. (2.4) as the current best prediction.2 To estimate

the theory uncertainty in the resulting cross section we proceed as follows:

2We point out that the rescaling performed in Eqs. (2.3), (2.4) could be alternatively defined at the differential
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FIG. 4: The top two panels show R3/2(pT (j1)) (in absolute

and as ratio to NLO) and the bottom two panels R3/2(HT ).

The colours are the same as in fig. 1.

factor slightly decreases for large momenta, however, it

is always fully contained within the NLO scale band. An

important observation is that the NNLO scale band is

very small in comparison to NLO, reducing it from about

10% down to 3%.Next we consider the lower two panels in fig. 4, where

we show the ratio R
3/2(HT ) for a central scale µ0 =

HT /2. This observable behaves similarly to R
3/2(pT (j1))

albeit with a slightly larger scale dependence. The re-

duction in the scale uncertainty when going from NLO

to NNLO is of particular importance since this observ-

able is used experimentally for measurements of ↵S [5].

The leading source of perturbative uncertainty in this

data–theory comparison is the scale dependence. The

pdf dependence, which is not computed in this work, is

expected to largely cancel out in the ratio.
Jet rates are typically measured in slices of jet rapidity.

To demonstrate how our calculation performs in this sit-

uation, we divide the phase space in slices of the rapidity

di↵erence between the two leading jets
y⇤ = |y(j1) � y(j2)|/2 ,

(8)
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FIG. 5: The three panels show R3/2(HT , y⇤), in each panel a

di↵erent slice in y⇤
as ratio to NLO. The colours are the same

as in fig. 1.

and define the ratio of the two- and three-jet rates asR
3/2(HT , y⇤) = d2

�3/dHT /dy⇤
d2

�2/dHT /dy⇤ .
(9)

The NNLO prediction for this cross section ratio can

be found in fig. 5 . The prediction is shown relative to the

NLO one. The NNLO correction is negative across the

full kinematic range and, overall, behaves very similarly

to the one for the rapidity-inclusive ratio R
3/2(HT ). This

remains the case as y⇤ increases, at least in the range of

rapidities considered here.

IV. CONCLUSIONSIn this work we present for the first time NNLO-

accurate predictions for three-jet rates at the LHC. We

compute di↵erential distributions for typical jet observ-

ables like HT and the transverse momentum of the ith

leading jet, i = 1, 2, 3, as well as di↵erential three-to-two

jet ratios. Scale dependence is the main source of theoret-

ical uncertainty for this process at NLO, and it gets sig-

nificantly reduced after the inclusion of the NNLO QCD

corrections. Notably, the three-to-two jet ratios stabilize

once the second-order QCD corrections are accounted for.

A central goal of the present work is to demonstrate

the feasibility of three-jet hadron collider computations

with NNLO precision. With this proof-of-principle goal

attained, one can now turn one’s attention to the broad

landscape of phenomenological applications for three-

jet production at the LHC. Examples include studies of

event-shapes [6, 39, 40], determination of the running

of the strong coupling constant ↵s through TeV scales

and resolving the question of scale setting in multi-jet

production. Another major benefit from having NNLO–

accurate predictions is the reliability of the theory uncer-

tainty estimates.
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Figu
re 1. Absolute pT (��) (left)

and m(��) (righ
t) di↵erential distrib

utions. Shown are the predic-

tions in LO (gree
n), NLO (blue), NNLO (red) QCD. The color

ed bands around the central scale
s are

from
7-point scale

varia
tion. The grey

band shows the estim
ated

Monte Carlo integra
tion error

in each

bin. The lower panel shows the same distrib
utions but relati

ve to the NLO central scale
prediction

.

Figu
re 2. As in fig. 1 but for the m(��) distrib

ution subjected
to di↵erent pT (��) cuts: pT (��) > 50

GeV (left)
, pT (��) > 100 GeV (center) and pT (��) > 200 GeV (righ

t).

the invaria
nt mass of the two photons m(��), the angle between the two photons in the

Collins-Soper frame �CS, the absolute di↵erence in rapidities
of the two photons �y(��) =

|y(�1)�y(�2)|,
the azimuthal angle between the two photons ��(��) and the absolute rapid-

ity of the photon
pair |y(��)|. We also calcu

late the NNLO QCD corre
ction

s to the follow
ing

two-dimensional distrib
utions: m(��) ⌦ pT(��) and �CS ⌦ m(��).

We first discuss the pT(��) di↵erential distrib
ution

which is of central interes
t to this

work. The distrib
ution

is shown in fig. 1. As can be seen
from

this figure, the NLO QCD

corre
ction

is very
significant relati

ve to the LO one. In particu
lar, the scale

uncerta
inty bands

at LO and NLO do not overl
ap anywhere. This behavior is easy

to understa
nd based

on the

properties
of inclusive diphoton

production
through NNLO. Clearly

, a reliab
le prediction

of

this observa
ble requires the inclusion

of, at least,
the NNLO QCD corre

ction
s.

As can be seen
from

fig. 1 the inclusion of the NNLO corre
ction

s has a major stabilizin
g
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Figure 5. Kinematic distributions in the process pp ! Z(e+e�)H(bb̄) at the 13 TeV LHC for

various SMEFT scenarios. In the lower panes, ratios of SMEFT to SM distributions are shown. We

set the factorization and the renormalization scales in the production process to half the invariant

mass of the ZH system. See text for details.

scenarios provide very similar results. The differences become noticeable at �R
bl ⇠ 1 but

the number of events for such values of �R
bl is reduced by an order of magnitude. Given

the fact that we deal here with O(1 fb) cross sections, losing an order of magnitude in the

number of events is not optimal. However, the availability of highly accurate NNLO QCD

predictions in peak regions of kinematic distributions and identifiable differences between

various scenarios in distribution tails should allow one to optimize analysis strategies and

benefit from measurements across accessible kinematic regions.
15
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The punch line

• Few percent accuracy: becoming possible for a wide range of reactions 
• Standard candles: even higher precision could be reached 
• Gaining more control on the TeV region 
• Gaining more control on complex final states → rich phenomenology

A lot of progress on the phenomenological side:

Few percent: opportunities
• No direct NP at the TeV-scale: δNP ~ Q2/ΛNP2 ~ few percent 
•αEW ~ 0.01 → study the SM at the quantum level (e.g. Higgs couplings)

However:
• Technical issues (CPU is not infinite…) 
• Input parameters 
• Non-perturbative QCD: Qn/ΛQCDn ~ 0.01n→ need to control (at least n=1) 
• Physics at the few percent: interesting theoretical challenges…



The rise of the N3LO era



N3LO: inclusive results
To a large extent, inclusive N3LO for 2 → 1 processes has been solved

[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger (2016-…); 
Duhr, Dulat, Mistlberger (2020-21)]
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FIG. 2 The cross section as a function of the invariant mass Q2 of the lepton pair for small (left) and large (right)
values of Q.

the central scales). We note that this behaviour does not
depend on our choice of the central scale, but we observe
the same behaviour when the central scale is chosen as
Q/2. Since this is a new feature which has not been ob-
served so far for inclusive N3LO cross section, we analyse
it in some detail.

Fig. 3 shows the dependence of the cross section for an
invariant mass Q = 100 GeV on one scale with the other
held fixed at the central scale Q = 100 GeV. The bands
are again obtained by varying the scale by a factor of
two up and down around the central scale. We see that
in both cases the NNLO and N3LO bands do not over-
lap. Furthermore, we see that for the µR dependence the
width of the band is substantially reduced when going
from NNLO to N3LO. For the µF dependence, however,
the width of the band is increasing from NNLO to N3LO.
We note that this statement depends on the choice of the
value of Q2 considered as well as the centre-of-mass en-
ergy of the hadron collider. It would be interesting in
how far this observation is related to the missing N3LO
PDFs (keeping in mind that in that case one could not
disentangle completely the PDF-TH and scale uncertain-
ties anymore).

Fig. 4 shows the relative contribution of the di↵erent
partonic channels as a function of the invariant mass Q2

to the N3LO correction of the DY cross section. We see
that the cross section is dominated by the qq̄, qg and gg
channels. While the qg channel gives a large and pos-
itive contribution, the qq̄ channel (and to a lesser ex-
tend also the gg channel) gives a negative contribution
which largely cancels the contribution from the qg chan-
nel. The same cancellation happens already in the case
of the NNLO corrections to an even larger extent. Given
the sizeable cancellation of di↵erent partonic initial state
contributions, small numerical changes in the parton dis-
tribution functions will have an enhanced e↵ect on the
prediction of the DY cross section. Consequently, esti-
mating and improving on the sources of uncertainties re-
lated to parton distribution functions considered in Fig. 1
is of great importance.

CONCLUSIONS

We have presented for the first time the complete com-
putation of the N3LO corrections in QCD for the pro-
duction of a lepton pair from a virtual photon. Our main
findings are percent level corrections to the hadronic cross
section and an overall reduction of dependence on the
perturbative scales. The size of this corrections is con-
sistent with N3LO corrections to Higgs boson production
in gluon-fusion [17–19] and bottom-quark-fusion [20] and
indicates the importance of N3LO corrections to LHC
processes for phenomenology conducted at the percent
level.

In the region of small invariant masses where the con-
tribution from the Z boson is small, Q . 50 GeV, the
photon contribution computed here is the dominant part
of the cross section. For other kinematic regions we ex-
pect the K-factor of the Z boson contribution to behave
qualitatively very similarly to the photon contribution
and our results provide essential information. We see
from Fig. 2 that our computation substantially reduces
the dependence of the cross section on the renormalisa-
tion and factorisation scales. In contrast to the correc-
tions to Higgs boson production, however, the shift of
the predicted value of the DY cross section due to the in-
clusion of N3LO corrections is not contained in the naive
scale variation bands of NNLO predictions for all values
of Q. We emphasise that this should not be interpreted
as an indication of a breakdown of perturbative QCD,
but rather as a sign that uncertainty estimates based on
a purely conventional variation of the scales should be
taken with a grain of salt. Moreover, we observe an intri-
cate pattern of large cancellations of contributions from
di↵erent partonic initial states at NNLO and N3LO. This
implies a large sensitivity of the cross section on rela-
tively small shifts in parton distribution functions. In
combination with the fact that the DY process is a key
ingredient for the determination of PDFs, this motivates
to push for parton distributions determined from N3LO
cross sections in the future. It also hints at am intri-
cate entanglement of PDFs and the structure of QCD
cross sections, so that the uncertainty estimate obtained
from scale variation cannot be completely disentangled
from the PDF-TH uncertainties. The perturbative un-
certainty should rather be seen as the combination of

Figure 3: The cross sections for producing a W+ (left) or W� (right) as a function of the

virtuality Q normalised to the N3LO prediction. The uncertainty bands are obtained by

varying µF and µR around the central scale µcent = Q. The dashed magenta line indicates

the physical W boson mass, Q = mW .

virtual photon production in ref. [10], hinting once more towards a universality of the

QCD corrections to these processes.
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Figure 4: The cross sections for producing a W+ (left) or W� (right) as a function of

the virtuality Q. The uncertainty bands are obtained by varying µF and µR around the

central scale µcent = Q/2. The dashed magenta line indicates the physical W boson mass,

Q = mW .

Figure 4 shows the scale variation of the cross section with a di↵erent choice for the

central scale, µcent = Q/2. It is known that for Higgs production a smaller choice of the

factorisation scale leads to an improved convergence pattern and the bands from scale

variations are strictly contained in one another. We observe here that the two scale choices

share the same qualitative features.

The fact that the scale variation bands do not overlap puts some doubt on whether

it gives a reliable estimate of the missing higher orders in perturbation theory, or whether

other approaches should be explored (cf., e.g., refs. [85, 86]). In ref. [10] it was noted that

for virtual photon production there is a particularly large cancellation between di↵erent

initial state configurations. We observe here the same in the case of W boson production.

This cancellation may contribute to the particularly small NNLO corrections and scale

variation bands, and it may be a consequence of the somewhat arbitrary split of the content
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FIG. 3: The gluon fusion cross-section at all perturbative or-
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top-quark is infinitely heavy and can be integrated out,
see eq. (2). Moreover, we assumed that all other quarks
have a zero Yukawa coupling. Finite quark mass e↵ects
are important, but it is su�cient that they are inlcuded
through NLO or NNLO. Indeed, finite quark-mass e↵ects
have been computed fully through NLO in QCD [30],
while subleading top-quark mass corrections have been
computed at NNLO systematically as an expansion in
the inverse top-quark mass [34]. In these references it
was observed that through NLO finite quark mass ef-
fects amount to about 8% of the K-factor. At NNLO,
the known 1

mtop
corrections a↵ect the cross-section at

the ⇠ 1% level. A potentially significant contribution
at NNLO which has not yet been computed in the lit-
erature originates from diagrams with both a top and
bottom quark Yukawa coupling. Assuming a similar per-
turbative pattern as for top-quark only diagrams in the
e↵ective theory, eq. (2), higher-order e↵ects could be of
the order of 2%. We thus conclude that the computation
of the top-bottom interference through NNLO is highly
desired in the near future.

Finally, the computation of the hadronic cross-section
relies crucially on the knowledge of the strong coupling
constant and the parton densities. After our calculation,
the uncertainty coming from these quantities has become
dominant. Further progress in the determination of par-
ton densities must be anticipated in the next few years
due to the inclusion of LHC data in the global fits and the
impressive advances in NNLO computations, improving
the theoretical accuracy of many standard candle pro-
cesses.

To conclude, we have presented in this Letter the
computation of the gluon-fusion Higgs production cross-
section through N3LO in perturbative QCD. While a
thorough study of the impact of electroweak and quark
mass e↵ects is left for future work, we expect that the re-
maining theoretical uncertainty on the inclusive Higgs
production cross-section is expected to be reduced to
roughly half, which will bring important benefits in the
study of the properties of the Higgs boson at the LHC
Run 2. Besides its direct phenomenological impact, we
believe that our result is also a major advance in our un-
derstanding of perturbative QCD, as it opens the door to
push the theoretical predictions for large classes of inclu-
sive processes to N3LO accuracy, like Drell-Yan produc-
tion, associated Higgs production and Higgs production
via bottom fusion. Moreover, on the more technical side,
our result constitutes the first independent validation of
the gluon splitting function at NNLO [14], because the
latter is required to cancel all the infrared poles in the
inclusive cross-section. In addition, we expect that the
techniques developed throughout this work are not re-
stricted to inclusive cross-sections, but it should be pos-
sible to extend them to certain classes of di↵erential dis-
tributions, like rapidity distributions for Drell-Yan and
Higgs production, thereby paving the way to a new era
of precision QCD.
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FIG. 1 Variation of the hadronic cross section with the
hadronic centre-of-mass energy. The upper figure shows
nominal values, in the lower figure all predictions are nor-
malised to the central value of the N3LO prediction. LO,
NLO, NNLO and N3LO corrections are shown in green,
yellow, blue and red respectively. The bands correspond
to scale variation uncertainties as described in the text.

counterterm for the strong coupling constant has been de-
termined through five loops in Refs. [58–62]. The renor-
malisation constant for the Yukawa coupling is identical
to the quark mass renormalisation constant of QCD in
the MS-scheme [19, 60, 63–65]. IR divergences are ab-
sorbed into the definition of the PDFs using mass factori-
sation at N3LO [66–68]. The mass factorisation involves
convoluting lower-order partonic cross sections with the
three-loop splitting functions of Refs. [69–71]. We have
computed all the convolutions analytically in z space us-
ing the PolyLogTools package [72]. We observe that
all divergences cancel after UV renormalisation and mass
factorisation. We emphasise that this is not only a strong
cross check of our result, but, together with the results of
Ref. [28] for gluon-initiated processes, this is the first time
that the complete set of three-loop splitting functions of
Refs. [69, 70] has been confirmed by an independent an-
alytic computation. Moreover, this is the first time that
the universality of QCD factorisation has been confirmed
for hadron collisions for all partonic initial states.

The analytic cancellation of all ultraviolet and infrared
singularities provides a strong check of our results. In ad-
dition, we have reproduced the soft-virtual N3LO cross
section of Ref. [73] and the physical kernel constraints
of Ref. [74–76] for the next-to-soft term of the bottom-
quark-initiated cross section. We have also checked that
all logarithmic terms in the renormalisation and factori-
sation scales produced from the cancellation of the UV

and IR poles satisfy the DGLAP evolution equation. Fi-
nally, we have also recomputed the NLO and NNLO cross
sections, and we have checked that through NNLO our re-
sults are in perfect agreement with the literature results
implemented in the code Sushi [77]. Analytic results
for the partonic coe�cient functions will be presented in
ref. [78].

BOTTOM-QUARK FUSION AT N3LO IN QCD

In this section we present our phenomenological re-
sults for inclusive cross section for bottom-quark fusion
at N3LO in QCD. We assume a Higgs mass of mH =
125.09 GeV. The strong coupling is ↵s(m2

Z
) = 0.118 and

is evolved to the renormalisation scale µr using the four-
loop QCD beta function in the MS-scheme assuming five
massless quark flavours. The Yukawa coupling between
the Higgs boson and the bottom quark is proportional to
the bottom-quark mass in the MS-scheme, and we evolve
it from mb(mb) = 4.18 GeV [79] to the same renormali-
sation scale µr using four-loop running [65].

Fig. 1 shows the inclusive cross section at a proton-
proton collider as a function of the hadronic centre-of-
mass energy. The predictions are obtained by convolut-
ing the partonic cross sections with the PDF4LHC15

NNLO PDFs in the 5FS [80]1 as in eq. (1). The cen-
tral value corresponds to the commonly used choice of
the renormalisation and factorisation scales (µr, µf ) =
(mH ,mH/4) following for example refs. [19, 83]. The
band is obtained by varying µr and µf indepen-
dently within the intervals µr 2 [mh, 2mh] and µf 2
[mh/8,mh/2] with the restriction that 1/2  4µf/µr 
2. We observe that cross section predictions based on
successive perturbative orders are contained within the
bands of the lower order predictions over a wide range
of hadronic centre of mass energies. The dependence
on the renormalisation and factorisation scales of the
hadronic cross section is reduced as the perturbative or-
der is increased. We therefore believe that the resid-
ual scale dependence provides a reliable estimate of the
missing higher orders beyond N3LO. Let us comment
on the unconventionally small choice of the factorisation
scale, µf = mH/4. At NLO it was observed [83–86]

1
It was pointed out in Ref. [24] that multiple di↵erent values for

the bottom quark mass were used in the construction of the

PDF4LHC15 sets and an alternative PDF was derived. A PDF

set where bottom mass e↵ects are consistently included into the

pdf4lhc nnlo mc set is avilable from Ref. [81] (see also Ref. [82]).

We find that using the PDF set of Ref. [81] introduces a O(1%)

shift of the central value of our cross section. Since the modifi-

cation using the alternative PDF set is small we choose to use

the o�cial PDF4LHC15 sets of Ref. [80] in our predictions for

generality. For further discussion of bottom quark mass e↵ects

we refer to Ref. [78].

bbH

γ*
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FIG. 2 The cross section as a function of the invariant mass Q2 of the lepton pair for small (left) and large (right)
values of Q.

the central scales). We note that this behaviour does not
depend on our choice of the central scale, but we observe
the same behaviour when the central scale is chosen as
Q/2. Since this is a new feature which has not been ob-
served so far for inclusive N3LO cross section, we analyse
it in some detail.

