Recent challenges in LHC phenomenology

Fabrizio Caola

Rudolf Peierls Centre for Theoretical Physics & Wadham College

NNPDF Collaboration & N3PDF Meeting, Gargnano, 7/9/2021

SOME recent challenges in LHC phenomenology

Fabrizio Caola

Rudolf Peierls Centre for Theoretical Physics & Wadham College

NNPDF Collaboration & N3PDF Meeting, Gargnano, 7/9/2021

The punch line

A lot of progress on the phenomenological side:

- Few percent accuracy: becoming possible for a wide range of reactions
- Standard candles: even higher precision could be reached
- Gaining more control on the TeV region
- Gaining more control on complex final states \rightarrow rich phenomenology

Few percent: opportunities

- No direct NP at the TeV-scale: $\delta_{NP} \sim Q^2 / \Lambda_{NP^2} \sim \text{few percent}$
- $\alpha_{EW} \sim 0.01 \rightarrow$ study the SM at the quantum level (e.g. Higgs couplings)

<u>However:</u>

- Technical issues (CPU is not infinite...)
- Input parameters
- Non-perturbative QCD: $Q^n / \Lambda_{QCD^n} \sim 0.01^n \rightarrow \text{need to control (at least n=1)}$
- Physics at the few percent: interesting theoretical challenges...

The rise of the N³LO era

N³LO: inclusive results

To a large extent, inclusive N³LO for $2 \rightarrow 1$ processes has been solved

[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger (2016-...); Duhr, Dulat, Mistlberger (2020-21)]

Inclusive Drell-Yan at N³LO

In the EW region Q~100 GeV: ~2-3% N³LO vs per-mill NNLO

Band only overlap at large $Q^2 \rightarrow$ trouble in the high-precision region?

Neutral-current DY: flavour decomposition

Per-mille NNLO: unnaturally small. Very large cancellations

- Individual channels (µ=Q) much larger than final result, delicate cancellation pattern
- Individual channels: perturbative convergence
- N³LO ``natural", tiny PDFs changes can significantly affect this picture

N³LO: PDFs

<u>N³LO PDFs not available \rightarrow order mismatch</u>

$Q/{ m GeV}$	$\rm K_{QCD}^{N^{3}LO}$	$\delta(\text{scale})$	$\delta(\text{PDF}+\alpha_S)$	$\delta(\text{PDF-TH})$
30	0.952	$^{+1.5\%}_{-2.5\%}$	$\pm 4.1\%$	$\pm 2.7\%$
50	0.966	$^{+1.1\%}_{-1.6\%}$	$\pm 3.2\%$	$\pm 2.5\%$
70	0.973	$^{+0.89\%}_{-1.1\%}$	$\pm 2.7\%$	$\pm 2.4\%$
90	0.978	$^{+0.75\%}_{-0.89\%}$	$\pm 2.5\%$	$\pm 2.4\%$
110	0.981	$^{+0.65\%}_{-0.73\%}$	$\pm 2.3\%$	$\pm 2.3\%$
130	0.983	$^{+0.57\%}_{-0.63\%}$	$\pm 2.2\%$	$\pm 2.2\%$
150	0.985	$^{+0.50\%}_{-0.54\%}$	$\pm 2.2\%$	$\pm 2.2\%$

Error: estimate from previous orders

$$\delta(\text{PDF-TH}) = \frac{1}{2} \left| \frac{\sigma_{W^{\pm}}^{(2), \text{ NNLO-PDFs}} - \sigma_{W^{\pm}}^{(2), \text{ NLO-PDFs}}}{\sigma_{W^{\pm}}^{(2), \text{ NNLO-PDFs}}} \right|$$

- ~ 2% PDF-TH error in the EW region
- significant fraction of the error budget
- same order of ``standard" PDF+ α_{s}

N³LO: PDFs

<u>N³LO PDFs not available \rightarrow order mismatch</u>

ggH

A sizeable source of the error budget

N³LO: PDFs

<u>N³LO PDFs not available \rightarrow order mismatch</u>

ggH

A sizeable source of the error budget... even more so

N³LO PDFs issues: evolution

N³LO: evolution and the problems of small-x

Λ

NNLO: an issue at low-mass, not quite so at the EW scale

N³LO PDFs issues: evolution

N³LO: evolution and the problems of small-x

NNLO: an issue at low-mass, not quite so at the EW scale. N³LO?