Fig. 3 shows the dependence of the cross section for an
invariant mass Q = 100 GeV on one scale with the other
held fixed at the central scale Q = 100 GeV. The bands
are again obtained by varying the scale by a factor of
two up and down around the central scale. We see that
in both cases the NNLO and N3LO bands do not over-
lap. Furthermore, we see that for the µR dependence the
width of the band is substantially reduced when going
from NNLO to N3LO. For the µF dependence, however,
the width of the band is increasing from NNLO to N3LO.
We note that this statement depends on the choice of the
value of Q2 considered as well as the centre-of-mass en-
ergy of the hadron collider. It would be interesting in
how far this observation is related to the missing N3LO
PDFs (keeping in mind that in that case one could not
disentangle completely the PDF-TH and scale uncertain-
ties anymore).

Fig. 4 shows the relative contribution of the di↵erent
partonic channels as a function of the invariant mass Q2

to the N3LO correction of the DY cross section. We see
that the cross section is dominated by the qq̄, qg and gg
channels. While the qg channel gives a large and pos-
itive contribution, the qq̄ channel (and to a lesser ex-
tend also the gg channel) gives a negative contribution
which largely cancels the contribution from the qg chan-
nel. The same cancellation happens already in the case
of the NNLO corrections to an even larger extent. Given
the sizeable cancellation of di↵erent partonic initial state
contributions, small numerical changes in the parton dis-
tribution functions will have an enhanced e↵ect on the
prediction of the DY cross section. Consequently, esti-
mating and improving on the sources of uncertainties re-
lated to parton distribution functions considered in Fig. 1
is of great importance.

CONCLUSIONS

We have presented for the first time the complete com-
putation of the N3LO corrections in QCD for the pro-
duction of a lepton pair from a virtual photon. Our main
findings are percent level corrections to the hadronic cross
section and an overall reduction of dependence on the
perturbative scales. The size of this corrections is con-
sistent with N3LO corrections to Higgs boson production
in gluon-fusion [17–19] and bottom-quark-fusion [20] and
indicates the importance of N3LO corrections to LHC
processes for phenomenology conducted at the percent
level.

In the region of small invariant masses where the con-
tribution from the Z boson is small, Q . 50 GeV, the
photon contribution computed here is the dominant part
of the cross section. For other kinematic regions we ex-
pect the K-factor of the Z boson contribution to behave
qualitatively very similarly to the photon contribution
and our results provide essential information. We see
from Fig. 2 that our computation substantially reduces
the dependence of the cross section on the renormalisa-
tion and factorisation scales. In contrast to the correc-
tions to Higgs boson production, however, the shift of
the predicted value of the DY cross section due to the in-
clusion of N3LO corrections is not contained in the naive
scale variation bands of NNLO predictions for all values
of Q. We emphasise that this should not be interpreted
as an indication of a breakdown of perturbative QCD,
but rather as a sign that uncertainty estimates based on
a purely conventional variation of the scales should be
taken with a grain of salt. Moreover, we observe an intri-
cate pattern of large cancellations of contributions from
di↵erent partonic initial states at NNLO and N3LO. This
implies a large sensitivity of the cross section on rela-
tively small shifts in parton distribution functions. In
combination with the fact that the DY process is a key
ingredient for the determination of PDFs, this motivates
to push for parton distributions determined from N3LO
cross sections in the future. It also hints at am intri-
cate entanglement of PDFs and the structure of QCD
cross sections, so that the uncertainty estimate obtained
from scale variation cannot be completely disentangled
from the PDF-TH uncertainties. The perturbative un-
certainty should rather be seen as the combination of
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FIG. 2 The cross section as a function of the invariant mass Q2 of the lepton pair for small (left) and large (right)
values of Q.

the central scales). We note that this behaviour does not
depend on our choice of the central scale, but we observe
the same behaviour when the central scale is chosen as
Q/2. Since this is a new feature which has not been ob-
served so far for inclusive N3LO cross section, we analyse
it in some detail.

Fig. 3 shows the dependence of the cross section for an
invariant mass Q = 100 GeV on one scale with the other
held fixed at the central scale Q = 100 GeV. The bands
are again obtained by varying the scale by a factor of
two up and down around the central scale. We see that
in both cases the NNLO and N3LO bands do not over-
lap. Furthermore, we see that for the µR dependence the
width of the band is substantially reduced when going
from NNLO to N3LO. For the µF dependence, however,
the width of the band is increasing from NNLO to N3LO.
We note that this statement depends on the choice of the
value of Q2 considered as well as the centre-of-mass en-
ergy of the hadron collider. It would be interesting in
how far this observation is related to the missing N3LO
PDFs (keeping in mind that in that case one could not
disentangle completely the PDF-TH and scale uncertain-
ties anymore).

Fig. 4 shows the relative contribution of the di↵erent
partonic channels as a function of the invariant mass Q2

to the N3LO correction of the DY cross section. We see
that the cross section is dominated by the qq̄, qg and gg
channels. While the qg channel gives a large and pos-
itive contribution, the qq̄ channel (and to a lesser ex-
tend also the gg channel) gives a negative contribution
which largely cancels the contribution from the qg chan-
nel. The same cancellation happens already in the case
of the NNLO corrections to an even larger extent. Given
the sizeable cancellation of di↵erent partonic initial state
contributions, small numerical changes in the parton dis-
tribution functions will have an enhanced e↵ect on the
prediction of the DY cross section. Consequently, esti-
mating and improving on the sources of uncertainties re-
lated to parton distribution functions considered in Fig. 1
is of great importance.

CONCLUSIONS

We have presented for the first time the complete com-
putation of the N3LO corrections in QCD for the pro-
duction of a lepton pair from a virtual photon. Our main
findings are percent level corrections to the hadronic cross
section and an overall reduction of dependence on the
perturbative scales. The size of this corrections is con-
sistent with N3LO corrections to Higgs boson production
in gluon-fusion [17–19] and bottom-quark-fusion [20] and
indicates the importance of N3LO corrections to LHC
processes for phenomenology conducted at the percent
level.

In the region of small invariant masses where the con-
tribution from the Z boson is small, Q . 50 GeV, the
photon contribution computed here is the dominant part
of the cross section. For other kinematic regions we ex-
pect the K-factor of the Z boson contribution to behave
qualitatively very similarly to the photon contribution
and our results provide essential information. We see
from Fig. 2 that our computation substantially reduces
the dependence of the cross section on the renormalisa-
tion and factorisation scales. In contrast to the correc-
tions to Higgs boson production, however, the shift of
the predicted value of the DY cross section due to the in-
clusion of N3LO corrections is not contained in the naive
scale variation bands of NNLO predictions for all values
of Q. We emphasise that this should not be interpreted
as an indication of a breakdown of perturbative QCD,
but rather as a sign that uncertainty estimates based on
a purely conventional variation of the scales should be
taken with a grain of salt. Moreover, we observe an intri-
cate pattern of large cancellations of contributions from
di↵erent partonic initial states at NNLO and N3LO. This
implies a large sensitivity of the cross section on rela-
tively small shifts in parton distribution functions. In
combination with the fact that the DY process is a key
ingredient for the determination of PDFs, this motivates
to push for parton distributions determined from N3LO
cross sections in the future. It also hints at am intri-
cate entanglement of PDFs and the structure of QCD
cross sections, so that the uncertainty estimate obtained
from scale variation cannot be completely disentangled
from the PDF-TH uncertainties. The perturbative un-
certainty should rather be seen as the combination of

Figure 3: The cross sections for producing a W+ (left) or W� (right) as a function of the

virtuality Q normalised to the N3LO prediction. The uncertainty bands are obtained by

varying µF and µR around the central scale µcent = Q. The dashed magenta line indicates

the physical W boson mass, Q = mW .

virtual photon production in ref. [10], hinting once more towards a universality of the

QCD corrections to these processes.
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Figure 4: The cross sections for producing a W+ (left) or W� (right) as a function of

the virtuality Q. The uncertainty bands are obtained by varying µF and µR around the

central scale µcent = Q/2. The dashed magenta line indicates the physical W boson mass,

Q = mW .

Figure 4 shows the scale variation of the cross section with a di↵erent choice for the

central scale, µcent = Q/2. It is known that for Higgs production a smaller choice of the

factorisation scale leads to an improved convergence pattern and the bands from scale

variations are strictly contained in one another. We observe here that the two scale choices

share the same qualitative features.

The fact that the scale variation bands do not overlap puts some doubt on whether

it gives a reliable estimate of the missing higher orders in perturbation theory, or whether

other approaches should be explored (cf., e.g., refs. [85, 86]). In ref. [10] it was noted that

for virtual photon production there is a particularly large cancellation between di↵erent

initial state configurations. We observe here the same in the case of W boson production.

This cancellation may contribute to the particularly small NNLO corrections and scale

variation bands, and it may be a consequence of the somewhat arbitrary split of the content

– 7 –

of the proton into quarks and gluons. If these cancellations play a role in the observed

perturbative convergence pattern, then it implies that one cannot decouple the study of

the perturbative convergence from the structure of the proton encoded in the PDFs. We

will return to this point below, when we discuss the e↵ect of PDFs on our cross section

predictions.
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Figure 5: The cross sections for producing a W+ (left) or W� (right) as a function of

the virtuality Q. The uncertainty bands are obtained by varying µF and µR around the

central scale µcent = Q. The dashed magenta line indicates the physical W boson mass,

Q = mW .

Figure 5 shows the production cross section for an o↵-shell W boson normalised to the

prediction at N3LO for a larger range of virtualities (Q  2TeV). We see that for larger

values of the virtuality (Q > 550GeV) the bands derived from scale variation at NNLO

and N3LO start to overlap. We also observe a more typical shrinking of the scale variation

bands as well as a small correction at N3LO.

Figure 6: The cross sections for producing a lepton-neutrino pair via an o↵-shell W boson

as a function of the invariant mass of the final state, or equivalently the virtuality of the

W boson, cf. eq. (2.1).

Figure 6 shows the nominal production cross section of a lepton-neutrino pair at the

LHC at 13 TeV centre of mass energy, as defined in eq. (2.1).

Figure 7 shows the variation of K-factors as a function of the energy of the hadron

collider for Q = 100 GeV. The orange, blue and red bands correspond to predictions

with the perturbative cross section truncated at NLO, NNLO and N3LO, and the size

of the band is obtained by performing a 7-point variation of (µF , µR) around the central

scale µcent = Q. We observe that the NLO, NNLO and N3LO K-factors are relatively

independent of the centre of mass energy. Furthermore, we see that the bands due to scale

– 8 –
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5

FIG. 3 Dependence of the cross section on either µF or µR with the other scale held fixed.

the two. Finally, we believe that our findings warrant
a critical revision of the strategy to assess perturbative
uncertainties and the consequences thereof on PDF de-
termination etc.
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Figure 8: Sources of uncertainty as a function of Q for the W+ (left) and W� (right)

K-factors. �(PDF), �(PDF+↵S) and the sum of �(PDF+↵S) and �(PDF-TH) are shown

in orange, red and green respectively. The dashed magenta line indicates the physical W

boson mass, Q = mW .

Figure 8 displays the uncertainties �(PDF), �(PDF+↵S) and �(PDF-TH) as a function

of Q in orange, red and green respectively. In particular, the green band indicates the sum

�(PDF+↵S)+�(PDF-TH). Our findings for �(PDF) are compatible with the results of for

example refs. [84, 87] where PDF e↵ects on W boson cross sections were discussed in more

detail. We observe that the estimate for �(PDF-TH) plays a significant role especially for

low values of Q. The traditional PDF uncertainty has a stronger impact for larger values

of Q. Overall, we observe that the relative size of �(PDF) and �(PDF-TH) is large in

comparison to the e↵ect of varying the scales. We conclude that future improvements in

the precision of the prediction of this observable will have to tackle the problem of the

uncertainties discussed here. In particular, we emphasize that the relatively large size of

�(PDF-TH) can potentially have a substantial impact on the central value of the N3LO

correction, especially for smaller values of Q. As discussed above, there are large intricate

cancellations between di↵erent initial state channels at N3LO. This implies that a small

relative change of quark vs. gluon parton densities at N3LO may have an enhanced e↵ect

on the perturbative cross section as a result. We can only wonder if the usage of true

N3LO parton densities could lead to N3LO predictions that are fully contained in the scale

variation band of the previous order. However, in the absence of N3LO PDFs, we can

only stress the importance estimating an uncertainty due to the missing N3LO PDFs and

suggest �(PDF-TH) as a possible estimator.

4 Predictions for cross section ratios

In the previous section, we have seen that the conventional variation of the perturbative

scales by a factor of 2 does not give a reliable estimate of the size of the missing higher

orders. This motivates us to study the ratios of cross sections for the production of gauge

bosons with virtuality Q:

RXY (Q) =
�X(Q)

�Y (Q)
, X, Y 2 {W±, �⇤} . (4.1)
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Figure 7: The cross sections for producing a W+ (left) or W� (right) as a function of

the hadronic centre of mass energy for Q = 100 GeV. The uncertainty bands are obtained

by varying µF and µR around the central scale µcent = Q (see text for details).

variation at NNLO and N3LO do not overlap for a large range of center of mass energies.

However, the gap is narrowed at the extreme end of the range of energies considered here.

Parton distribution functions are extracted from a large set of measurements and are

consequently subject to an uncertainty related to the input as well as to the methodology

used to extract the PDFs. Here, we follow the prescription of ref. [84] for the compu-

tation of PDF uncertainties �(PDF) using the Monte Carlo method. Furthermore, also

the strong coupling constant is an input parameter for our computation. The PDF set

PDF4LHC15 nnlo mc uses ↵S = 0.118 as a central value and two additional PDF sets are

available that allow for the correlated variation of the strong coupling constant in the

partonic cross section and the PDF sets to ↵up

S = 0.1195 and ↵down

S = 0.1165. This sets

allow us to deduce an uncertainty �(↵S) on our cross section following the prescription of

ref. [84]. We combine the PDF and strong coupling constant uncertainties in quadrature

to give

�(PDF + ↵S) =
p
�(PDF)2 + �(↵S)2 . (3.3)

In our computation we use NNLO-PDFs, because currently there is no available PDF

set extracted from data with N3LO accuracy. It is tantalising to speculate if the observed

convergence pattern is related to the mismatch in perturbative order used for the PDFs and

the partonic cross section. We estimate the potential impact of this mismatch on our cross

section predictions using a prescription introduced in ref. [5] that studies the variation of

the NNLO cross section as NNLO- or NLO-PDFs are used. This defines the PDF theory

uncertainty

�(PDF-TH) =
1

2

�����
�(2), NNLO-PDFs

W± � �(2), NLO-PDFs

W±

�(2), NNLO-PDFs

W±

����� . (3.4)

Here, the factor 1

2
is introduced as it is expected that this e↵ect becomes smaller at N3LO

compared to NNLO.
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• ~ 2% PDF-TH error in the EW region 

• significant fraction of the error budget 

• same order of ``standard’’ PDF+αs

3

z ! 0 [65, 66]. Finally, we have also checked that all
logarithmic terms in the renormalisation and factorisa-
tion scales produced from the cancellation of the UV and
IR poles satisfy the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equation [67–69].

PHENOMENOLOGICAL RESULTS

In this section we present our phenomenological re-
sults for lepton-pair production via an o↵-shell photon at
N3LO in QCD. The strong coupling is ↵s(m2

Z) = 0.118,
and we evolve it to the renormalisation scale µr using the
four-loop QCD beta function in the MS-scheme assuming
Nf = 5 active, massless quark flavours. In the remainder
of this section we present our results for the cross section
as a function of the invariant mass of the lepton pair, and
we discuss the sources of uncertainty that a↵ect it.

Q/GeV KN
3
LO

QCD �(scale) �(PDF+↵S) �(PDF-TH)
�
(0)
Z+�⇤

�
(0)
�⇤

30 0.952 +1.5%
�2.5% ±4.1% ±2.7% 1.01

50 0.966 +1.1%
�1.6% ±3.2% ±2.5% 1.09

70 0.973 +0.89%
�1.1% ±2.7% ±2.4% 2.16

90 0.978 +0.75%
�0.89% ±2.5% ±2.4% 415

110 0.981 +0.65%
�0.73% ±2.3% ±2.3% 7.4

130 0.983 +0.57%
�0.63% ±2.2% ±2.2% 3.5

150 0.985 +0.50%
�0.54% ±2.2% ±2.2% 2.6

TABLE I Numerical predictions for the QCD
K-factor at N3LO.

Tab. I contains numerical values for the QCD K-factor,
i.e., the ratio of the N3LO cross section over the NNLO
cross section. We observe that for all values of the invari-
ant mass Q considered, the cross section receives negative
corrections at the percent level at LHC center-of-mass
energies. We include numerical estimates of the size of
the three uncertainties discussed. The central values and
scale variation bands for the K-factor are obtained with
the zeroth member of the PDF4LHC15 nnlo mc set. We
define

KN
3
LO

QCD
=

�(3)(µf = µr = Q)

�(2)(µf = µr = Q)
,

�(X) =
�X(�(3))

�(3)(µf = µr = Q)
,

(2)

where �(n)(µf = µr = Q) is the hadronic cross section
including perturbative corrections up to nth order evalu-
ated for µF = µR = Q and �X(�(n)) is the absolute un-
certainty of the cross section from source X as described
below. Furthermore, we show in the last column of tab. I
the ratio of the leading order cross section to produce a

lepton pair via Z boson and virtual photon exchange [70–
73] over exclusively virtual photon exchange.
Let us now analyse the two sources of uncertainty re-

lated to the PDFs (PDF+↵S an PDF-TH) and the de-
pendence of the cross section on the renormalisation and
factorisation scales. Fig. 1 displays the impact of our im-
precise knowledge of parton distribution functions and
the strong coupling constant on our abilities to predict
the DY cross section. Let us first explain how we eval-
uate �(PDF+↵S). The PDFs and the strong coupling
constant cannot be computed from first principle but
they need to be extracted from measurements. In order
to study the PDF uncertainties we use the Monte-Carlo
replica method following the PDF4LHC recommenda-
tion [74] that uses 100 di↵erent PDF sets to compute the
68 % confidence level interval. The strong coupling con-
stant uncertainty is computed using two correlated PDF
sets provided by ref. [74] and is then combined in quadra-
ture with the PDF uncertainty to give �(PDF + ↵S).
The uncertainty obtained in this way does not yet in-
clude the fact that currently all PDF sets are extracted
by comparing experimental to predictions at (at most)
NNLO level, nor do they include the next order in the
DGLAP equation. A fully consistent N3LO calculation,
however, would require the use of a complete set of N3LO
PDFs. We include an uncertainty reflecting the fact that
currently there are no N3LO PDF sets available. The
estimate of this uncertainty was obtained following the
recipe introduced in Ref. [18] that uses half the change of
the NNLO cross section in changing from NLO to NNLO
PDFs as a measure of uncertainty. As shown in Fig. 1
each of the two uncertainties is of the order of ±2% over
the whole range of invariant masses considered.
Fig. 2 shows the value of the NLO, NNLO and N3LO

cross sections normalised to the central N3LO value as
a function of the invariant mass Q2 of the lepton pair.
The bands indicate the dependence of the cross section
at di↵erent orders on the choice of the renormalisation
and factorisation scales. We choose Q as a central scale
and increase and decrease both scales independently by
a factor of two with respect to the central scale while
maintaining 1

2
 µR/µF  2. We observe that at N3LO

the cross section depends only very mildly on the choice
of the scale. In particular, for small and very large invari-
ant masses the dependence on the scale is substantially
reduced by inclusion of N3LO corrections compared to
NNLO. Remarkably, however, we find that for invariant
masses 50 GeV . Q . 400 GeV, the bands obtained by
varying the renormalisation and factorisation scales at
NNLO and N3LO do not overlap for the choice of the
central scale Q that is conventionally chosen in the liter-
ature. This is in stark contrast to the case of the N3LO
corrections to the inclusive cross section for Higgs pro-
duction in gluon and bottom-quark fusion [17, 19, 20],
where the band obtained at N3LO was always strictly
contained in the NNLO band (for reasonable choices of

γ*

W+

Error: estimate from previous orders



N3LO PDFs not available → order mismatch

2.2.1.1 Gluon fusion

In this section we document cross section predictions for a standard model Higgs boson produced through
gluon fusion in 27 TeV pp collisions. To derive predictions we include contributions based on pertur-
bative computations of scattering cross sections as studied in Ref. [47]. We include perturbative QCD
corrections through next-to-next-to-next-to-leading order (N3LO), electroweak (EW) and approximated
mixed QCD-electroweak corrections as well as effects of finite quark masses. The only modification
with respect to YR4 [45] is that we now include the exact N3LO heavy top effective theory cross section
of Ref. [48] instead of its previous approximation. The result of this modification is only a small change
in the central values and uncertainties. To derive theoretical uncertainties we follow the prescriptions
outlined in Ref. [47]. We use the following inputs:

ECM 27 TeV
mt(mt) 162.7 GeV
mb(mb) 4.18 GeV

mc(3 GeV) 0.986 GeV
↵S(mZ) 0.118

PDF PDF4LHC15_nnlo_100 [49]

(5)

All quark masses are treated in the MS scheme. To derive numerical predictions we use the program
iHixs [50].

Sources of uncertainty for the inclusive Higgs boson production cross section have been assessed
recently in refs. [47, 51, 52, 45]. Several sources of theoretical uncertainties were identified.
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Fig. 1: The figure shows the linear sum of the different sources of relative uncertainties as a function
of the collider energy. Each coloured band represents the size of one particular source of uncertainty as
described in the text. The component �(PDF+↵S) corresponds to the uncertainties due to our imprecise
knowledge of the strong coupling constant and of parton distribution functions combined in quadrature.

– Missing higher-order effects of QCD corrections beyond N3LO (�(scale)).
– Missing higher-order effects of electroweak and mixed QCD-electroweak corrections at and be-

yond O(↵S↵) (�(EW)).
– Effects due to finite quark masses neglected in QCD corrections beyond NLO (�(t,b,c) and �(1/mt)).
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N3LO: PDFs

A sizeable source of the error budget

ggH
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A sizeable source of the error budget… even more so

ggH

[Czakon, Harlander, Klappert, 
Niggetiedt (2021)]

[Becchetti, Bonciani, del Duca, Hirschi, 
Moriello, Schweitzer (2020); Bonetti, 
Panzer, Smirnov, Tancredi, Melnikov 

(2019-2020)]



N3LO PDFs issues: evolution
N3LO: evolution and the problems of small-x
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Figure 2. The resummed and matched splitting functions at LO+LL (dotted green), NLO+NLL (dashed
purple) and NNLO+NLL (dot-dot-dashed blue) accuracy: Pgg (upper left), Pgq (upper right), Pqg (lower
left) and Pqq (lower right). The fixed-order results at LO (dotted) NLO (dashed) and NNLO (dot-dot-
dashed) are also shown (in black). The results also include an uncertainty band, as described in the text.
The plots are for –s = 0.2 and nf = 4 in the Q0MS scheme. We note that di�erence between Q0MS and
MS for the fixed-order results is immaterial at this accuracy.

techniques described in Ref. [61] and improved as described in the previous sections. Moreover, we
also show new results for the coe�cient functions with massive quarks.

5.1 Splitting functions

Let us start with DGLAP evolution. With respect to our previous work [61] we have made sub-
stantial changes in the resummation of the anomalous dimensions, mostly due to the treatment of
running coupling e�ects, as described in Sect. 3. Additionally, we are now able to match the NLL
resummation of the splitting functions to their fixed-order expressions up to NNLO, as presented
in Sect. 4.

In Fig. 2 we show the fixed-order splitting functions at LO (black dotted), NLO (black dashed)
and NNLO (black dot-dot-dashed) compared to resummed results at LO+LL (green dotted),
NLO+NLL (purple dashed) and NNLO+NLL (blue dot-dot-dashed). In principle, we also have
the technology for matching LL resummation to NLO, but this is of very limited interest, so we
do not show these results here (they can be obtained from the HELL-x code). The gluon splitting
functions Pgg and Pgq are shown in the upper plots, and the quark ones Pqg and Pqq are shown
in the lower plots (the latter two start at NLL so the LO+LL curve is absent there). All splitting
functions are multiplied by x for a clearer visualization. The scheme of the resummed splitting
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] • N3LO calculation underway [Herzog, Moch, Ruijl, 
Ueda, Vermaseren, Vogt, in progrress] 

• N3LO: rapid small-x growth → perturbative 
instabilities@N3LO 

• NLL resummation known, but large subleading 
effects [Bonvini, Marzani (2018)]
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Figure 6.3. The double di↵erential PDF luminosities as a function of µ = MX and y, Eq. (6.1),
comparing the gluon-gluon (left plots) and quark-antiquark (right plots) luminosities between the NNLO
and NNLO+NLLx fits normalized to the central value of the former. We show the results as a function
of y for MX = 10, 30, 100 GeV (top to bottom).
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Figure 6.3. The double di↵erential PDF luminosities as a function of µ = MX and y, Eq. (6.1),
comparing the gluon-gluon (left plots) and quark-antiquark (right plots) luminosities between the NNLO
and NNLO+NLLx fits normalized to the central value of the former. We show the results as a function
of y for MX = 10, 30, 100 GeV (top to bottom).
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NNLO: an issue at low-mass, not quite so at the EW scale



N3LO PDFs issues: evolution
N3LO: evolution and the problems of small-x

NNLO: an issue at low-mass, not quite so at the EW scale. N3LO?

• How dangerous is the spurious N3LO growth? 
• Are subleading terms under control? 
• To which extent DGLAP evolution washes out small-x effects? 
• Control-sample with effectively no evolution (i.e. LHC-only fits)?

<latexit sha1_base64="4hu9DRunSUX5nvbhvhIhWtxMrJw="></latexit>

�0(M) =
CA

⇡
[2 (1)�  (M)�  (1�M)] !

Spurious leading pole in 0, starting at N3LO (vs pole at N~0.3). 

Is this an issue for precision physics (at the EW scale and beyond)?
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N3LO PDFs issues: data
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• Collider data crucial to reduce perturbative 
uncertainty → fully-consistent N3LO fit 
would require top, Z pt, jets @ N3LO

N3LO for PDFs: status and prospects 
• DIS ✔ 
• DY ✔ 
• Z pt: ~ (unknown, but should be possible) 
• Top: ~ (unknown, but should be possible given current understanding) 
• Jets: ✘ (unknown, and there may be serious problems…)



The problem with N3LO calculations
Factorization theorem:
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d� =

Z
dx1dx2f(x1)f(x2) d�part(x1, x2)FJ (1 +O(⇤p

QCD/Q
p))

with dσpart = R + V is insensitive to IR physics (reabsorbed, to LP, in PDFs)

At higher order, this may not be enough… 
• top @ N3LO and beyond: R + V is not enough. ``Non-perturbative’’ bound state singularities that 

need to be accounted for [Beneke, Ruiz-Femenia (2016)] 

…or may be badly violated 
• massive initial state: from NNLO, non-trivial space-like vs time-like analytic continuation lead to 

factorization violation (non-abelian Coulomb phases…)  (see [FC, Melnikov, Napoletano, Tancredi 
(2020)] for a modern-language derivation) 

• a similar mechanism seems to be present from N3LO for processes with non-trivial color → 
``standard’’ collinear factorization may be broken  [Forshaw, Seymour, Kyrieleis, Siodmok (2006-2012); 
Catani, de Florian, Rodrigo (2012)]



N3LO: going differential
Colour-singlet production at order αs3:

EH + 9¥
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+

Soft/collinear (+virtual) 
effects at vanishingly small pt

If pt ≠ 0: at least one 
hard emission

Rapidity distribution at 
vanishingly small pt

V+J@NNLO
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Fully-differential Higgs @ N3LO: P2B
[Chen, Gehrmann, Glover, Huss, Mistlberger, Pelloni (2021)]
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FIG. 2. Comparison between inclusive (left) and fiducial (right) predictions for the rapidity distribution of the Higgs boson up
to N3LO. Predictions are shown at LO (grey), NLO (green), NNLO (blue), N3LO (red), and for the NNLO prediction re-scaled
by the inclusive KN3LO-factor (orange).

channel at N3LO. The fully di↵erential prediction is as-
sembled according to Eq. (1), which requires:

1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [38, 39] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 39] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [40] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,
an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [41] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that

• Higgs rapidity distribution [Dulat, Mistlberger, Pelloni (2018)] 
• Exquisite numerical control of H+j@NNLO [NNLOjet, 2015-2021] 
• Combined using P2B [Cacciari, Dreyer, Karlberg, Salam, Zanderighi (2015)]
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FIG. 2. Comparison between inclusive (left) and fiducial (right) predictions for the rapidity distribution of the Higgs boson up
to N3LO. Predictions are shown at LO (grey), NLO (green), NNLO (blue), N3LO (red), and for the NNLO prediction re-scaled
by the inclusive KN3LO-factor (orange).

channel at N3LO. The fully di↵erential prediction is as-
sembled according to Eq. (1), which requires:

1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [38, 39] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 39] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [40] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,
an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [41] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that

Inclusive
Fiducial
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Easy to go from N3LO to N3LO + N3LL



N3LO+N3LL: recent results

4

III. THE TOTAL FIDUCIAL CROSS SECTION

If (and only if) the singular distributional structure of
d�(0)

/dqT is known, the qT spectrum can be integrated
to obtain the total cross section. This is the basis of qT
subtractions [44],

� = �
sub(qo↵

T
)+

Z
dqT


d�

dqT
�

d�sub

dqT
✓(qT  q

o↵

T
)

�
. (14)

Here, d�sub = d�(0)[1+O(qT /mH)] contains the singular
terms, with �

sub(qo↵
T

) its distributional integral over qT 

q
o↵

T
, while the term in brackets is numerically integrable.

Taking �
sub

⌘ �
sing, we get

� = �
sing(qo↵

T
) +

Z
q
off
T

0

dqT
d�nons

dqT
+

Z

q
off
T

dqT
d�

dqT
, (15)

which is exactly the integral of Eq. (13). The subtrac-
tions here are di↵erential in qT , where qo↵T ⇠ 10�100GeV
determines the range over which they act and exactly
cancels between all terms.

To integrate d�nons
/dqT in Eq. (15) down to qT = 0,

we parametrize the fixed-order coe�cients in Eq. (12) by
their leading behavior,

qT
d�nons

FO

dqT

����
↵n

s

=
q
2

T

m
2

H

2n�1X

k=0

ak ln
k q

2

T

m
2

H

+ · · · , (16)

and perform a fit to this parameterization, which we then
integrate analytically. To obtain reliable, unbiased fit re-
sults, we must account for the uncertainties in the pa-
rameterization from yet higher-power corrections. We
do so by including additional higher-power coe�cients
as nuisance parameters. In the fiducial case, we include
all O(q3

T
/m

3

H
) coe�cients. The fit procedure is an ex-

tension of the one described in Refs. [103, 104]. It has
been validated extensively, and more details will be given
elsewhere. As a benchmark, we correctly reproduce the
↵s (↵2

s
) coe�cients of the total inclusive cross section to

better than 10�5 (10�4) relative precision.
At N3LO, we use existing NNLOjet results [41, 42] to

get nonsingular data for 0.74GeV (4GeV)  qT  q
o↵

T

for inclusive log bins (for inclusive and fiducial linear
bins). While these data are not yet precise enough to-
wards small qT to give a stable fit on their own, we ex-
ploit that in the inclusive case, the known ↵

3
s
coe�cient

of the total inclusive cross section [25, 105] provides a
su�ciently strong additional constraint to obtain a reli-
able fit. In the fiducial case, we exploit that the inclusive
and fiducial ak arise from the same Y -dependent coef-
ficient functions integrated either inclusively or against
A(0, Y ;⇥). At NLO and NNLO, their ratios are between
0.4 to 0.55. At N3LO, we thus perform a simultaneous
fit to inclusive and fiducial data, using this range as a
1� constraint on the ratio of fiducial and inclusive ak.

FIG. 2. Fiducial and nonsingular power corrections integrated
up to qT  q

cut
T . The yellow band shows �nons from the fit.
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FIG. 3. Total fiducial gg ! H ! �� cross section at fixed or-
der and including resummation, where �resum ⌘ �qT ��' �
�match, compared to preliminary ATLAS measurements [26].

This yields a stable fit, with an acceptable ⇠ 0.1 pb un-
certainty for the fiducial nonsingular integral (�nons).

The often-used qT slicing approach amounts to taking
q
o↵

T
! q

cut

T
⇠ 1GeV and simply dropping the power cor-

rections below q
cut

T
. The nonsingular and fiducial power

corrections are shown in Fig. 2. The latter are huge at
↵
3
s
, and even at ↵

2
s
only become really negligible below

q
cut

T
<
⇠ 10�2 GeV. This is why it is critical for us to

include them in the subtractions (and to resum them).
The remaining nonsingular corrections at ↵

3
s
are about

ten times larger than at ↵
2
s
, and at q

cut

T
= 1 � 5GeV

still contribute 5 � 10% of the total ↵3
s
coe�cient. To-

gether with the current precision of the nonsingular data,
this makes the above di↵erential subtraction procedure
essential to our results.

Evaluating Eq. (15) either at fixed order or including
resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor con-
vergence at fixed order is largely due to the fiducial power

Order NLO NNLO N3LO

�(pp ! Z/�
⇤ ! l

+
l
�) [pb] 766.3± 0.5 757.4± 1.9 746.1± 1.9

Order NLL+NLO NNLL+NNLO N3LL+N3LO

�(pp ! Z/�
⇤ ! l

+
l
�) [pb] 773.7± 0.5 759.8± 1.9 749.6 ±2.0

Table 1: Fiducial cross sections at the LHC (
p
s = 13 TeV): fixed-order results and corresponding

resummation results obtained with the DYTurbo numerical program. The uncertainties on the val-

ues of the cross sections plots refer to an estimate of the numerical uncertainties in the integration.

further enhance the N3LO result by +0.5%. We observe that the K-factor between the N3LO and
NNLO results is 0.985 which is comparable with results reported in Table I of Refs. [22, 23].

In order to quantify the contribution of the finite component of the cross section in the small-qT
region we report that the integral over the ranges 4 < qT < 20GeV and 1 < qT < 4GeV of the
LO finite component represent respectively the 1.5% and 0.12% of the NLL+NLO fiducial cross
section in Table 1, the O(↵2

S
) correction in the same ranges is respectively the 0.10% and �0.04%

of the NNLL+NNLO result while the O(↵3
S
) correction in the range 4 < qT < 20GeV the 0.16%

of the N3LL+N3LO.

The results in Table 1 have been obtained applying the symmetric lepton pT cuts previously
defined. It is well known [117, 118] that in the case of symmetric (or nearly-symmetric) cuts
fixed-order calculations are a↵ected by perturbative (soft-gluon) instabilities at higher orders.
The results in Table 1 are obtained with a lower integration limit for the finite part of the cross
section fixed to qTcut = 0.5GeV and the quoted uncertainties do not include an estimate of the
corresponding systematic uncertainty. More accurate fixed-order results and an estimate of such
uncertainty can be obtained by evaluating the qTcut ! 0 extrapolation. However such extrapola-
tion cannot improve the physical predictivity of the fixed-order results in case of symmetric cuts
which are a↵ected by sizable theoretical uncertainties produced by the soft-gluon e↵ects.

We conclude reporting typical DYTurbo running times. The numerical results of Fig.1 (a) were
evaluated with a target in the relative numerical uncertainty of 10�3 on a AMD Opteron 6344
CPU using 4 parallel threads. The calculation time, for predictions at fixed value of the scales,
has been 7 minutes at NLL, 13 minutes at NNLL and 1.7 hours at N3LL.

We have performed the implementation of both the qT resummation and qT subtraction for-
malism for Drell–Yan processes up to N3LL+N3LO and N3LO in the DYTurbo numerical program.
In this Letter we have illustrated the first numerical results for the case of Z/�⇤ production and
leptonic decay at the LHC.

Acknowledgments. We gratefully acknowledge Stefano Catani for useful discussions and com-
ments on the manuscript and Ludovica Aperio Bella for extensive tests of the numerical code.
This project has received funding from the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Sk lodowska-Curie grant agreement number 754496 and under
European Research Council grant agreement number 740006.
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Figure 5. Comparison of matched predictions at N3LL +NNLO (red) and N3LL0 +NNLO (blue) with
ATLAS data [96] for p``t (left panel) and �⇤

⌘ (right panel). The fixed-order component is turned off below
�⇤
⌘ = 3.4 ·10�2 in the right panel, see main text for details. In the left plot, the x axis is linear up to 30 GeV

and logarithmic above.

and rather insist on the variation of parameter v0 in a sensible range, such as [2/3, 3/2] around the
central v0 value, as better suited to this aim. This variation is responsible for the slight widening of
the band between 30 GeV and 100 GeV, which we believe to reflect a genuine matching uncertainty
in this region.

In Fig. 5 we finally compare matched predictions in the fiducial setup to ATLAS data [96],
both for p

``

t
(left panel) and for �

⇤
⌘

(right panel). The left panel includes the same theoretical
predictions shown in the right panel of Fig. 3 (keeping the same colour code), which are here
normalised to their cross section in order to match the convention of the shown data. The matched
N3LL0+NNLO predictions for p

``

t
show a remarkable agreement with experimental data, with a

theoretical-uncertainty band down to the 2 - 5% level, essentially overlapping with data in all bins
form 0 to 200 GeV (barring one low-p``

t
bin, where the cancellation between the fixed-order and the

expanded components is particularly delicate, and few middle-p``
t

bins where the agreement is only
marginal). The inclusion of ‘primed’ effects tends to align the shape of the theoretical prediction to
data, so that the former never departs more than 1 - 2% from the latter below 200 GeV, as opposed
to the more visible relative distortion of the N3LL +NNLO below 5 GeV and above 50 GeV. The
�
⇤
⌘

results on the right panel follow by and large the same pattern just seen for p
``

t
, with ‘primed’

effects being relevant to improve the data-theory agreement over the entire range, expecially at very
small �⇤

⌘
, and theoretical uncertainties at or below the ±3% level.

We incidentally note that, due to the extremely soft and collinear regime probed by �
⇤
⌘

data,
the fixed-order component features some fluctuations at small �⇤

⌘
; consequently, we have opted to

turn it off in the first bins (up to �
⇤
⌘
= 3.4 · 10�2), which implies that the matching formula in

that region corresponds to the sole resummation output, multiplied by Z(v). On the one hand
this shows that resummation alone is capable of predicting data remarkably well both in shape
and in normalisation at very small �⇤

⌘
; on the other hand it highlights the necessity of dedicated

high-statistics fixed-order runs in order to reliably extract information on fiducial cross sections at
N3LO by means of slicing techniques, especially in presence of symmetric lepton p

`
±

t
cuts.

– 26 –

H H/Z

Z

[V+jet@NNLO: NNLOjet, extremely stable down to pt ~ 0.5 GeV]

[Billis, Dehnadi, Ebert, Michel, Tackmann (2021)]

[Camarda, Cieri, Ferrera (2021)]

[Re, Rottoli, Torrielli (2021)]
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FIG. 2: Inclusive N3LO QCD corrections to total
cross section for Drell-Yan production through a vir-
tual photon. In the bottom panel we plot the ratio to

the analytic calculation in [14].

therefore it is important to choose a su�ciently small qcutT
to suppress such power corrections.