$$\chi_0(M) = \frac{C_A}{\pi} \left[2\psi(1) - \psi(M) - \psi(1 - M) \right] \rightarrow$$
$$\gamma_{\rm LL}(N) = \frac{\bar{\alpha}_s}{N} + \mathbf{0} \cdot \alpha_s^2 + \mathbf{0} \cdot \alpha_s^3 + 2\zeta_3 \frac{\bar{\alpha}_s^4}{N^4} \quad , \quad \bar{\alpha}_s = \alpha_s C_A / \pi$$

Spurious leading pole in O, starting at N³LO (vs pole at N~0.3).

Is this an issue for precision physics (at the EW scale and beyond)?

- How dangerous is the spurious N³LO growth?
- Are subleading terms under control?
- To which extent DGLAP evolution washes out small-x effects?
- Control-sample with effectively no evolution (i.e. LHC-only fits)?

N³LO PDFs issues: data

 Collider data crucial to reduce perturbative uncertainty → fully-consistent N³LO fit would require top, Z pt, jets @ N³LO

N³LO for PDFs: status and prospects

- DIS 🖌
- DY 🗸
- Z pt: ~ (unknown, but should be possible)
- Top: ~ (unknown, but should be possible given current understanding)
- Jets: X (unknown, and there may be serious problems...)

The problem with N³LO calculations

Factorization theorem:

$$d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) d\sigma_{\text{part}}(x_1, x_2) F_J \left(1 + \mathcal{O}(\Lambda_{\text{QCD}}^p / Q^p)\right)$$
with $d\sigma = D$. Wis incensitive to ID physics (represented to LD in DDEc)

with $d\sigma_{part} = R + V$ is insensitive to IR physics (reabsorbed, to LP, in PDFs)

At higher order, this may not be enough...

 top @ N³LO and beyond: R + V is not enough. ``Non-perturbative" bound state singularities that need to be accounted for [Beneke, Ruiz-Femenia (2016)]

...or may be badly violated

- massive initial state: from NNLO, non-trivial space-like vs time-like analytic continuation lead to factorization violation (non-abelian Coulomb phases...) (see [FC, Melnikov, Napoletano, Tancredi (2020)] for a modern-language derivation)
- a similar mechanism seems to be present from N³LO for processes with non-trivial color →
 ``standard" collinear factorization may be broken [Forshaw, Seymour, Kyrieleis, Siodmok (2006-2012);

 Catani, de Florian, Rodrigo (2012)]

N³LO: going differential

<u>Colour-singlet production at order α_{s^3} :</u>

+

Soft/collinear (+virtual) effects at vanishingly small pt

Rapidity distribution at vanishingly small pt

Fully-differential Higgs @ N³LO: P2B

[Chen, Gehrmann, Glover, Huss, Mistlberger, Pelloni (2021)]

- Higgs rapidity distribution [Dulat, Mistlberger, Pelloni (2018)]
- Exquisite numerical control of H+j@NNLO [NNLOjet, 2015-2021]
- Combined using P2B [Cacciari, Dreyer, Karlberg, Salam, Zanderighi (2015)]

N³LO without full rapidity distribution

<u>Colour-singlet production at order α_{s^3} :</u>

Up to power corrections: from resummation

V+J@NNLO

$$\sigma^{\mathrm{N}^{3}\mathrm{LO}} = \int_{0}^{p_{t,\mathrm{cut}}} \frac{\mathrm{d}\sigma^{\mathrm{N}^{3}\mathrm{LL}}}{\mathrm{d}p_{t}} \mathrm{d}p_{t} + \int_{p_{t,\mathrm{cut}}} \frac{\mathrm{d}\sigma^{\mathrm{NNLO}}_{V+J}}{\mathrm{d}p_{t}} \mathrm{d}p_{t} + \mathcal{O}\left(p_{t,\mathrm{cut}}^{2}\ln^{5}p_{t,\mathrm{cut}}\right)$$

N³LO without full rapidity distribution

<u>Colour-singlet production at order α_s^3 :</u>

Easy to go from N³LO to N³LO + N³LL

N³LO+N³LL: recent results

[V+jet@NNLO: NNLOjet, extremely stable down to pt ~ 0.5 GeV]