Fig. 2 demonstrates the SCET+NNLOJET predictions
being independent on q

cut
T for values below 1 GeV. In

fact, for all partonic channels except qg, the cross section
predictions become flat and therefore reliable already at
q
cut
T ⇠ 5 GeV. It is only the qg channel that requires a
much smaller q

cut
T , indicating more sizeable power cor-

rections than in other channels. A more detailed under-
standing of this feature could become useful when apply-
ing qT -subtraction to more complicated final states.

Also shown in the upper panel of Fig. 2 in dashed
lines are the inclusive predictions from [14], decomposed
into di↵erent partonic channels. We observe an excellent
agreement at small-qT region with a detailed compari-
son given in Tab. I. This agreement provides a fully in-
dependent confirmation of the analytic calculation [14],
and lends strong support to the correctness for our qT -
subtraction-based calculation. In the bottom panel of
Fig. 2, we plot the ratio between di↵erent partonic chan-
nels to the total inclusive N3LO corrections. We ob-
serve large cancellation between qg channel (blue) and
qq̄ channel (orange). While the inclusive N3LO correc-
tion is about �8 fb, the qg channel alone can be as large
as �15.3 fb. Similar cancellations between qg and qq̄

channel can already be observed at NLO and NNLO.
The numerical smallness of the NNLO corrections (and
of its associated scale uncertainty) is due to these cancel-
lations, which may potentially lead to an underestimate
of theory uncertainties at NNLO.

In Fig. 3 we show for the first time the N3LO pre-
dictions for the Drell-Yan di-lepton rapidity distribution,
which constitutes the main new result of this letter. Pre-

Fixed Order �pp!�⇤(fb)

LO 339.62+34.06
�37.48

NLO 391.25+10.84
�16.62

NNLO 390.09+3.06
�4.11

N3LO 382.08+2.64
�3.09 from [14]

N3LO only qT -subtraction Results from [14]

qg �15.32(32) �15.29

qq̄ + qQ̄ +5.08(11) +4.97

gg +2.17(6) +2.12

qq + qQ +0.09(13) +0.17

Total �7.98(36) �8.03

TABLE I: Inclusive cross sections with up to N3LO
QCD corrections to Drell-Yan production through
a virtual photon. N3LO results are from the qT -
subtraction method (qcutT = 0.63 GeV) and from the
analytic calculation in [14]. Cross sections at central
scale of Q = 100 GeV are presented together with
7-point scale variation. Numerical integration errors

from qT -subtraction are indicated in brackets.

FIG. 3: Di-lepton rapidity distribution from LO to
N3LO. The colored bands represent theory uncer-
tainties from scale variations. The bottom panel is
the ratio of the N3LO prediction to NNLO, with dif-

ferent cuto↵ q
cut
T .

dictions of increasing perturbative orders up to N3LO
are displayed. We estimate the theory uncertainty band
on our predictions by independently varying µR and µF

around 100 GeV with factors of 1/2 and 2 while elimi-
nating the two extreme combinations (7-point scale vari-
ation). With large QCD corrections from LO to NLO,
the NNLO corrections are only modest and come with
scale uncertainties that are significantly reduced [5, 7, 8].
However, as has been observed for the total cross sec-
tion, the smallness of NNLO corrections is due to cancel-

γ*

[Chen, Gehrm
ann, Glover, Huss, 

Yang, Zhu (2021)]



N3LO from resummation: a word of caution
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• Subleading power ~ αsn (pt/Q)2 ln2n-1(pt/Q) → much lower cutoff w.r.t. NNLO 

• Naive estimate: NNLO V+j down to ~1-0.5 GeV → error up to order 1%
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III. THE TOTAL FIDUCIAL CROSS SECTION

If (and only if) the singular distributional structure of
d�(0)

/dqT is known, the qT spectrum can be integrated
to obtain the total cross section. This is the basis of qT
subtractions [44],

� = �
sub(qo↵

T
)+

Z
dqT


d�

dqT
�

d�sub

dqT
✓(qT  q

o↵

T
)

�
. (14)

Here, d�sub = d�(0)[1+O(qT /mH)] contains the singular
terms, with �

sub(qo↵
T

) its distributional integral over qT 

q
o↵

T
, while the term in brackets is numerically integrable.

Taking �
sub

⌘ �
sing, we get

� = �
sing(qo↵

T
) +

Z
q
off
T

0

dqT
d�nons

dqT
+

Z

q
off
T

dqT
d�

dqT
, (15)

which is exactly the integral of Eq. (13). The subtrac-
tions here are di↵erential in qT , where qo↵T ⇠ 10�100GeV
determines the range over which they act and exactly
cancels between all terms.

To integrate d�nons
/dqT in Eq. (15) down to qT = 0,

we parametrize the fixed-order coe�cients in Eq. (12) by
their leading behavior,

qT
d�nons

FO

dqT

����
↵n

s

=
q
2

T

m
2

H

2n�1X

k=0

ak ln
k q

2

T

m
2

H

+ · · · , (16)

and perform a fit to this parameterization, which we then
integrate analytically. To obtain reliable, unbiased fit re-
sults, we must account for the uncertainties in the pa-
rameterization from yet higher-power corrections. We
do so by including additional higher-power coe�cients
as nuisance parameters. In the fiducial case, we include
all O(q3

T
/m

3

H
) coe�cients. The fit procedure is an ex-

tension of the one described in Refs. [103, 104]. It has
been validated extensively, and more details will be given
elsewhere. As a benchmark, we correctly reproduce the
↵s (↵2

s
) coe�cients of the total inclusive cross section to

better than 10�5 (10�4) relative precision.
At N3LO, we use existing NNLOjet results [41, 42] to

get nonsingular data for 0.74GeV (4GeV)  qT  q
o↵

T

for inclusive log bins (for inclusive and fiducial linear
bins). While these data are not yet precise enough to-
wards small qT to give a stable fit on their own, we ex-
ploit that in the inclusive case, the known ↵

3
s
coe�cient

of the total inclusive cross section [25, 105] provides a
su�ciently strong additional constraint to obtain a reli-
able fit. In the fiducial case, we exploit that the inclusive
and fiducial ak arise from the same Y -dependent coef-
ficient functions integrated either inclusively or against
A(0, Y ;⇥). At NLO and NNLO, their ratios are between
0.4 to 0.55. At N3LO, we thus perform a simultaneous
fit to inclusive and fiducial data, using this range as a
1� constraint on the ratio of fiducial and inclusive ak.
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FIG. 2. Fiducial and nonsingular power corrections integrated
up to qT  q

cut
T . The yellow band shows �nons from the fit.

FIG. 3. Total fiducial gg ! H ! �� cross section at fixed or-
der and including resummation, where �resum ⌘ �qT ��' �
�match, compared to preliminary ATLAS measurements [26].

This yields a stable fit, with an acceptable ⇠ 0.1 pb un-
certainty for the fiducial nonsingular integral (�nons).

The often-used qT slicing approach amounts to taking
q
o↵

T
! q

cut

T
⇠ 1GeV and simply dropping the power cor-

rections below q
cut

T
. The nonsingular and fiducial power

corrections are shown in Fig. 2. The latter are huge at
↵
3
s
, and even at ↵

2
s
only become really negligible below

q
cut

T
<
⇠ 10�2 GeV. This is why it is critical for us to

include them in the subtractions (and to resum them).
The remaining nonsingular corrections at ↵

3
s
are about

ten times larger than at ↵
2
s
, and at q

cut

T
= 1 � 5GeV

still contribute 5 � 10% of the total ↵3
s
coe�cient. To-

gether with the current precision of the nonsingular data,
this makes the above di↵erential subtraction procedure
essential to our results.

Evaluating Eq. (15) either at fixed order or including
resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor con-
vergence at fixed order is largely due to the fiducial power

• For Higgs, confirmed by (and included in).      
[Billis, Dehnadi, Ebert, Michel, Tackmann (2021)] 

• Good news: first subleading is enough 

• N3LO+N3LL: less severe, but more ambiguities
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by the inclusive KN3LO-factor (orange).

channel at N3LO. The fully di↵erential prediction is as-
sembled according to Eq. (1), which requires:

1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [38, 39] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 39] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [40] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,
an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [41] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that
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channel at N3LO. The fully di↵erential prediction is as-
sembled according to Eq. (1), which requires:

1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [38, 39] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 39] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [40] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,
an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [41] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that

Inclusive
Fiducial

?•Inclusive: flat K-factor (as for inclusive), tiny error, no structure 
•Fiducial: large corrections, large error, non-trivial shapes

Higgs fiducial: [Chen, Gehrmann, Glover, Huss, Mistlberger, Pelloni (2021)]



Fiducial N3LO: a more serious problem

``observable FJ must be insensitive to IR regions’’ 
violated by ATLAS/CMS experimental cuts
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d� =

Z
dx1dx2f(x1)f(x2) d�part(x1, x2)FJ (1 +O(⇤p

QCD/Q
p))

•Drell-Yan: pt,l > 25 GeV, |yl| < 2.5 → the infamous ``symmetric cuts’’. Well-known 
source of troubles [Frixione, Ridolfi (1997)] 

•Higgs: asymmetric cuts. pt,γ1(2) < 0.35(0.25) mΗ, |yγ| < 2.37, with gap

Unfortunately, both symmetric and asymmetric cuts share the same 
feature: introduce linear pt dependence on the acceptance at small pt  

[Catani, Cieri, de Florian, Ferrera, Grazzini (2018); Ebert, Michel, Tackmann + Billis, Dehnadi 
(2017-2021); Salam + Slade (2015, 2021)]



Spoiling R+V cancellations: a cartoon
Inclusive calculations:
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Spoiling R+V cancellations: a cartoon
Inclusive calculations:

unitarity insensitive to IR physics
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Spoiling R+V cancellations: a cartoon
Inclusive calculations:

unitarity insensitive to IR physics

Fiducial: non-trivial acceptance may weight the real integral
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Spoiling R+V cancellations: a cartoon
Inclusive calculations:

unitarity insensitive to IR physics

Fiducial: non-trivial acceptance may weight the real integral
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If f changes strongly at low pt: contamination from IR physics. 
Serious problem for fixed-order perturbation theory



LHC typical acceptances:

Figure 2: Acceptance for Higgs to di-photon decays, f(pt,h), as a function of pt,h, for

a symmetric cut on the photons (pt,�, pt,+ > 0.25mh), a cut just on the harder photon

(pt,+ > 0.35mh) and an asymmetric cut, where both conditions are imposed. Points are

Monte Carlo evaluations of the acceptance (whose value is independent of any perturbative

order), while the lines use Eqs. (2.7), (2.14) and (2.17), extended to fourth order in pt,h/mh.

Where a band is visible, its width corresponds to the di↵erence between third and fourth

order expansions.

in Eq. (2.11), with the terms from order ↵
2
s onwards almost the same (aside from the

overall replacement of f sym

1
! f

asym

1
). The conclusion is that relative to symmetric cuts,

asymmetric cuts may reduce the overall impact of the pt,h-dependence of the acceptance

in the full resummed fiducial cross section, however they bring essentially no improvement

as regards one of the fundamental issues of symmetric cuts, namely the poor asymptotic

behaviour of the perturbative series.4

The reason why asymmetric cuts do not improve the perturbative convergence is that

the integral of a linearly dependent acceptance with a perturbative term that goes as

↵
n
sL

N (N = 2n� 1) is dominated by large values of L, or equivalently small values of pt,h.

Specifically, half of the integral to a given perturbative term comes from L > N + 2/3 +

O (1/N). Taking the example of the ↵
3
s term, where N = 5, that means that half of the

acceptance correction integral comes from pt,h . 0.2 GeV. It is not surprising, therefore,

that the behaviour of the acceptance beyond pt,h > � = 12.5 GeV (where the pt,� cut sets

in), should have little impact on the convergence of the perturbative series

The fact that so much of the perturbative series in Eqs. (2.11) and (2.19) comes from

low pt,h values is part of the reason why it has been found to be necessary to have very

small technical cuts in high-order perturbative calculations (cf. Fig. 2 of Ref. [12]; the direct

4If anything, asymmetric cuts may even worsen it. So far we have factored out f1 in all the series. But a

symmetric cut with pt,+, pt� > 0.25mh has f
sym

1
/f0 ' �0.42 while an asymmetric cut with pt,+ > 0.35mh

and pt,� > 0.25mh has fasym

1
/f0 ' 0.87, i.e. roughly double the overall coe�cient.
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f symm(pt,H) ⇠ f0 + f symm
1 · pt,H
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fasymm(pt,H) ⇠ f0 + fasymm
1 · pt,H

mH

For small pt,H:

In the IR region (=small pt,H), LHC cuts have a linear dependence on the 
Higgs transverse momentum → spoil R+V cancellation in fixed-order 
calculations



Linear acceptances: how bad?
A cartoon: double-logarithmic approximation [L=ln(mH/2pt,H)]
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The fixed-order series is then:

Pert.theory does not improve after n ~ 1/2 + π/(8 CA αs) ~ 1.5
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take the integration up to pt,h = mh/2, corresponding to L = 0,

�
dl

fid,sym
=

Z
mh/2

0

dpt,h f
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The sum multiplying f1 can be evaluated in closed form, but we have chosen to write it

as a power series in the coupling, as would arise in a fixed-order fiducial calculation. The

feature to note is that the terms proportional to f1 involve a factor (2n)!/n!, which grows

similarly to n! for large n.

The appearance of factorial growth in QCD perturbative series is often associated

with infrared QCD renormalons [17] and a fundamental ambiguity connected with the

non-perturbative region. Here, unlike those infrared renormalons, the terms alternate in

sign from one order to the next, and there is an unambiguous result for their sum, which can

be obtained by performing the integral in Eq. (2.9) with the resummed Higgs pt distribution

(technically, one would say that the series is Borel resummable). However, if one carries

out an order-by-order calculation, the result will start to diverge for

n > nmin '
⇡

8↵sCA

+
1

2
. (2.10)

Using CA = 3, ↵s(mh/2) ' 0.125, that translates to n & 1.5, as one can verify by examining

the explicit series for the terms proportional to f1
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f
sym
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resummed

,

(2.11b)

where the right-hand answer is the resummed result. As expected, the series fails to

converge from the first term (one should keep in mind that the number for each term in

the series already includes the relevant power of ↵s). Furthermore, no truncation of the

series reproduces the all-order result.

Even though the divergence that we see in Eq. (2.9) is of di↵erent origin from infrared

renormalons [17] (and with alternating signs rather than the same-sign structure that

appears for infrared renormalons), one can express the size of the smallest term as a power

of (⇤/mh) and compare it to the (⇤/mh)2 infrared renormalon expected for inclusive [18]

and rapidity-di↵erential [19] cross sections for heavy colour-singlets.3 To do so, we use

Stirling’s approximation for the factorials, Eq. (2.10) to replace (2CA↵s/⇡) with 1/4nmin,

3Recently, evidence has emerged suggesting that (⇤/Q)2 scaling applies also for the pt distribution of a

colour-singlet [20] (where the singlet pt and mass are considered to be commensurate and of order Q).
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Linear acceptances: how bad?
Realistic scenario:

e↵ects, the asymptotic scaling of the terms (though not their absolute values) is between

that of the LL and DL results, sometimes at one of the extremities. The RadISH NNLO

and N3LL expansions are available up to N3LO, and at N3LL they account for all terms

up to N3LO in d�/dpt,h that have a 1/pt,h enhancement at small pt,h. As before, we will

integrate acceptances up to mh/2, and we will study

�fid � f0�inc

�0f0
=

Z mh

2

✏

dpt,h

✓
f
fid(pt,h)

f0
� 1

◆
1

�0

d�

dpt,h
, (2.22)

where �inc is the inclusive cross section integrated up to pt,h = mh/2.6 Note that we include

a cuto↵ ✏ for the lower limit of the pt,h integral. Unless otherwise stated, when quoting

numbers we will take ✏ ! 0, however we will also plot the ✏ dependence of the result to

gauge the e↵ect of a pt,h cuto↵ in a projection-to-Born type [49] subtraction approach for

perturbative calculations, as used in Ref. [11]. (In practice, such calculations impose a

cuto↵ m
2

min
on the invariant mass of parton pairs, and a cut m2

min
. ✏

2 is required to fully

cover transverse momenta down to a scale ✏.)

For asymmetric cuts with the ATLAS thresholds of pt,+ > 0.35mh and pt,� > 0.25mh

(using not just the f1 part of the acceptance, but its full structure), we obtain the following

results for the acceptances for each of the perturbative models,

�asym � f0�inc

�0f0
' 0.15↵s � 0.29↵2

s
+ 0.71↵3

s
� 2.39↵4

s
+ 10.26↵5

s
+ . . . ' 0.06 @DL,

' 0.15↵s � 0.23↵2
s
+ 0.44↵3

s
� 1.15↵4

s
+ 3.83↵5

s
+ . . . ' 0.06 @LL,

' 0.18↵s � 0.15↵2
s
+ 0.29↵3

s
+ . . . ' 0.10 @NNLL,

' 0.18↵s � 0.15↵2
s
+ 0.31↵3

s
+ . . . ' 0.12 @N3LL.

(2.23)

In these results, the ↵n
s subscript indicates that the corresponding term is the ↵n

s contribu-

tion to the result, while the right-hand side of the equality corresponds to the acceptance

as determined from the resummation (in the case of the LL result, we stop the integration

at the Landau pole). The DL and LL results clearly show how the series start to diverge

towards higher orders. In the LL case, the terms grow a little more slowly, and numerically

fitting the structure of the series to high orders leads to the conclusion that (for nf = 5) the

smallest term in the series scales as (⇤/Q)0.205 rather than the (⇤/Q)23/144 ' (⇤/Q)0.160

seen at DL level. The investigations reported in Appendix B suggest that the (⇤/Q)0.205

scaling may be robust with respect to b-space versus pt space complications, as well as to

other subleading e↵ects.

Next, we examine the NNLL and N3LL results in Eq. (2.23). The all-order results are

twice as large in the NNLL and N3LL cases as compared to the DL and LL cases, which is

6Were we considering results matched to fixed order, we would integrate up to the kinematic limit for

pt,h and then write �tot instead of �inc. However, for the resummed approximation that we use here, it

makes little sense to integrate beyond mh/2. Note also that as compared to the standard resummation, the

full cross section will include additional relative corrections suppressed by powers of (pt,h/mh)
2. We expect

the additional contributions from such terms to be smaller that the leading power contributions discussed

here.
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Figure 3: The N3LL resummed result and its truncation at N3LO for the fiducial cor-

rections to the Higgs cross section, as defined in Eq. (2.22), for asymmetric pt,� cuts,

pt,+ > 0.35mh and pt,� > 0.25mh. The results are shown as a function of ✏, the mini-

mum Higgs pt used in the integration (conceptually analogous to a technical cuto↵ in a

projection-to-Born fixed-order calculation). The bands are the result of varying renormali-

sation and factorisation scales by a factor of two around mh/2. The N3LL distribution and

expansion used to obtain these results were kindly supplied by the authors of the RadISH

framework [44].

a consequence of the fact that the NNLL and N3LL results includes a substantial part of

the K factor for inclusive Higgs production. The NNLL and N3LL results are themselves

close. Examining the fixed-order results, the main feature to note is that up to N3LO there

is no truncation of the series that agrees with the resummed result.

Fig. 3 illustrates the N3LO truncation compared to the resummation, as a function

of the cuto↵ ✏ in Eq. (2.22). First considering the small-✏ limit, the di↵erence of 0.22

between the central N3LO result and the resummation corresponds to a roughly 7% rel-

ative e↵ect on the full cross section (after accounting for an overall K-factor of about 3).