N³LO from resummation: a word of caution

To extract N³LO: subleading power must be under control

$$\sigma^{\mathrm{N}^{3}\mathrm{LO}} = \int_{0}^{p_{t,\mathrm{cut}}} \frac{\mathrm{d}\sigma^{\mathrm{N}^{3}\mathrm{LL}}}{\mathrm{d}p_{t}} \mathrm{d}p_{t} + \int_{p_{t,\mathrm{cut}}} \frac{\mathrm{d}\sigma^{\mathrm{NNLO}}_{V+J}}{\mathrm{d}p_{t}} \mathrm{d}p_{t} + \mathcal{O}\left(p_{t,\mathrm{cut}}^{2}\ln^{5}p_{t,\mathrm{cut}}\right)$$

- Subleading power ~ $\alpha_{s^n} (p_t/Q)^2 \ln^{2n-1}(p_t/Q) \rightarrow$ much lower cutoff w.r.t. NNLO
- Naive estimate: NNLO V+j down to ~1–0.5 GeV \rightarrow error up to order 1%

- For Higgs, confirmed by (<u>and included in)</u>. [Billis, Dehnadi, Ebert, Michel, Tackmann (2021)]
- Good news: first subleading is enough
- N³LO+N³LL: less severe, but more ambiguities

Fiducial N³LO: a more serious problem

- Inclusive: flat K-factor (as for inclusive), tiny error, no structure
- Fiducial: large corrections, large error, non-trivial shapes

Fiducial N³LO: a more serious problem

 $d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) \, d\sigma_{\text{part}}(x_1, x_2) F_J \left(1 + \mathcal{O}(\Lambda_{\text{QCD}}^p / Q^p)\right)$

<u>violated by ATLAS/CMS experimental cuts</u>

- Drell-Yan: p_{t,l} > 25 GeV, |y_l| < 2.5 → the infamous ``symmetric cuts". Well-known source of troubles [Frixione, Ridolfi (1997)]
- Higgs: asymmetric cuts. $p_{t,\gamma 1(2)} < 0.35(0.25) m_H$, $|y_{\gamma}| < 2.37$, with gap

Unfortunately, <u>both</u> symmetric and asymmetric cuts share the same feature: <u>introduce linear p_t dependence on the acceptance at small p_t</u> [Catani, Cieri, de Florian, Ferrera, Grazzini (2018); Ebert, Michel, Tackmann + Billis, Dehnadi (2017-2021); Salam + Slade (2015, 2021)]

Inclusive calculations:

$$\sigma_{\rm inc} = R + V = \int \frac{d\sigma_{H+j}}{dp_{t,H}} dp_{t,H} + V =$$

Inclusive calculations:

$$\sigma_{\rm inc} = R + V = \int \frac{d\sigma_{H+j}}{dp_{t,H}} dp_{t,H} + V = \left(\int_{p_{t,H}}^{p_{t,H}^{\rm IR}} \frac{d\sigma_{H+j}}{dp_{t,H}} dp_{t,H} + V^{\rm IR}\right) + \left(\int_{p_{t,H}^{\rm IR}} \frac{d\sigma_{H+j}}{dp_{t,H}} dp_{t,H} + V^{\rm fin}\right)$$

Inclusive calculations:

Inclusive calculations:

$$\sigma_{\rm inc} = R + V = \int \frac{d\sigma_{H+j}}{dp_{t,H}} dp_{t,H} + V = \left(\int_{p_{t,H}^{\rm IR}} \frac{d\sigma_{H+j}}{dp_{t,H}} dp_{t,H} + V^{\rm IR} \right) + \left(\int_{p_{t,H}^{\rm IR}} \frac{d\sigma_{H+j}}{dp_{t,H}} dp_{t,H} + V^{\rm fin} \right)$$

unitarity insensitive to IR physics

Fiducial: non-trivial acceptance may weight the real integral

$$\sigma_{\rm fid} = R + V = \int \frac{d\sigma_{H+j}}{dp_{t,H}} dp_{t,H} f(p_{t,H}) + V f(p_{t,H} = 0)$$