This is significantly larger than the perturbative scale uncertainty on the inclusive N3LO

cross section [6]. The scale variation bands demonstrate a large scale sensitivity for the

fixed-order result, which does not overlap with the resummed result (though contributions

beyond the resummation could modify this aspect). The pattern of ✏-dependence in Fig. 3

confirms the expectation from Eq. (2.20) that the fixed-order result is highly sensitive to

unphysically low pt,h values.7

One may ask whether a badly divergent perturbative series for a fiducial cross section

is a problem: after all, there are various ways of evaluating the fiducial cross section via

the matching of resummations and fixed order, including the pt,h dependence acceptance

7One intriguing feature is that setting ✏ in the range of a few hundred MeV to one GeV gives an N3LO

truncated result that is much closer to the full N3LL result, and with a reduced scale uncertainty.
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F.o. calculations: sensitive to 
unphysically low values of pt,H        
(DL: ~10-2 GeV to cover 95% of 
the cross-section)

~7% of inclusive, larger 
than scale variation



Fiducial cross-sections: possible ways out
With current experimental setup: f.o. results unreliable. 5

corrections. To see this,

�
FO

incl
= 13.80 [1 + 1.291 + 0.783 + 0.299] pb ,

�
FO

fid
/B�� = 6.928 [1 + (1.300 + 0.129fpc)

+ (0.784� 0.061fpc)

+ (0.331 + 0.150fpc)] pb . (17)

The successive terms are the contributions from each or-
der in ↵s. The numbers with “fpc” subscript are the
contributions of the fiducial power corrections in Eq. (7).
The corrections without them are almost identical to the
inclusive case. The fiducial power corrections break this
would-be universal acceptance e↵ect, causing a 10% cor-
rection at NLO and NNLO and a 50% correction at N3LO
and showing no perturbative convergence.

Integrating W
(0) over qT , all qT logarithms and re-

summation e↵ects formally have to cancel. (Numerically,
this strongly depends on the specific implementation of
resummation and matching. We have verified explicitly
that it is well-satisfied in our approach.) For the fiducial
power corrections, the nontrivial qT -dependence of the
acceptance spoils this cancellation and induces residual
logarithmic dependence on pL/mH in the integral. This
causes the large corrections in Eq. (17), which get re-
summed using the resummed �

sing in Eq. (15). Together
with timelike resummation, this leads to the excellent
convergence of the resummed results in Fig. 3, very sim-
ilar to the inclusive case [72],

�incl = 24.16 [1 + 0.756 + 0.207 + 0.024] pb ,

�fid/B�� = 12.89 [1 + 0.749 + 0.171 + 0.053] pb . (18)

To conclude, our best result for the fiducial Higgs cross
section at N3LL0+N3LO for the cuts in Eq. (1) reads

�fid/B�� = (25.41± 0.59FO ± 0.21qT ± 0.17'

± 0.06match ± 0.20nons) pb

= (25.41± 0.68pert) pb . (19)

Multiplying by B�� = (2.270± 0.047)⇥ 10�3 [106–108],

�fid = 57.69 (1± 2.7%pert ± 2.1%B (20)

± 3.2%PDF+↵s ± 2%EW ± 2%t,b,c) fb ,

where we also included approximations of additional un-
certainties. The PDF+↵s uncertainty is taken from the
inclusive case [24, 108]. For the inclusive cross section,
NLO electroweak e↵ects give a +5% correction [109],
while the net e↵ect of finite top-mass, bottom, and charm
contributions is�5% (in the pole scheme we use). We can
expect roughly similar acceptance corrections for both,
and therefore keep the central result unchanged but in-
clude a conservative 2% uncertainty (40% of the expected
correction) for each e↵ect. Their proper treatment re-
quires incorporating them into the resummation frame-
work, which we leave for future work.
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Starting from N3LO: 
spurious effect can be as 
large as correction itself

A possible option: always match with resummation. However: 
•f.o. provides a very clean, solid and robust framework. Should be careful 

to let it go without thinking 
•Resummation: a whole plethora of new ambiguities…



Fiducial cross-sections: possible ways out
A better option: change cuts to remove linear dependence. Rules of the game: 
• only use data on tape / do not ask for ``bad’’ exp. regions 
• do not significantly affect S/B

Simplest case: Higgs →γγ (pure kinematics) 
• very simple solution: pγt,min > pt,cut 1, pγt,1 + pγt,2 // pγt,1 x pγt,2 > pt, cut 2

[Salam
, Slade (2021)]

Figure 4: Comparison of the pt,h-dependent acceptances for the sum, product and stag-

gered cuts. For the staggered cuts, pt,y+ corresponds to the transverse momentum of the

photon at higher rapidity. As in Fig. 2, the points corresponds to Monte Carlo evaluations

of the acceptances. Lines use series expansions to fourth order and bands (where visible)

show the size of the fourth order term.

Figure 5: The N3LL resummed result and its N3LO truncation, for sum cuts (left) and

product cuts (right), as a function of ✏, the minimum pt,h in Eq. (2.22). Note the di↵erent

scale relative to Fig. 3.

clearly sees the transition to linear pt,h dependence for pt,h & 2� in the case of the sum

and product cuts and for pt,h > � for the staggered cuts.

The perturbative convergence of the acceptance with sum and product cuts is illus-

– 18 –



What about DY?
Same issue, but situation less severe (CA vs CF)

Figure 14: Left: acceptances for the non-zero spherical harmonics, as defined in Eq. (6.4),

for symmetric cuts (pt,` > 25 GeV, in red), and product cuts (
p
pt,+pt,� > 30 GeV,

supplemented with a minimum cut pt,� > 25 GeV, in black). Right: the unpolarised part

of the cross section (i.e. corresponding to f
(u)) within an all-order N3LL calculation (in

blue) and its truncation at N3LO (in red), as a function of the minimum pt,`` that is allowed

in the integration. The results are shown for the same symmetric and product cuts as in

the left-hand plot.

used to obtain the N3LL results were kindly provided by the authors of Ref. [45])

�
(u)

sym � f0�inc

�0f0
' �0.074↵s + 0.051↵2

s
� 0.057↵3

s
+ 0.090↵4

s
� 0.180↵5

s
+ . . . ' �0.047 @DL,

' �0.074↵s + 0.027↵2
s
� 0.014↵3

s
+ 0.010↵4

s
� 0.010↵5

s
+ . . . ' �0.055 @LL,

' �0.118↵s + 0.012↵2
s
� 0.016↵3

s
+ . . . ' �0.114 @NNLL,

' �0.118↵s + 0.012↵2
s
� 0.016↵3

s
+ . . . ' �0.114 @N3LL.

(6.5)

It is the linear dependence of f (u) that will be critical, so the above equations show just

the contribution to the cross section from f
(u). The DL and LL results both show a

breakdown in the convergence of the series, though at somewhat di↵erent orders and with

fairly di↵erent normalisations for the smallest term.21 Considering the N3LL series, the

all-order N3LL result and its N3LO truncation disagree at the order of a percent relative

to the Born cross section.

The dependence of the unpolarised part of the fiducial cross section on a pt,`` cuto↵

and the impact of scale variation are illustrated in Fig. 14 (right). The N3LO truncation

is noticeably sensitive to the minimum pt,`` allowed in the integration, converging only

21In the LL case, the smallest term in the series scales as (⇤/Q)0.76 rather than the (⇤/Q)23/64 '

(⇤/Q)0.36 seen at DL level in Eq. (2.13), cf. Appendix B. As in the Higgs case, the investigations of

Appendix B suggest that for linear cuts, the power scaling seen at LL may well hold beyond, while for

quadratic cuts we have not conclusively established the power.
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Solution more tricky, V couples production / decay  
[see Salam, Slade (2021) for a discussion]

Other processes? In principle, could be a problem any time you have an 
essentially symmetric configuration at LO (e.g. top, some configurations for Z+j, 
jets, photons)…. A lot to explore…



Back to NNLO:  
1. Heavy flavour 



X+b/c: more and more prominent…
The problem: TH vs EXP have a quite different definition of ``flavour’’

EXP: displaced vertices, hadron tagging…

TH: ``what is the net flavour of a jet?’’

2 b-jets light - b - light b                b 

bb̅ must behave like 
a gluon [coll. safety] 



X+b/c: more and more prominent…
The problem: TH vs EXP have a quite different definition of ``flavour’’

EXP: displaced vertices, hadron tagging…

TH: ``what is the net flavour of a jet?’’

2 b-jets light - b - light b                b 

bb̅ must behave like 
a gluon [coll. safety] 

b                light 

IR unsafe



X+b/c: more and more prominent…
Solution: use a different jet algorithm, ``flavour kT’’
[Banfi, Salam, Zanderighi (2006)]

The problem: very different behaviour w.r.t. anti-kT. Cannot compare with exp!
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Figure 3: Reconstructed Higgs boson transverse momentum, see text for details,

calculated at NLO (upper plots) and NNLO (lower plots) for central values of the

renormalization and factorization scales. Lower panes show ratios of massless to massive

results. See text for details.

such a clustering starts to occur earlier in case of the flavor-kt jet algorithm, the massless

result falls off more rapidly than the massive one. To some extent, this difference can be

mitigated if a smaller clustering radius for the flavor-kt jet algorithm is chosen while the jet

radius for the usual anti-kt algorithm is kept fixed. We have verified that such choices lead

to increased values of pt,H(bb̄) at which massive and massless results start to depart from each

other.

Finally, we show the transverse-momentum distribution of the leading b jet in Fig. 4 and the

angular distance between the two b jets �RH(bb̄) in Fig. 5. We observe significant differences

between massive and massless results at large values of pt,b and at �RH(bb̄) ⇠ R. Deviations

at large transverse momenta in the pt,b distribution have the same origin as differences

12

VH, H→ bb, anti-kT vs Flavour kT

[Behring, Bizon, FC, Melnikov, Röntsch (2020)]

Possible solutions: 

•if process dominated by g→bb: let a shower 
take care of it [ask Maria & Fabio….] 

• if g → bb is subdominant: massive calculation 
(possible at NNLO, but for simple processes….) 

• complex scenarios? One would need a jet algo 
that is flavour safe + same behaviour of anti-kT 
(work in progress…)



X+b/c: more and more prominent…
Solution: use a different jet algorithm, ``flavour kT’’
[Banfi, Salam, Zanderighi (2006)]

The problem: very different behaviour w.r.t. anti-kT. Cannot compare 
with experiment!
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calculated at NLO (upper plots) and NNLO (lower plots) for central values of the

renormalization and factorization scales. Lower panes show ratios of massless to massive

results. See text for details.

such a clustering starts to occur earlier in case of the flavor-kt jet algorithm, the massless

result falls off more rapidly than the massive one. To some extent, this difference can be

mitigated if a smaller clustering radius for the flavor-kt jet algorithm is chosen while the jet

radius for the usual anti-kt algorithm is kept fixed. We have verified that such choices lead

to increased values of pt,H(bb̄) at which massive and massless results start to depart from each

other.

Finally, we show the transverse-momentum distribution of the leading b jet in Fig. 4 and the

angular distance between the two b jets �RH(bb̄) in Fig. 5. We observe significant differences

between massive and massless results at large values of pt,b and at �RH(bb̄) ⇠ R. Deviations

at large transverse momenta in the pt,b distribution have the same origin as differences

12

VH, H→ bb, anti-kT vs Flavour kT

[Behring, Bizon, FC, Melnikov, Röntsch (2020)]

Possible solutions: 
•if process dominated by g→bb: let a 

shower take care of it [ask Maria….] 
•if g → bb is subdominant: massive 

calculation (possible at NNLO, but for 
simple processes….) 

•complex scenarios? One would need a jet 
algo that is flavour safe + same behaviour 
of anti-kT (work in progress…)

•To which extent this is an issue e.g. for W+c? 

•How relevant is this for PDFs extraction? 

•What are collaboration actually measuring (D-mesons, charm 
``jet’’, mixture)? How relevant are corrections? How do they 
massage the data?



Back to NNLO:  
2. Status and prospects



2→2 NNLO is well-understood
NNLO: from proof of concept to detailed phenomenology

J
H
E
P
0
1
(
2
0
2
1
)
1
0
8

Figure 16. Re-evaluation of figure 5 from [17] showing the effects of the modified scale choice and
isolation criteria on the prediction.
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3

ition of the distance measure of this algorithm (which
determines the clustering outcome) depends on the fla-
vour of the pseudojet being clustered. These steps are
necessary to avoid situations where soft quarks can alter
the flavour of a jet, as described above. In addition, the
net flavour criterion also ensures that jets which contain
(quasi)collinear quark pairs are not assigned an overall
flavour based on such splittings. More details can be
found in [10, 19].

COMPARISON WITH 8 TeV CMS DATA

In this Section we perform a comparison of the Z+b-jet
CMS data at 8 TeV provided in [8], and validate our im-
plementation of Eq. (1). Before doing so we summarise
the numerical set-up, and present details on the unfolding
procedure which is applied to this data to make a consist-
ent comparison with our theoretical predictions possible.
Numerical inputs. All predictions are provided with
the NNPDF3.1 NNLO PDF set [57] with ↵s(MZ) = 0.118
and nmax

f = 5, where both the PDF and ↵s values
are accessed via LHAPDF [58]. The results are ob-
tained using the Gµ-scheme with the following values
for the input parameters Mos

Z
= 91.1876 GeV, �os

Z
=

2.4952 GeV, Mos

W
= 80.385 GeV, �os

W
= 2.085 GeV,

and Gµ = 1.16638 ⇥ 10�5 GeV�2. Including also the
universal corrections to the ⇢ parameter when determ-
ining the numerical values of ↵ and sin2 ✓W as in [59],
leads to ↵e↵. = 0.007779 and sin2 ✓W,e↵. = 0.2293. An
uncertainty due to the impact of missing higher-order
corrections is assessed in the predictions by varying the
values of µF and µR by a factor of two around the cent-
ral scale µ0 ⌘ ET,Z, with the additional constraint that
1

2
 µF /µR  2. The scales are treated as correlated

between the coe�cients appearing in Eq. (1). We fol-
low the specific setup of the flavour-kT algorithm adop-
ted in [48], where a value of ↵ = 2 is used and a beam
distance measure that includes a sum over both QCD
partons as well as the reconstructed gauge boson is in-
troduced.
Unfolding. As already highlighted, the fixed-order pre-
diction for a flavoured-jet cross-section as defined in
Eq. (1) must be performed with an infrared-safe defin-
ition of jet flavour. However, there is no data available
for the process pp ! Z + b-jet [8, 60–65] (or in fact any
process) which uses such a definition of jet flavour. To
address this issue, we have computed a correction to the
CMS data [8] as described below.
This data has been presented for anti-kT b-jets, with

a flavour assignment based on whether the jet contains
B-hadron decay products and the additional requirement
that �R(B, jet) < 0.5. To correct this data to the level
of partonic flavour-kT jets, we apply an unfolding pro-
cedure with the RooUnfold [66] package using the iter-
ative Bayes method [67]. The input to this procedure is

a theoretical model for the original data using both the
anti-kT algorithm (which is measured) and the flavour-kT
algorithm (which we wish to unfold to).

This model is provided with an NLO+PS predic-
tion for Z + b-jet using aMC@NLO [5] interfaced to
Pythia8.243 [68]. The parton-level flavour-kT predic-
tion is obtained using the input QCD partons which are
identical to those which enter the hadronisation process.
For the central value, we use a 5fs prediction of Z + jet,
where the b-jet contribution of this sample is extracted.
The benefit of this approach is that the fragmentation
component (e.g. g ! bb̄) is resummed by the PS. To
assess the uncertainty of this procedure, the unfolding
is repeated taking into account the impact of scale vari-
ations in the model. Additionally, the whole procedure
is repeated with a 4fs prediction, and the envelope of all
of these results is assigned as an uncertainty. Finally,
the unfolding procedure was also performed with a bin-
by-bin unfolding method, which led to almost identical
results for the considered distributions.
Fiducial cross-section. In Fig. 1, the cross-section
predictions for the process pp ! Z + b-jet are shown
within the fiducial region defined according to: pT,b >
30 GeV, |⌘b| < 2.4, pT,` > 20 GeV, |⌘`| < 2.4, and
M`¯̀ 2 [71, 111] GeV. The b-jets are reconstructed with
the flavour-kT algorithm with R = 0.5, with the addi-
tional constraint of �R(b, `) > 0.5. As discussed above,
this matches the fiducial region of the data [8] with the
exception of the choice of the jet clustering algorithm.
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Figure 1: Fiducial cross-section for the process pp ! Z +
b-jet + X at

p
s = 8 TeV. The FONLL predictions are

provided as a function of mb, and are compared to the 5fs
predictions.

The cross-section defined according to Eq. (1) is la-
belled as ‘FONLL’, and predictions are shown at both
O(↵2

s
) and O(↵3

s
) as a function of mb (as it arises expli-

citly in the parenthesis on the r.h.s. of Eq. (1)). The
filled band indicates the uncertainty due to scale vari-
ation alone, the small error bars on the FONLL predic-
tions indicate numerical uncertainties, and these predic-

Photon isolation

Z+b, FONLL

[Gauld, Gehrm
ann-de Ridder, 

Glover, Huss, M
ajer (2020)][G

eh
rm

an
n,

 G
lo

ve
r, 

Hu
ss

, 
W

hit
eh

ea
d 

(2
02

0)
]

NNLLO + PS becoming a reality
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Figure 5: Same as figure 3, for the transverse momentum of the electron (left) and of the
leading lepton (right).

of the electron (pT,e�) and of the leading lepton (pT,`1). For the pT,e� distribution we
observe excellent agreement over the whole range between the MiNNLOPS and the nNNLO
results, which is fully expected since this distribution should be affected very mildly by
resummation/shower effects. We have explicitly checked that a similar level of agreement
is obtained when considering the same comparison at NNLOqq̄ accuracy, as opposed to the
Geneva calculation in ref. [103], where differences between the Geneva and fixed-order
results are observed for pT,e� > 40GeV. When comparing the MiNNLOPS and the MiNLO0

predictions for the pT,e� spectrum we observe that the effect of both the NNLOqq̄ corrections
and the loop-induced gg contribution is particularly pronounced in the bulk region of the
distribution, where the MiNLO0 result is more than 20% smaller than the nNNLO result.
On the other hand, the transverse momentum of the leading lepton is subject to shower
effects, especially at low pT,`1 , and indeed we observe a difference between the Matrix
results and the MiNNLOPS predictions below 40GeV, which become increasingly larger the
more steeply the distribution falls when pT,`1 approaches zero. Above this value, the shower
effects are less pronounced and the two predictions are in good agreement. By comparing
the nNNLO+PS predictions to the NNLO+PS and NNLOqq̄+PS results we can see that
the impact of the loop-induced gg contribution is particularly relevant below 40 GeV, and
it is also predominantly responsible for the relatively large shower effects that we observe.
In fact, we have checked that for the NNLOqq̄+PS result the relative impact of the shower
is smaller than for the NLO+PS result in the gg channel, which is expected considering
the higher perturbative accuracy (and thereby logarithmic terms) already included at fixed
order in the qq̄ channel.
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FIG. 1. Distribution in the rapidity di↵erence between the tt̄ pair and the leading jet (�ytt̄,j1), in the rapidity (ytav ) and the
average transverse-momentum (pT,tav ) of the top and the anti-top, as well as in the rapidity (ytt̄), in the invariant mass (mtt̄)
and in the transverse momentum (pT,tt̄) of the tt̄ system. Predictions are shown for MiNNLOPS (blue, solid), MiNLO0 (black,
dashed) and at NNLO (red, dashed). The black data points represent the CMS measurement at 13TeV of Ref. [98], where the
ytav and pT,tav distributions have been obtained with leptonically decaying top quarks.
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[3] M. Baak, J. Cúth, J. Haller, A. Hoecker, R. Kogler,
K. Mönig, M. Schott, and J. Stelzer (Gfitter Group),
Eur. Phys. J. C 74, 3046 (2014), arXiv:1407.3792 [hep-
ph].

[4] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa,
G. F. Giudice, G. Isidori, and A. Strumia, JHEP 08,
098 (2012), arXiv:1205.6497 [hep-ph].

[5] P. Bärnreuther, M. Czakon, and A. Mitov, Phys. Rev.
Lett. 109, 132001 (2012), arXiv:1204.5201 [hep-ph].

[6] M. Czakon and A. Mitov, JHEP 12, 054 (2012),

arXiv:1207.0236 [hep-ph].
[7] M. Czakon and A. Mitov, JHEP 01, 080 (2013),

arXiv:1210.6832 [hep-ph].
[8] M. Czakon, P. Fiedler, and A. Mitov, Phys. Rev. Lett.

110, 252004 (2013), arXiv:1303.6254 [hep-ph].
[9] M. Czakon, D. Heymes, and A. Mitov, Phys. Rev. Lett.

116, 082003 (2016), arXiv:1511.00549 [hep-ph].
[10] M. Czakon, P. Fiedler, D. Heymes, and A. Mitov, JHEP

05, 034 (2016), arXiv:1601.05375 [hep-ph].
[11] S. Catani, S. Devoto, M. Grazzini, S. Kallweit, J. Mazz-

itelli, and H. Sargsyan, Phys. Rev. D99, 051501 (2019),
arXiv:1901.04005 [hep-ph].

[12] S. Catani, S. Devoto, M. Grazzini, S. Kallweit, and
J. Mazzitelli, JHEP 07, 100 (2019), arXiv:1906.06535
[hep-ph].

[13] A. Behring, M. Czakon, A. Mitov, A. S. Papanastasiou,

tt 

[M
az

zit
ell

i, M
on

ni,
 N

as
on

, 
Re

, W
ies

em
an

n,
 

Za
nd

er
ig

hi 
(2

02
1)

]



2→2 NNLO is well-understood
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4

� [pb] �LO �(1,0) �(0,1) �(2,0) �(1,1)

qq̄ 809.56(1) 191.85(1) �33.76(1) 49.9(7) �4.8(3)

qg — �158.08(2) — �74.8(5) 8.6(1)

q(g)� — — �0.839(2) — 0.084(3)

q(q̄)q0 — — — 6.3(1) 0.19(0)

gg — — — 18.1(2) —

�� 1.42(0) — �0.0117(4) — —

tot 810.98(1) 33.77(2) �34.61(1) �0.5(9) 4.0(3)

Table I. The di↵erent perturbative contributions to the fidu-
cial cross section (see Eq. (2)). The breakdown into the vari-
ous partonic channels is also shown (see text).
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Figure 1. Complete O(↵S↵) correction to the di↵erential
cross section d�(1,1) in the anti-muon pT compared to the
corresponding result in the pole approximation and to the
factorised approximation d�(1,1)

fact
. The top panels show the ab-

solute predictions, while the central (bottom) panels display
the O(↵S↵) correction normalized to the LO (NLO QCD) re-
sult. For the full result the ratios also display our estimate
of the numerical uncertainties, obtained as described in the
text.

ject to large cancellations between the various partonic
channels. The NLO QCD corrections amount to +4.2%
with respect to the LO result, while the NLO EW cor-
rections contribute �4.3%. Also the NNLO QCD cor-
rections are subject to large cancellations, and give an
essentially vanishing contribution within the numerical
uncertainties. The newly computed QCD–EW correc-
tions amount to +0.5% with respect to the LO result.

In Fig. 1 we present our result for the O(↵S↵) correc-
tion as a function of the anti-muon pT . The left panels
depict the region around the Z peak, and the right pan-
els the high-pT region. In the main panels we show the
absolute correction d�(1,1)/dpT , while the central (bot-
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Figure 2. As Fig. 1, but for the di-muon invariant mass.

tom) panels display the correction normalised to the LO
(NLO QCD) result. Our results for the complete O(↵S↵)
correction are compared with those obtained in two ap-
proximations. The first approximation consists in com-
puting the finite part of the two-loop virtual amplitude
in the pole approximation, suitably reweighted with the
exact squared Born amplitude. This approach precisely
follows that adopted for the charged-current DY process
in Ref. [49] (see Eq. (14) therein for the precise defini-
tion). The pole approximation, which includes factoris-
able and non-factorisable [44] contributions, requires the
QCD–EW on-shell form factor of the Z boson [40]. The
second approximation is based on a fully factorised ap-
proach for QCD and EW corrections, where we exclude
photon-induced processes throughout (see Ref. [45, 49]
for a detailed description). We see that the result ob-
tained in the pole approximation is in perfect agreement
with the exact result. This is due to the small contri-
bution of the two-loop virtual to the computed correc-
tion, as observed also in the case of W production [49].
Our result for the O(↵S↵) correction in the region of
the peak is reproduced relatively well by the factorised
approximation. Beyond the Jacobian peak, this approx-
imation tends to overshoot the complete result, which is
consistent with what was observed in Refs. [45, 49]. As
pT increases, the (negative) impact of the mixed QCD–
EW corrections increases, and at pT = 500GeV it reaches
about �60% with respect to the LO prediction and �15%
with respect to the NLO QCD result. The factorised ap-
proximation describes the qualitative behaviour of the
complete correction reasonably well, also in the tail of
the distribution, but it overshoots the full result as pT
increases.

In Fig. 2 we show our result for the O(↵S↵) correction
as a function of the di-muon invariant mass mµµ. The
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Figure 2: The impact of mixed QCD-electroweak corrections to pp ! W+(e+⌫) production at 13 TeV LHC on various kinematic
distributions including lepton rapidity and transverse momentum, the transverse momentum of the W -boson and the transverse
mass. NLO electroweak corrections are also shown. See text for details.

of the neutrino p?,miss are larger than 15 GeV and that the absolute value of the positron rapidity does not exceed
|ye| < 2.4. We also set the factorization and renormalization scales to be equal µR = µF = µ and choose µ = MW /2

as the central scale for our computations.

To present the results, we write the fiducial cross section as

�pp!W+ = �LO +��NLO,↵s
+��NLO,↵,+��NNLO,↵↵s

+ .... (130)

where the first term on the right hand side is the leading order cross section, the second term is the NLO QCD
contribution, the third term is the NLO electroweak contribution and the last one is the mixed QCD-electroweak
contribution. Ellipses in Eq.(130) stand for other contributions to the cross section, e.g. NNLO QCD ones.

We show the fiducial cross sections pp ! W + X, using the cuts described above, in Table I. It follows from this
table that NLO electroweak contributions are tiny – they modify the leading order cross section by just about �0.02

percent. For comparison, we note that NNLO QCD corrections are of the order of a few percent. We note that
the smallness of these corrections is partially related to our choice of the Gµ renormalization scheme which appears
to reduce the impact of electroweak corrections significantly. Although quite small as well, mixed QCD-electroweak
corrections turn out to be larger than the NLO electroweak ones, at least for the setup considered here.

The relative importance of mixed QCD-electroweak corrections, at least compared to NLO electroweak corrections,
is also apparent from the kinematic distributions shown in Fig. 2. These distributions are computed with the fiducial
cuts described above; results shown in Fig. 2 are obtained for µ = MW /2. The y-axes in the lower panes correspond
to bin-by-bin ratios of NLO electroweak and mixed QCD-electroweak contributions to NLO QCD cross sections

d�i =
d��i

d�LO + d��NLO,↵s

. (131)

In Fig. 2 we show the rapidity and transverse momentum distributions of the charged lepton as well as the transverse

[Behring, Buccioni, FC, Delto, Jaquier, 
Melnikov, Röntsch (2020)]

Off-shell NC

• W-mass studies 

• QCD-EW PDFs 

• High-mass studies
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Figure 4. As in fig. 1 but for the following rapidity distributions: �y(��) (left) and |y(��)| (right).

Based on the above observations one may question the presence of perturbative stability

in these variables. As a first step towards analyzing this we consider the behavior of the

NNLO prediction without the loop-induced contribution (in the following we refer to it as

NNLO-minus-LI). The numerical impact of the loop-induced contribution for each di↵erential

distribution can be seen in fig. 6 and fig. 7. We observe the following. For the �CS distribution

the NNLO-minus-LI scale uncertainty band is mostly within the NLO one or the two bands

overlap. This is not the case for the first and last bins of this distribution, however, the

behavior of the �CS distribution in these two bins is strongly a↵ected by the kinematic cuts.

The NNLO-minus-LI band for the �y(��) distribution overlaps in all bins with the NLO one.

Same can be observed for the case of the |y(��)| distribution. In fact, the only distribution

for which the NNLO-minus-LI and NLO scale uncertainty bands do not mostly overlap is

the ��(��) one. For this distribution we observe that the NNLO-minus-LI and NLO scale

uncertainty bands overlap for ��(��)/⇡ > 0.6 while below this value they are not very far

apart, see fig. 7. Given that the NLO/LO K-factor in this region is more than a factor of two

it seems that such a non-overlap is not too concerning.

From the above discussion it seems reasonable to conclude that the non-overlap between

NNLO and NLO scale uncertainty bands observed in the angular and rapidity diphoton

distributions is somewhat a↵ected by the loop-induced contribution. It is therefore plausible

to assume that the inclusion of this contribution’s NLO correction may alleviate this non-

overlap. Other factors that may be a↵ecting this behavior is the choice of scale as well as

resummation e↵ects which are relevant at low pT (��). A detailed investigation of those is

however outside the scope of this work. On the other hand, as can also be seen from fig. 6,

the two-loop finite remainder has a rather small contribution and, therefore, we do not expect

these distributions to be significantly a↵ected by two-loop subleading color corrections.
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FIG. 4: The top two panels show R3/2(pT (j1)) (in absolute
and as ratio to NLO) and the bottom two panels R3/2(HT ).
The colours are the same as in fig. 1.

factor slightly decreases for large momenta, however, it
is always fully contained within the NLO scale band. An
important observation is that the NNLO scale band is
very small in comparison to NLO, reducing it from about
10% down to 3%.

Next we consider the lower two panels in fig. 4, where
we show the ratio R3/2(HT ) for a central scale µ0 =
HT /2. This observable behaves similarly to R3/2(pT (j1))
albeit with a slightly larger scale dependence. The re-
duction in the scale uncertainty when going from NLO
to NNLO is of particular importance since this observ-
able is used experimentally for measurements of ↵S [5].
The leading source of perturbative uncertainty in this
data–theory comparison is the scale dependence. The
pdf dependence, which is not computed in this work, is
expected to largely cancel out in the ratio.

Jet rates are typically measured in slices of jet rapidity.
To demonstrate how our calculation performs in this sit-
uation, we divide the phase space in slices of the rapidity
di↵erence between the two leading jets

y
⇤ = |y(j1) � y(j2)|/2 , (8)

0.5

1.0

1.5
LHC 13 TeV0.0  y� < 0.4

0.5
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R3/2, Scale: µ0 = ĤT/2

FIG. 5: The three panels show R3/2(HT , y
⇤), in each panel a

di↵erent slice in y
⇤ as ratio to NLO. The colours are the same

as in fig. 1.

and define the ratio of the two- and three-jet rates as

R3/2(HT , y
⇤) =

d2
�3/dHT /dy

⇤

d2�2/dHT /dy⇤ . (9)

The NNLO prediction for this cross section ratio can
be found in fig. 5 . The prediction is shown relative to the
NLO one. The NNLO correction is negative across the
full kinematic range and, overall, behaves very similarly
to the one for the rapidity-inclusive ratio R3/2(HT ). This
remains the case as y

⇤ increases, at least in the range of
rapidities considered here.

IV. CONCLUSIONS

In this work we present for the first time NNLO-
accurate predictions for three-jet rates at the LHC. We
compute di↵erential distributions for typical jet observ-
ables like HT and the transverse momentum of the ith
leading jet, i = 1, 2, 3, as well as di↵erential three-to-two
jet ratios. Scale dependence is the main source of theoret-
ical uncertainty for this process at NLO, and it gets sig-
nificantly reduced after the inclusion of the NNLO QCD
corrections. Notably, the three-to-two jet ratios stabilize
once the second-order QCD corrections are accounted for.

A central goal of the present work is to demonstrate
the feasibility of three-jet hadron collider computations
with NNLO precision. With this proof-of-principle goal
attained, one can now turn one’s attention to the broad
landscape of phenomenological applications for three-
jet production at the LHC. Examples include studies of
event-shapes [6, 39, 40], determination of the running
of the strong coupling constant ↵s through TeV scales
and resolving the question of scale setting in multi-jet
production. Another major benefit from having NNLO–
accurate predictions is the reliability of the theory uncer-
tainty estimates.

jjj

[Czakon, M
itov, Poncelet (2021)]

• jjj: ``Tour de force in QCD’’. 

• still very much in the exploratory phase 

• much richer phenomenology → a lot to study / understand, beyond standard 
distributions 

• 1/2L amplitudes are slow… efficient interpolation/learning of multi-dimensional 
functions?

γγj



Understanding complex events/
kinematics: tt at high scale

[FC, Dreyer, McDonald, Salam (2021)]
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A rich environment: CMS 1803.08856 ( +jets) has 270 plots!tt̄ → ℓ

3

A lot of data is available

CMS 1803:08856 (semileptonic tt): 270 plots 
A lot of information, not always obvious



``Energetic’’ tops

Hardness variable explanation

p
top,had
T transverse momentum of hadronic top candidate

p
top,lep
T transverse momentum of leptonic top candidate

p
top,max
T pT of the top (anti-)quark with larger m2

T = p
2
T +m

2

p
top,min
T pT of the top (anti-)quark with smaller m2

T = p
2
T +m

2

p
top,avg
T

1
2(p

top,had
T + p

top,lep
T )

1
2H

tt̄
T with H

tt̄
T = m

top,had
T +m

top,lep
T

1
2H

tt̄+jets
T with H

tt̄+jets
T = m

top,had
T +m

top,lep
T +

P
i p

j6 t,i
T

m
J,avg
T average mT of the two highest mT large-R jets (J1, J2)

1
2m

tt̄ half invariant mass of ptt̄ = p
top,had + p

top,lep

p
tt̄
T transverse component of ptt̄

p
j6 t,1
T transverse momentum of the leading small-R non-top jet

Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1

d�

dp
top,had
T

=
d�

dp
top,lep
T

=
1

2

 
d�

dp
top,max
T

+
d�

dp
top,min
T

!
. (2.1)

Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.

– 3 –
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jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1
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Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.
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Hardness variable explanation

p
top,had
T transverse momentum of hadronic top candidate
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top,lep
T transverse momentum of leptonic top candidate
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tt̄ half invariant mass of ptt̄ = p
top,had + p

top,lep

p
tt̄
T transverse component of ptt̄

p
j6 t,1
T transverse momentum of the leading small-R non-top jet

Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1

d�
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top,had
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=
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dp
top,lep
T

=
1

2
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+
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top,min
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. (2.1)

Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.
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Hardness variable explanation

p
top,had
T transverse momentum of hadronic top candidate

p
top,lep
T transverse momentum of leptonic top candidate

p
top,max
T pT of the top (anti-)quark with larger m2

T = p
2
T +m

2

p
top,min
T pT of the top (anti-)quark with smaller m2
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2
T +m
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T )
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T with H
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T average mT of the two highest mT large-R jets (J1, J2)
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tt̄ half invariant mass of ptt̄ = p
top,had + p

top,lep

p
tt̄
T transverse component of ptt̄

p
j6 t,1
T transverse momentum of the leading small-R non-top jet

Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1

d�

dp
top,had
T

=
d�

dp
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=
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+
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Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.
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7

Hardness variable explanation

p
top,had
T transverse momentum of hadronic top candidate

p
top,lep
T transverse momentum of leptonic top candidate

p
top,max
T pT of the top (anti-)quark with larger m2

T = p
2
T +m

2

p
top,min
T pT of the top (anti-)quark with smaller m2

T = p
2
T +m

2

p
top,avg
T

1
2(p

top,had
T + p

top,lep
T )

1
2H

tt̄
T with H

tt̄
T = m

top,had
T +m

top,lep
T

1
2H

tt̄+jets
T with H

tt̄+jets
T = m

top,had
T +m

top,lep
T +

P
i p

j6 t,i
T

m
J,avg
T average mT of the two highest mT large-R jets (J1, J2)

1
2m

tt̄ half invariant mass of ptt̄ = p
top,had + p

top,lep

p
tt̄
T transverse component of ptt̄

p
j6 t,1
T transverse momentum of the leading small-R non-top jet

Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1

d�

dp
top,had
T

=
d�

dp
top,lep
T

=
1

2

 
d�

dp
top,max
T

+
d�

dp
top,min
T

!
. (2.1)

Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.
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Very delicate observable at high scales
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Figure 10: Asymptotic leading-order forms for the �ytt̄ distribution at fixed large mtt̄,

as given in Eq. (A.1), applied to the case of
p
s = 13 TeV pp collisions and mtt̄ = 2 TeV.

The left-hand plot uses fixed renormalisation and factorisation scales, which is physically

inappropriate but illustrates the key analytical features of the structure of Eq. (A.1). The

right-hand plot uses a physically motivated scale choice, of the order of the momentum

transfers involved in the process.

consequence of lnµ2
' lnm2

tt̄ � �ytt̄. The precise slope depends on the x values being

probed in the PDF.

The significant di↵erence in �ytt̄ dependence for qq̄ and gg-induced production has

the potential to provide a valuable handle separately for the gluon and quark parton dis-

tributions.

We can also integrate over �ytt̄ to obtain the single-di↵erential distribution,
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quoted in Section 2.1 as Eq. (2.3). Again we have neglected corrections that are suppressed

in our kinematic region. The result is obtained for a fixed scale and, as discussed above,

this is a physically inappropriate choice. Nevertheless, it is instructive to have the ana-

lytical result in this limit, because it reveals a ln
m2

tt̄
m2

t
enhancement of the gluon-induced

contribution.

A.2 Distributions di↵erential in the top transverse momentum

For large pT,t � mt, the leading order top-quark distribution doubly-di↵erential in pT,t

and �ytt̄ is given by
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quoted in Section 2.1 as Eq. (2.3). Again we have neglected corrections that are suppressed

in our kinematic region. The result is obtained for a fixed scale and, as discussed above,

this is a physically inappropriate choice. Nevertheless, it is instructive to have the ana-

lytical result in this limit, because it reveals a ln
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enhancement of the gluon-induced
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quoted in Section 2.1 as Eq. (2.3). Again we have neglected corrections that are suppressed

in our kinematic region. The result is obtained for a fixed scale and, as discussed above,

this is a physically inappropriate choice. Nevertheless, it is instructive to have the ana-

lytical result in this limit, because it reveals a ln
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enhancement of the gluon-induced

contribution.

A.2 Distributions di↵erential in the top transverse momentum
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•Logarithmic enhancement (theoretically delicate beyond LO) 
•Contributions from large-y, low-pt tops (issue for boosted reco…) 
•Plus: gluon/quark separation → good handle for PDF studies?
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``Energetic’’ tops: expectations vs reality

Figure 3: Kinematic distribution of the softer top, for events with large mJ,avg
T , in each of

the three main topologies. The plots show d�/dzd��tt̄, normalised to 1 at the maximum

value of the histogram; z = m
top,min
T /m

J,avg
T measures the hardness of the softer top relative

to the underlying 2 ! 2 event hardness, and ��tt̄ is the azimuthal distance between the

two top quarks.
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Figure 4: Di↵erential cross sections as a function of a variety of variables used to char-

acterise the event hardness (V ), considering an illustrative subset of the variables from

Table 1. Left-hand plot: results summing over all topologies. Right-hand plot: results for

just the FCR topology.

features are broadly observed in the plots, though for the finite values of mJ,avg
T that we

use, the exact limits on z are a↵ected by the contributions of the top-quark mass to the

variables that enter its definition.