Inclusive calculations:

$$\sigma_{\rm inc} = R + V = \int \frac{d\sigma_{H+j}}{dp_{t,H}} dp_{t,H} + V = \left(\int_{p_{t,H}^{\rm IR}} \frac{d\sigma_{H+j}}{dp_{t,H}} dp_{t,H} + V^{\rm IR} \right) + \left(\int_{p_{t,H}^{\rm IR}} \frac{d\sigma_{H+j}}{dp_{t,H}} dp_{t,H} + V^{\rm fin} \right)$$

unitarity insensitive to IR physics

Fiducial: non-trivial acceptance may weight the real integral

$$\sigma_{\rm fid} = R + V = \int \frac{d\sigma_{H+j}}{dp_{t,H}} dp_{t,H} f(p_{t,H}) + V f(p_{t,H} = 0)$$

If f changes strongly at low pt: contamination from IR physics. Serious problem for fixed-order perturbation theory

LHC typical acceptances:

In the IR region (=small $p_{t,H}$), LHC cuts have a linear dependence on the Higgs transverse momentum \rightarrow spoil R+V cancellation in fixed-order calculations

Linear acceptances: how bad?

A cartoon: double-logarithmic approximation $[L=ln(m_H/2p_{t,H})]$

$$\frac{d\sigma}{dp_{t,H}} = \frac{4C_A \alpha_s L}{\pi p_{t,H}} e^{-\frac{2C_A \alpha_s}{\pi} L^2} \sigma_{\text{tot}} = \frac{\sigma_{\text{tot}}}{p_{t,H}} \sum_{n=1}^{\infty} (-)^{n-1} \frac{2L^{2n-1}}{(n-1)!} \left(\frac{2C_A \alpha_s}{\pi}\right)^n$$

The fixed-order series is then:

$$\sigma_{\rm fid} = \int \frac{d\sigma}{dp_{t,H}} dp_{t,H} \left(f_0 + f_1 \frac{p_{t,H}}{m_H} \right) = \sigma_0 \left[f_0 + f_1 \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(2n)!}{2(n!)} \left(\frac{2C_A \alpha_s}{\pi} \right)^n + \dots \right]$$

Pert.theory does not improve after $n \sim 1/2 + \pi/(8 C_A \alpha_s) \sim 1.5$

$$\frac{\sigma_{\rm fid,sym}^{\rm DL}}{f_0 \sigma_{\rm tot}} - 1 = \frac{f_1^{\rm sym}}{f_0} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(2n)!}{2(n!)} \left(\frac{2C_A \alpha_s}{\pi}\right)^n + \dots$$
(2.11a)
$$\simeq \frac{f_1^{\rm sym}}{f_0} \left(\underbrace{0.24}_{\alpha_s} - \underbrace{0.34}_{\alpha_s^2} + \underbrace{0.82}_{\alpha_s^3} - \underbrace{2.73}_{\alpha_s^4} + \underbrace{11.72}_{\alpha_s^5} + \dots\right) \simeq \frac{f_1^{\rm sym}}{f_0} \times \underbrace{0.12}_{\rm resummed},$$
(2.11b)

Linear acceptances: how bad?

Realistic scenario:

$$\frac{\sigma_{\text{asym}} - f_0 \sigma_{\text{inc}}}{\sigma_0 f_0} \simeq 0.15_{\alpha_s} - 0.29_{\alpha_s^2} + 0.71_{\alpha_s^3} - 2.39_{\alpha_s^4} + 10.26_{\alpha_s^5} + \dots \simeq 0.06 \quad \text{@DL},$$

$$\simeq 0.15_{\alpha_s} - 0.23_{\alpha_s^2} + 0.44_{\alpha_s^3} - 1.15_{\alpha_s^4} + 3.83_{\alpha_s^5} + \dots \simeq 0.06 \quad \text{@LL},$$

$$\simeq 0.18_{\alpha_s} - 0.15_{\alpha_s^2} + 0.29_{\alpha_s^3} + \dots \simeq 0.10 \quad \text{@NNLL},$$

$$\simeq 0.18_{\alpha_s} - 0.15_{\alpha_s^2} + 0.31_{\alpha_s^3} + \dots \simeq 0.12 \quad \text{@N3LL}.$$

F.o. calculations: sensitive to unphysically low values of $p_{t,H}$ (DL: ~10⁻² GeV to cover 95% of the cross-section)

Fiducial cross-sections: possible ways out

With current experimental setup: f.o. results unreliable.