Let us now apply the understanding that we have obtained to investigate di↵erential

cross sections that are commonly studied experimentally. Fig. 4 shows di↵erential cross

sections for a subset of observables, choosing at least one from each of the groupings of

– 14 –

vs 

``LO’’ expectations do not borne out

[POWHEG NLO + Pythia8, see backup 
for full setup]
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Understending energetic tops: 1-topologies

flavour creation + jet

t

p p

t

flavour excitation gluon splitting otherflavour creation

t

p p

t

j

j j

tt̄t

t̄
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s)

•``NLO’’-topologies suppressed by αs(1 TeV) ~ 0.09 

•ln(pt/mt) ~ 2, not large enough to compensate for αs 

•However…



Very different underlying 2→2 scattering

flavour creation + jet
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Consider high-pt 2→2 scattering, i.e. pt = 1TeV, θ=π/2
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' g4s · 0.038

Comparable results, t-channel exchange compensates for αs 



Consider high-pt 2→2 scattering, i.e. pt = 1TeV, θ=π/2
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Again, ME enhancement compensates for αs

Very different underlying 2→2 scattering



Very different ``hard’’ scale
2 → 2 cross section decreases very fast, σ(pt2→2 > X) ~ 1/X7

Example: pttop, min If pttop, min = 1 TeV, then
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Take this info into account, separate topologies
Algorithm 2 Event analysis algorithm at hadron (particle) level

Require: at least one lepton (we require it to have a transverse momentum of at least

25 GeV), missing transverse momentum and hadrons.

1: Cluster the hadronic part of the event with the anti-kt algorithm with R = 0.4 and

discard any jets below some pt threshold, pT,min, as one would normally (we take

pT,min = 30 GeV).

2: Optionally, e.g. if subject to finite detector acceptance, exclude jets and leptons with

an absolute rapidity beyond some ymax. The remaining set of jets is referred to as {j}

and the hadrons contained within that set of jets is {H}.

3: For each jet j, recluster its constituents with the exclusive longitudinally invariant

(R = 1) kt algorithm [61] with a suitable dcut (we use (20 GeV)2), thus mapping the

R = 0.4 jets {j} to a declustered set {jd}. One applies b-tagging to the {jd} (sub)jets

to aid with the subsequent top identification.

4: Use a resolved top-tagging approach to identify the hadronic and leptonic top-quark

candidates from the lepton(s) and from the jets {jd} obtained in step 3. Here, we will

adopt the algorithm outlined in Section 4.2.

5: Identify all particles from the set {H} that do not belong to either of the top-quark

candidates. Refer to this subset as {H6 t}. Cluster the {H6 t} with the original jet

definition (anti-kt, R = 0.4) and apply a transverse momentum threshold pT,min to

obtain the set of non-top R = 0.4 jets, {j6 t}, ordered in decreasing pT .

6: Apply step 3 of Algorithm 1 using {j6 t} and the reconstructed top and anti-top candi-

dates as the inputs.

The choice to proceed via the {j6 t} set in step 5 is motivated in particular if one wishes

to compare R = 0.4 jet observables with purely resolved measurements in the literature.

At very high pT , instead of the RJ = 1 anti-kT algorithm used in step 3 of Algorithm 1,

it might make more sense to adopt an algorithm such as flavour-kT [38, 68] and possibly

apply it directly to the hadrons {H6 t} and tops, i.e. to the set {H6 t, t, t̄}. The flavour-kt
algorithm suppresses the clustering of lone soft-quarks within a hard jet, a situation which

would contaminate the flavour of a hard jet.11

4.2 Top reconstruction

The top reconstruction that we use is a so-called “resolved” algorithm, i.e. one that takes

advantage of the fact that the top decay products should map to separate jets. The

declustering procedure in step 3 of Algorithm 2 helps ensure that this is true even for

high-pT tops.

11
These configurations should be assigned to the “other” category of Fig. 1, and this does not always

occur with the anti-kT algorithm. The e↵ects start only at order ↵
2
s ln pT /mtop relative to LO, and are

practically negligible at the pT values that we study here, hence our choice to retain the simplicity of the

anti-kT algorithm. The e↵ects are conceptually interesting when L = ln pT /mtop � 1, because higher-order

logarithms have a BFKL [69, 70] structure, as pointed out by Marchesini and Mueller [71].
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p

t

flavour creation flavour excitation gluon splitting other

t

p

Figure 1: Illustration of classes of event topology for top production. Thick red lines

represent top (anti-)quarks, while thin black lines represent light partons (quarks or gluons).

Protons are depicted as entering from the left and right-hand sides.

tive expansion. In flavour excitation (FEX), a tt̄ pair can be produced by an initial state

splitting, with one of the pair undergoing a large momentum-transfer scattering with a

light parton. Gluon splitting (GSP) involves production of a tt̄ pair during jet fragmen-

tation. Both FEX and GSP start at next-to-leading order (NLO). Finally some events do

not readily fall into any of these categories, for example two high-transverse momentum

light-flavour jets plus a (relatively) soft additional gluon that splits to tt̄. These arise only

at NNLO and beyond.

Relative to LO, the FEX and GSP topologies involve a factor ↵s ln pT /mtop, where pT
is generally the transverse momentum of the hardest object in the event. The ln pT /mtop

factor that arises at the LHC is typically not large: e.g. for pT ⇠ 1 TeV, it is of the order

2, which would not be expected to compensate for the extra power of ↵s relative to LO,

and one might expect FEX and GSP to be small compared to FCR.5 As we shall see,

this intuition misses important considerations. To help understand this, Table 2 shows

the di↵erent factors that come into the calculation of the cross section for the FCR, FEX

and GSP topologies. We consider a 2 ! 2 hard scattering energy of 2 TeV and take the

case of 90 degree scattering in the centre of mass, which dominates high-pT production.

This corresponds to each outgoing object from the 2 ! 2 scattering having a transverse

momentum of 1 TeV and identical rapidity.

The first point that we highlight is that the underlying 2 ! 2 matrix elements for the

FCR process are an order of magnitude smaller than for FEX and GSP. To illustrate the

origin of this analytically in one simple case, consider 90� scattering in the limit pT � mtop,

and compare for example the squared matrix element relevant for the qiq̄i ! tt̄ channel of

FCR (cf. [34] or [35]),

1

g4

X

spin,colour

|Mqq̄!q0q̄0 |
2 =

CF

NC

t̂
2 + û

2

ŝ2
=

CF

NC
·
1

2
, (2.5)

to that involved in the qt ! qt channel of FEX,

1

g4

X

spin,colour

|Mqq0!qq0 |
2 =

CF

NC

ŝ
2 + û

2

t̂2
=

CF

NC
· 5 . (2.6)

5
At a 100 TeV pp collider, the logarithms can be larger, which might then at first sight explain the

observation in section 12.3 of Ref. [27] that GSP contributes significantly to high-pT top production.
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Relatively easy to separate these contribution, 
in a safe and practical way

Figure 3: Kinematic distribution of the softer top, for events with large mJ,avg
T , in each of

the three main topologies. The plots show d�/dzd��tt̄, normalised to 1 at the maximum

value of the histogram; z = m
top,min
T /m

J,avg
T measures the hardness of the softer top relative

to the underlying 2 ! 2 event hardness, and ��tt̄ is the azimuthal distance between the

two top quarks.

�s = 13 TeV, PO
W

H
EG

 hvq + Py8, tt �
 bbjj�

±�

parton-level, truth tops

d�
/d

V 
[p

b/
G
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]

V [GeV]

V = mtt/2
V = ½HT

tt+jets

V = mT
J,avg

V = pT
top,lept.

V = pT
tt
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All channels

Figure 4: Di↵erential cross sections as a function of a variety of variables used to char-

acterise the event hardness (V ), considering an illustrative subset of the variables from

Table 1. Left-hand plot: results summing over all topologies. Right-hand plot: results for

just the FCR topology.

features are broadly observed in the plots, though for the finite values of mJ,avg
T that we

use, the exact limits on z are a↵ected by the contributions of the top-quark mass to the

variables that enter its definition.

Let us now apply the understanding that we have obtained to investigate di↵erential

cross sections that are commonly studied experimentally. Fig. 4 shows di↵erential cross

sections for a subset of observables, choosing at least one from each of the groupings of
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Figure 3: Kinematic distribution of the softer top, for events with large mJ,avg
T , in each of

the three main topologies. The plots show d�/dzd��tt̄, normalised to 1 at the maximum

value of the histogram; z = m
top,min
T /m

J,avg
T measures the hardness of the softer top relative

to the underlying 2 ! 2 event hardness, and ��tt̄ is the azimuthal distance between the

two top quarks.
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Figure 4: Di↵erential cross sections as a function of a variety of scales used to characterise

the event hardness (V ), considering an illustrative subset of the scales from Table 1. Left-

hand plot: results summing over all topologies. Right-hand plot: results for just the FCR

topology.

an expected consequence of the LO log(mtt̄
/mtop) enhancement for the 1

2m
tt̄ distribution

quoted in Eq. (2.3). The other three observables are identical at LO, and free of any

log(mtt̄
/mtop) enhancement. Yet in Fig. 4 (left) H

tt̄+jets
T appears to be almost identical

to 1
2m

tt̄, and there is a clear hierarchy among H
tt̄+jets
T , mJ,avg

T and p
top,lep
T . If instead we

examine Fig. 4 (right), with just the FCR topologies, the pattern is closer to the picture

expected from LO: 1
2m

tt̄ is well above the other observables, with a relative enhancement
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Full

FCR only

``Perturbative’’ expectations recovered



Why is this useful?

MSU seminar, March 2021Gavin P. Salam

Exploiting all available information

41

topology channel |ME|2 luminosity FS splitting product

FCR
gg ! tt̄ 0.15 0.16 1 0.024

qiq̄i ! tt̄ 0.22 0.13 1 0.028

FEX
tg ! tg 6.11 0.0039 1 0.024

t⌃ ! t⌃ 2.22 0.0170 1 0.038

gg ! gg(! tt̄) 30.4 0.16 Pg!tt̄ ' 0.004 0.020

GSP g⌃ ! g(! tt̄)⌃ 6.11 1.22 Pg!tt̄ ' 0.004 0.031

qq̄ ! gg(! tt̄) 1.04 0.13 Pg!tt̄ ' 0.004 0.001

Table 2: Factors contributing to the top-production cross section for a variety of partonic

scattering channels. In each case the 2 ! 2 squared matrix element (|ME|2, with a g
4 =

(4⇡↵s)2 factor stripped o↵ as in Eqs. (2.5), (2.6)) is given in the massless limit (valid

when pT � mt), for 90� scattering in the partonic centre-of-mass frame. The partonic

luminosities, defined as in Eq. (A.2), are given for a proton–proton centre of mass energy

of
p
s = 13 TeV and for producing a partonic system mass of

p
ŝ = 2 TeV. We set

the factorisation scale to µ = 1 TeV. ⌃ denotes a sum over all (non-top) quark and anti-

quark flavours. The luminosities have been evaluated with the PDF4LHC15 nnlo mc [28] set,

re-evolved in a six-flavour scheme with HOPPET [29] using NNLO splitting and threshold-

matching functions [30–33]. The final-state splitting probability Pg!tt̄ is obtained using

Eq. (2.9). The results in the final column are to be taken as order of magnitude estimates,

illustrating the commensurate sizes of di↵erent channels.

The Mandelstam invariants are ŝ = 4p2T and t̂ = û = �2p2T , and as a result the FEX

channel has a squared matrix element that is ten times larger than the FCR channel.

A second factor that is relevant is the partonic luminosity. For the FEX channels, the

incoming top is produced by an initial-state g ! tt̄ splitting, so ultimately the cross section

is driven by gg and g⌃ luminosities, where ⌃ is the sum of all light (anti-)flavours. The

top-quark luminosity then involves a factor ↵s ln pT /mtop, which gives a smaller luminosity

than either the gg or qiq̄i luminosities that were relevant for the FCR case. Ultimately the

larger matrix element compensates for the reduced luminosities and the FEX process has

a cross section that is comparable to that for FCR.

A similar set of features emerges also for the GSP case. Here the ↵s ln pT /mtop factor

appears for the final-state splitting rather than an initial state one. It is straightforward

to use massive splitting functions [36] to evaluate the leading-order probability Pg!tt̄ for

g ! tt̄ splitting with the tt̄ pair separated by distance �Rtt̄ < R, where �R
2
tt̄ = (yt �

yt̄)
2 + (�t � �t̄)

2 and yt and �t are respectively the rapidity and azimuth of the top. For a

gluon transverse momentum of pT , and with the conditions pTR � mtop and R ⌧ 1, the

result is

Pg!tt̄ =
↵sTR

2⇡

2

3

 
ln

p
2
T,tR

2

m
2
top

�
23

6

!
. (2.7)

In practice, the regime of pT = 1 TeV is not su�ciently asymptotic for this expression to
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➤ For SM-EFT fits and searches, each topology may bring sensitivity to different 
operators, and/or kinematic regions 

➤ Exploit different sensitivity to PDFs: e.g. FEX involves initial-state , which 
requires higher-  gluon than other processes at similar  

➤ Etc.

g → tt̄
x pT

• One process really contains multiple, different information → non-trivial to extract 
• Each topology has different features → sensitivity to different EFTs operators/kinematics regions 
• For PDFs: FEX involves g→tt IS splitting, higher-x than processes with similar pt and ``safer’’ 
• Understanding variables crucial when TH is incomplete (e.g.: mjj,avg largely insensitive to FONLL logs

As we collect more data and get access to more ``exotic’’ regions, perhaps these 
kinds of analyis will become quite useful  

(otherwise: risk of endless discussion on ``large K-factors’’, ‘’outside the scale band’’, ``αs at the TeV 
scale’’ on events with hard scale of ~200 GeV. …)



Is perturbation theory enough?



Beyond pQCD
<latexit sha1_base64="G2p4yKhWNh15lVZRezcSmQIcRws="></latexit>

d� =

Z
dx1dx2f(x1)f(x2) d�part(x1, x2)FJ (1 +O(⇤p

QCD/Q
p))

Everything we discuss is valid only provided that we can neglect (ΛQCD/Q)p 
terms. At the percent level, this may not be the case if p=1 contributes

• For DIS: solid proof that p ≳ 2 
• For inclusive quantities (e.g. DY total xsec): leading NP corrections have p=2 (non-trivial!) 
• For more exclusive quantities: potential sources of linear power corrections.  
• Top, Jets are known to have linear power corrections. What about color singlet? 

Asymmetric color configuration: linear dependence 
on small gluon ``kick’’ 

Vanishes upon azimuthal integration → not 
affecting the total xsec



Beyond pQCD
The obvious problem: at colliders, we cannot deal with QCD non-perturbatively

However: we know one source of NP that ``creeps’’ into perturbative results. 
When integrating over soft momenta → Landau pole ambiguity 

Must cancel against NP corrections → use it as an estimate of the latter (it turns 
out that many other sources of NP corrections are suppressed, e.g. instantons)

To probe Landau pole: give the gluon a small mass (tricky…) and use it as an IR 
probe

This can be made precise, and it has a solid QFT foundation.  
NP ↔ non-analytic terms in mg2. ``Large nf approximation’’, ``IR Renormalons’’

Caveat: cannot deal with processes involving gluons at Born level. 
Results I’ll show have some hidden assumptions…



Z pt and linear renormalons
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Figure 10: As in fig. 9, supplemented with a cut on the Z rapidity 0 < yZ < yc, with

yc = 0.6.

pcT = 20GeV pcT = 40GeV

fit 1 fit 2 fit 1 fit 2

a = 281.68± 0.02 a = 281.68± 0.01 a = 33.595± 0.003 a = 33.596± 0.002

b = �0.001± 0.009 b = 0 b = 0.015± 0.025 b = 0

c = �0.026± 0.018 c = �0.028± 0.006 c = �0.11± 0.09 c = �0.06± 0.03

d = 0.35± 0.01 d = 0.35± 0.01 d = 0.49± 0.11 d = 0.54± 0.06

�2/ndf = 0.39 �2/ndf = 0.32 �2/ndf = 0.89 �2/ndf = 0.77

Table 2: Results of the fit of the T (�) function defined in eq. (2.16) illustrated in Fig. 10.

The fit function is given in eq. 4.2. The first fit corresponds to the blue lines, while in the

second fit the linear coe�cient has been set to 0 and corresponds to the red lines. The last

line corresponds to the associated reduced �2.

momentum is free from linear renormalons.

By looking at the coe�cients reported in Tabs. 1 and 2, we notice that when we set

pcT = 40 GeV instead of 20 GeV we encounter larger errors in the determination of the

coe�cients c and d, since the corresponding contributions are suppressed by two powers of

�/pcT, and thus their relative importance diminishes for higher cuts.

5 Conclusions

The current LHC physics demands high precision theoretical predictions, and has promoted

an unprecedented theoretical e↵ort in pushing perturbative calculations beyond next-to-

leading order, and in some cases even beyond the next-to-next-to-leading order. At the

current level of precision, possible non-perturbative e↵ects that are suppressed by a single

power of the hard scale can sometimes be comparable or larger in size than the current

theoretical uncertainties. Unfortunately, for collider physics observables we lack a theory

of even the most important non-perturbative corrections. This is unlike others frameworks,
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the real and virtual contributions of the collinear subtraction, we implemented a

local cancellation of the associated soft divergence by making use of relation (2.25).

• The contribution from region 1, for either � = 0 or � 6= 0, is also implemented in the

POWHEG BOX. In this case the only singular region present is the one associated with

the collinear splitting of the initial state photon into a dd̄ pair. The underlying Born

for this singularity is given by the dd̄ ! Zg process, where the gluon has mass �,

di↵erent from the case of regions 2 and 3. The collinear singularity is treated in the

MS scheme in this case, and the collinear remnant is automatically provided by the

POWHEG BOX.

4 Results

As our benchmark set-up, we have taken two colliding particles with center-of-mass (CM)

energy of 300 GeV. The positive rapidity incoming particle (labelled as (1)) has a parton

density consisting only of down quarks, while the negative rapidity particle (labelled as

(2)) has a parton density consisting only of photons, distributed as

f (1)
d (x) = f (2)

� (x) =
(1� x)3

x
. (4.1)

This totally arbitrary choice is only dictated by simplicity, and is adequate for our purposes.

We compute the cross section for the production of a stable vector boson Z of mass MZ =

91.188GeV, that is only vectorially coupled. The Z and � couplings are both given by

g2Z/� = 4⇡, and the down quark is taken to have charge �1/3.4 The Born diagrams have

been computed supplying the correct colour factor (that is 1), and in the calculation of the

virtual and real corrections we have included the appropriate QCD colour factor CF . We

have chosen the factorization scale µF = MZ . The renormalization scale choice does not

a↵ect T (�).

To begin with, we show in fig. 9 the result for the T (�) function defined in eq. (2.16),

associated to the cross section for the production of a Z boson with a transverse momentum

larger than 20GeV (fig. 9 on the left) and 40GeV (fig. 9 on the right) as a function of the

gluon mass �. In order to extract the slope around � = 0, which is responsible for linear

renormalons (see eq. (2.26)), we fit T (�) using the function

f(�) = a

"
1 + b

✓
�

pcT

◆
+ c

✓
�

pcT

◆2

log2
✓

�

pcT

◆
+ d

✓
�

pcT

◆2

log

✓
�

pcT

◆#
, (4.2)

where the inclusion of the single and double logarithmic terms are motivated by the findings

in the Drell-Yan case [22, 23]. We neglected the point for � = 5 GeV in our fitting

procedure, in order to increase the quality of the fit near � = 0. We performed two

fits, one including b as fit parameter, and the other fixing it to 0, in order to assess its

impact on T (�). In Tab. 1 we report the results of the fits. We observe that the linear

4The actual values of the couplings are irrelevant for our conclusions, and are only presented to give a

well-defined meaning to our numerical results.
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[Ferrario Ravasio, Limatola, Nason (2020)]: Numerical study based on renormalon calculus

Fit consistent with b=0 → no linear power corrections

Compute Z pt with massive 
gluons, and extrapolate to 

mg → 0



Z pt and linear renormalons
Can we understand and generalise this result?

[FC, Ferrario Ravasio, Limatola, Melnkov, Nason (2021)]

With some caveats: 
•it is remarkably complicated for QCD to generate linear power corrections 
•only IR regions contribute (obvious)  
•virtual corrections: only HQ mass renormalization 
•collinear region: always quadratic 
•soft region can lead to linear power corrections. Need next-to-eikonal analysis

Two immediate results 
•no linear power corrections for ``inclusive’’ enough color singlet 
distributions (total xsec, rapidity distribution, pt distribution) 

•relatively easy to introduce linear PC from observable definition… In several 
cases, easy to compute linear correction… 



Example: the αs saga
The strong coupling can be determined from fits to e+e- event shapes

Long-standing issue of ``weirdly low’’ value 
NP corrections important, and included with some assumption

10

Below error bars & ! " perturbative error
All errors: Αs!mZ" $ 0.1123 ! 0.0015O!Αs3" fixed%order

0.1317 ! 0.0052

& '3LL' summation
0.1219 ! 0.0028

& Power Correction
0.1117 ! 0.0016

& R%scheme
0.1123 ! 0.0014

& hadron mass effects
0.1119 ! 0.0013

0.110

0.115

0.120

0.125

0.130

0.135

Αs!mZ"

Αs!mZ" from global C%parameter tail fits

FIG. 4. The evolution of the value of ↵s(mZ) adding components of the calculation. An additional ⇠ 8% uncertainty from not
including power corrections is not included in the two left points.

using the Rgap power correction parameter ⌦1(R�, µ�),
and adding hadron-mass e↵ects. These same results to-
gether with the corresponding �

2
/dof are also collected

in Tab. III. The fit with only fixed-order O(↵3
s
) results

has a relatively large �
2
/dof and also its central value

has the largest value of ↵s(mZ). Including the resum-
mation of large logarithms decreases the central ↵s(mZ)
by 8% and also decreases the perturbative uncertainty
by ⇠ 50%. Due to this smaller perturbative uncertainty
it becomes clear that the theoretical cross section has
a di↵erent slope than the data, which can be seen, for
example, at Q = mZ for 0.27 < C < 0.35. This leads
to the increase in the �

2
/dof for the “N3LL0 no power

corr.” fit, and makes it quite obvious that power correc-
tions are needed. When the power correction parameter
⌦1 is included in the fit, shown by the third entry in
Tab. III and the result just to the right of the vertical
dashed line in Fig. 4, the �

2
/dof becomes 1.004 and this

issue is resolved. Furthermore, a reduction by ⇠ 50%
is achieved for the perturbative uncertainty in ↵s(mZ).
This reduction makes sense since some of the perturba-
tive uncertainty of the cross section is now absorbed in
⌦1, and a much better fit is achieved for any of the vari-
ations associated to estimating higher-order corrections.
The addition of ⌦1 also caused the fit value of ↵s(mZ) to
drop by another 8%, consistent with our expectations for
the impact of power corrections and the estimate made in
Ref. [12]. Note that the error bars of the first two purely
perturbative determinations, shown at the left-hand side
of the vertical thick dashed line in Fig. 4 and in the last
two entries in Tab. III, do not include the ⇠ 8% uncer-
tainties associated with the lack of power corrections.

The remaining corrections we consider are the use of
the R-scheme for ⌦1 which includes the renormalon sub-

tractions, and the inclusion of the log-resummation ef-
fects associated to the hadron-mass e↵ects. Both of these
corrections have a fairly small impact on the determi-
nation of ↵s(mZ), shifting the central value by +0.5%
and � 0.3% respectively. Since adding the � 0.3% shift
from the hadron mass corrections in quadrature with the
' 1.2% perturbative uncertainty does not change the
overall uncertainty we will use the R-scheme determi-
nation for our main result. This avoids the need to fully
discuss the extra fit parameter ✓(R�, µ�) that appears
when hadron masses are included. Further discussion
of the experimental uncertainties and the perturbative
uncertainty from the random scan are given below in
Secs. VB and VD, and a more detailed discussion of
the impact of hadron-mass resummation is given below
in Sec. VE.
The values of ⌦1 obtained from the fits discussed above

can be directly compared to the ⌦1 power correction ob-
tained from the thrust distribution. Values for ⌦1 from
the C-parameter fits are given below in Secs. VB and VD
and the comparison with thrust is considered in Sec. VII.

B. Perturbative Uncertainty from the Scan

To examine the robustness of our method of determin-
ing the perturbative uncertainty by the random scan, we
consider the convergence and overlap of the results at dif-
ferent perturbative orders. Figure 5 shows the spread of
best-fit values at NLL0, N2LL0 and N3LL0. The upper left
panel, Fig. 5(a), shows results from fits performed in the
Rgap scheme, which implements a renormalon subtrac-
tion for ⌦1, and the upper right-panel, Fig. 5(b), shows
results in the MS scheme without renormalon subtrac-
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to the procedure used to calculate the power correction to
the D-parameter for arbitrary 3-jet configurations [47].

Integrating over ⌘[dip] and �[dip], and summing over
dipoles, we then obtain
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(4E(1/4)� 3K(1/4)) . (18)

The functions K and E are the complete elliptic integrals
of the first and second kind
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, (19a)
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1� t sin2 ✓

�1/2
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The numerical value of ⇣(3/4) reads

⇣(3/4) ' 4.48628 , (20)

which provides the leading non-perturbative correction at
the shoulder.1 This simple result reveals that the leading
(⇠ 1/Q) hadronisation correction at the (symmetric three-
jet) Sudakov shoulder is less than half that in the two-jet
limit (⇣(0) = 3⇡).

3.3 Modelling of the 0<C<3/4 region

Our calculations of ⇣(0) and ⇣(3/4) relied critically on the
fact that recoil from the gluer emission had an impact
that was quadratic in the gluer momentum. Away from
these special points, the methods used here do not give
us control over the value of the power correction, because
the result depends on the prescription that we adopt for
recoil (the impact of the hard parton’s recoil becomes lin-
ear in the gluer momentum). One could conceivably ex-
tend the methods of Ref. [25] to attempt to determine the
general dependence of ⇣(C) on C, however such a calcu-
lation is highly non-trivial. So here, we want to establish
whether such a calculation would be phenomenologically
important. To do so, we consider a range of models that
interpolate the power correction between the known val-
ues at C = 0 and C = 3/4, some of which depend on a
parameter n � 0. These are:

⇣0(C) = ⇣(0) (21a)

⇣a,n(C) = ⇣(0)(1� un) + ⇣(3/4)un , u =
4C

3
, (21b)

⇣b,n(C) = ⇣(0)(1� u)n + ⇣(3/4) (1� (1� u)n) , (21c)

⇣c(C) = ⇣(0) + (⇣(3/4)� ⇣(0))g(u), (21d)

where g(u) has the property that it is 0 (1) for u = 0 (1)
and its first derivative is zero at u = 0, 1,

g(u) = �1 + (1� u)3 + 3u� u3 . (21e)
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Fig. 1. Di↵erent functional forms for ⇣(C) function interpo-
lating between the results at C = 0 and C = 3/4.

The di↵erent forms for ⇣(C) are shown in Fig. 1. The
⇣0 choice corresponds to using a constant shift, i.e. the
standard approach for earlier studies. For both ⇣a,n and
⇣b,n, using n = 1 corresponds to a linear interpolation be-
tween the ⇣(0) and ⇣(3/4) values. For larger n, ⇣a,n is flat
close to C = 0, while ⇣b,n is flat close to C = 3/4. Fi-
nally ⇣c is flat near both C = 0 and C = 3/4. We stress
that the variations in Eqs. (21) are not normally taken
into account when estimating hadronisation with analytic
models, which e↵ectively all assume the ⇣0 model, corre-
sponding to a constant shift across the whole di↵erential
distribution. In Section 4 we will see what impact this has
on fits for the strong coupling from experimental data.

In order to gain some insight on how ⇣(C) depends on
the recoil scheme, in Appendix B we carry out a fixed-
order calculation of this quantity within di↵erent schemes
to distribute the recoil due to the emission of the gluer
among the remaining three partons. In reality, however,
the behaviour that we find at fixed order in Appendix B
can be substantially modified by the emission of multiple
perturbative radiation (as also discussed in Appendix B).
Therefore we do not rely on these calculations to assess
the impact of ⇣(C) on the fits, but rather use them as
an insightful picture of how the leading non-perturbative
correction scales across the spectrum of the event shape.
We do however note that the concrete recoil schemes all
yield shapes that fall below the ⇣a,1 ⌘ ⇣b,1 line.

4 Fit of ↵s and hadronisation uncertainties

To test how our results a↵ect the extraction of ↵s, we
perform a simultaneous fit of the strong coupling and of
the non-perturbative parameter ↵0(µ2

I), using data at dif-
ferent centre-of-mass energies from the ALEPH [49] and
JADE [50] experiments, as summarised in Table 1. This
dataset is smaller than that considered for a similar fit in

1 The numerical value of ⇣(3/4) was previously estimated in
unpublished work by one of us (GPS) in collaboration with Z.
Trócsányi (see for instance Section 4.1.3 of Ref. [48]).

•C=0: degenerate configuration, easy to compute NP. Standard 
approach: extrapolate them to all values of C 

•But also C=3/4 is degenerate → also here easy to compute NP. 
Different result! [Luisoni, Monni, Salam (2020)]

C=0
C=3/4
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Fig. 1. Di↵erent functional forms for ⇣(C) function interpo-
lating between the results at C = 0 and C = 3/4.

The di↵erent forms for ⇣(C) are shown in Fig. 1. The
⇣0 choice corresponds to using a constant shift, i.e. the
standard approach for earlier studies. For both ⇣a,n and
⇣b,n, using n = 1 corresponds to a linear interpolation be-
tween the ⇣(0) and ⇣(3/4) values. For larger n, ⇣a,n is flat
close to C = 0, while ⇣b,n is flat close to C = 3/4. Fi-
nally ⇣c is flat near both C = 0 and C = 3/4. We stress
that the variations in Eqs. (21) are not normally taken
into account when estimating hadronisation with analytic
models, which e↵ectively all assume the ⇣0 model, corre-
sponding to a constant shift across the whole di↵erential
distribution. In Section 4 we will see what impact this has
on fits for the strong coupling from experimental data.

In order to gain some insight on how ⇣(C) depends on
the recoil scheme, in Appendix B we carry out a fixed-
order calculation of this quantity within di↵erent schemes
to distribute the recoil due to the emission of the gluer
among the remaining three partons. In reality, however,
the behaviour that we find at fixed order in Appendix B
can be substantially modified by the emission of multiple
perturbative radiation (as also discussed in Appendix B).
Therefore we do not rely on these calculations to assess
the impact of ⇣(C) on the fits, but rather use them as
an insightful picture of how the leading non-perturbative
correction scales across the spectrum of the event shape.
We do however note that the concrete recoil schemes all
yield shapes that fall below the ⇣a,1 ⌘ ⇣b,1 line.

4 Fit of ↵s and hadronisation uncertainties

To test how our results a↵ect the extraction of ↵s, we
perform a simultaneous fit of the strong coupling and of
the non-perturbative parameter ↵0(µ2

I), using data at dif-
ferent centre-of-mass energies from the ALEPH [49] and
JADE [50] experiments, as summarised in Table 1. This
dataset is smaller than that considered for a similar fit in

1 The numerical value of ⇣(3/4) was previously estimated in
unpublished work by one of us (GPS) in collaboration with Z.
Trócsányi (see for instance Section 4.1.3 of Ref. [48]).

LMS approach: we know NP at two points. Interpolate between them and see
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Model ↵s(M
2
Z) ↵0(µ

2
I) �2/d.o.f.

⇣0 0.1121± 0.0006+0.0023
�0.0014 0.53± 0.01+0.07

�0.04 1.076

⇣a,1 ⌘ ⇣b,1 0.1142± 0.0005+0.0026
�0.0015 0.52± 0.01+0.06

�0.04 1.045

⇣a,2 0.1121± 0.0006+0.0024
�0.0015 0.52± 0.01+0.07

�0.04 1.033

⇣a,3 0.1099± 0.0007+0.0022
�0.0014 0.54± 0.01+0.07

�0.05 1.116

⇣b,2 0.1163± 0.0005+0.0028
�0.0017 0.51± 0.01+0.06

�0.04 1.079

⇣b,3 0.1167± 0.0004+0.0028
�0.0018 0.53± 0.01+0.06

�0.04 1.143

⇣c 0.1156± 0.0005+0.0027
�0.0016 0.48± 0.01+0.05

�0.03 1.074

Table 2. Results of fits for ↵s and ↵0 using the di↵erent functional forms for ⇣(C) reported in Eq. (21). The quoted uncertainties
encode the total (statistical and systematic) experimental uncertainty (first number) and the total theoretical uncertainty (second
number) estimated as described in the text. The �2 values are those obtained with central scales and setup. The results have
been obtained with the minimum overlap model, Eq. (23), for correlations between experimental systematic uncertainties.

The results with the ⇣0 model correspond to the stan-
dard implementation of the leading non-perturbative cor-
rection, which is assumed to amount to a constant shift
across the whole C spectrum. The fit returns

⇣0 : ↵s(M
2

Z) = 0.1121+0.0024
�0.0016 , ↵0(µ

2

I) = 0.53+0.07
�0.05 ,

and agrees well with that of Ref. [5], albeit with larger
uncertainties, in part due to our use of NNLL+NNLO
rather than N3LL+NNLO theory predictions. We observe
that several models lead to a �2 value that is the same as,
or smaller than, that for the ⇣0 shape. In particular, the
⇣b,2 model returns

⇣b,2 : ↵s(M
2

Z) = 0.1163+0.0028
�0.0018 , ↵0(µ

2

I) = 0.51+0.06
�0.04 ,

with a �2 that is similar to that of the ⇣0 fit. This cor-
responds to an increase in ↵s(M2

Z) of about 3.7%. In a
number of models (⇣a,1 ⌘ ⇣b,1, ⇣b,2, ⇣b,3, and ⇣c) the val-
ues of ↵s become compatible with the world average [2]
↵W.A.
s = 0.1179 ± 0.0010. The result with the smallest

�2 is the ⇣a,2 model, which yields a rather small value
of ↵s = 0.1121+0.0024

�0.0016. However the investigations of Ap-
pendix B, with a variety of concrete recoil-scheme pre-
scriptions, seem to disfavour the ⇣a,2 shape, suggesting
that yet other factors may be relevant for maximising the
fit quality.

Overall, the results suggest that one should allow
for a 3�4% uncertainty in ↵s extractions from e+e� C-
parameter data, associated with limitations in our current
ability to estimate hadronisation corrections.

5 Conclusions

In this letter we have pointed out that the presence of a
Sudakov shoulder in the di↵erential distribution of some
event-shape observables, such as the C parameter, can be
exploited to gain insight on the observable dependence of
the leading (⇠ 1/Q) hadronisation correction to the spec-
trum. We found that the leading hadronisation correction
at the Sudakov shoulder (C = 3/4) is over a factor of

two smaller than the corresponding value in the two-jet
(C = 0) limit.

In order to assess the impact of this observation on
the fit of the strong coupling constant, we performed a
set of fits using di↵erent assumptions on the scaling of the
non-perturbative correction between the two points.

Our study is by no means exhaustive, and the inclu-
sion of additional physical e↵ects (such as the impact of
bottom-mass e↵ects) as well as a careful assessment of
other sources of systematic uncertainty (such as the de-
pendence on the fit range and the choice of correlation
model) is necessary. However, it clearly reveals that cur-
rent uncertainties in the modelling of hadronisation cor-
rections can arguably impact the extractions of the strong
coupling from event shapes at the several percent level. In
particular, some of the models tested here lead to an in-
crease in the extracted value of the strong coupling by
3%� 4%, which then becomes compatible with the world
average to within uncertainties.

This necessarily raises the question of whether such
observables should still be adopted for percent-accurate
determinations of the strong coupling at LEP energies.
Similar considerations may apply to extractions of ↵s ob-
tained with jet observables, for instance those relying on
accurate calculations for jet rates [32, 51–54] (e.g. the fits
of Refs. [8, 21]) or modifications of e+e� event shapes by
means of grooming techniques [55–57] (an example be-
ing the analysis of Ref. [58]). Further studies are certainly
warranted to investigate whether it is possible to better
understand hadronisation for such observables across their
whole spectrum, for example exploiting the large-nf cal-
culational methods of Ref. [25].
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Example: the αs saga
Using our results, we can compute NP corrections for arbitrary C 
(with some caveats)
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See text for details.

We notice that the precision of the numerical result for the qg dipole is inferior to

the qq̄ one and also that near the symmetric point it is worse for thrust than for the C-

parameter. The first issue is probably related to the fact that the hard emitting gluon is

generally softer than the emitting quarks. Thus the e↵ective Q of the emission is smaller

in the qg case, leading to larger non-perturbative e↵ects, since they are proportional to

�/Q. Regarding thrust, we recall that it vanishes in the symmetric three-jet configuration

at Born level. This is di↵erent for the C-parameter, which approaches a constant there.

In Fig. 6 we plot ⇣ defined in Eq. (5.40) for the C-parameter and for thrust. The

results for the C-parameter can be compared to Figs. 1 and 3 of Ref. [24]; we note again

that predictions of Ref. [24] need to be rescaled so that they assume the value 1 at c = 0.

The normalized curves agree at the three-jet symmetric point, c = 0.75, where our result

computed for � = 0.1 is 0.479(5), and the (re-scaled) result obtained in Ref. [24] is 0.476; the

di↵erence can be attributed to terms proportional to �
2. Among the various extrapolations

of the function ⇣ presented in Ref. [24], their ⇣b,3 curve seems to be the closest to our result.

As a final comment, we notice that for both the C-parameter and the thrust, the

non-perturbative correction that we computed here is smaller than the one obtained by

extrapolating it from the two-jet region to a symmetric point, especially in the case of

the C-parameter. In Ref. [24] a fit to ↵s using the C-parameter was given under various

assumptions about the shape of the function ⇣(c). For the function ⇣b,3 that, as we said,

is closest to our results, the authors of Ref. [24] extract the value of the strong coupling

constant ↵s = 0.117(3). This result is in much better agreement with the world average

value ↵s = 0.118(1) as compared to ↵s = 0.112(2) obtained in Ref. [33] using a more

conventional treatment of non-perturbative e↵ects. It would be interesting to see if also

for the thrust a similar improvement can be achieved.
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Preliminary pheno investigations: right direction αs ~ 0.117(1)!



Conclusions and outlook
•Progress in precision SM phenomenology keeps proceeding at a 

remarkable pace 
✤ N3LO, complex NNLO, QCD-EW, EW… 
✤ More and more elaborate resummations, non-leading logs… 
✤ Parton shower… 
✤ Computational tools (→ ingredients for N3LL resummation) 
✤ SM/BSM interplay: EFTs… 

•This is necessary but not sufficient for physics at the few percent. Many 
unexpected issues that keep popping up

•A better understanding of NP corrections may be required

•Future ahead: not only computations. Very interesting analysis, from 
hardcore pheno to subtle QFT…
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