<u>A possible option: always match with resummation. However:</u>

- f.o. provides a very clean, solid and robust framework. Should be careful to let it go without thinking
- Resummation: a whole plethora of new ambiguities...

Fiducial cross-sections: possible ways out

<u>A better option: change cuts to remove linear dependence.</u> Rules of the game:

- only use data on tape / do not ask for ``bad" exp. regions
- do not significantly affect S/B

Simplest case: Higgs $\rightarrow \gamma \gamma$ (pure kinematics)

• very simple solution: $p_{t,min} > p_{t,cut 1}$, $p_{t,1} + p_{t,2} / / p_{t,1} \times p_{t,2} > p_{t,cut 2}$

What about DY?

Same issue, but situation less severe (C_A vs C_F)

$$\frac{\sigma_{\text{sym}}^{(\text{u})} - f_0 \sigma_{\text{inc}}}{\sigma_0 f_0} \simeq -0.074_{\alpha_s} + 0.051_{\alpha_s^2} - 0.057_{\alpha_s^3} + 0.090_{\alpha_s^4} - 0.180_{\alpha_s^5} + \dots \simeq -0.047 \quad \text{@DL},$$

$$\simeq -0.074_{\alpha_s} + 0.027_{\alpha_s^2} - 0.014_{\alpha_s^3} + 0.010_{\alpha_s^4} - 0.010_{\alpha_s^5} + \dots \simeq -0.055 \quad \text{@LL},$$

$$\simeq -0.118_{\alpha_s} + 0.012_{\alpha_s^2} - 0.016_{\alpha_s^3} + \dots \simeq -0.114 \quad \text{@NNLL},$$

$$\simeq -0.118_{\alpha_s} + 0.012_{\alpha_s^2} - 0.016_{\alpha_s^3} + \dots \simeq -0.114 \quad \text{@N3LL}.$$

Solution more tricky, V couples production / decay [see Salam, Slade (2021) for a discussion]

Other processes? In principle, could be a problem any time you have an essentially symmetric configuration at LO (e.g. <u>top, some configurations for Z+j</u>, <u>jets, photons</u>).... A lot to explore...

Back to NNLO: 1. Heavy flavour

The problem: TH vs EXP have a quite different definition of ``flavour"

EXP: displaced vertices, hadron tagging...

TH: ``what is the net flavour of a jet?"

b

b

2 b-jets

light – b – light

b**b** must behave like a gluon [coll. safety]

The problem: TH vs EXP have a quite different definition of ``flavour"

EXP: displaced vertices, hadron tagging...

TH: ``what is the net flavour of a jet?"

light – b – light

b**b** must behave like a gluon [coll. safety]

Solution: use a different jet algorithm, ``flavour $k_{\text{T}}^{\prime\prime}$

[Banfi, Salam, Zanderighi (2006)]

The problem: very different behaviour w.r.t. anti- k_T . Cannot compare with exp!

[Behring, Bizon, FC, Melnikov, Röntsch (2020)]

Possible solutions:

- if process dominated by g→bb: let a shower take care of it [ask Maria & Fabio....]
- if g → bb is subdominant: massive calculation (possible at NNLO, but for simple processes....)
- complex scenarios? One would need a jet algo that is flavour safe + same behaviour of anti-k_T (work in progress...)

Solution: use a different jet algorithm, ``flavour $k_{T}^{\prime\prime}$

- To which extent this is an issue e.g. for W+c?
- How relevant is this for PDFs extraction?
- What are collaboration actually measuring (D-mesons, charm ``jet", mixture)? How relevant are corrections? How do they massage the data?

Back to NNLO: 2. Status and prospects

2→2 NNLO is well-understood

NNLO: from proof of concept to detailed phenomenology

NNLLO + PS becoming a reality

[Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi (2021)]

$2 \rightarrow 3$ NNLO is coming

- jjj: ``Tour de force in QCD".
- still very much in the exploratory phase
- much richer phenomenology → a lot to study / understand, beyond standard distributions
- 1/2L amplitudes are slow... efficient interpolation/learning of multi-dimensional functions?

Understanding complex events/ kinematics: tt at high scale

[FC, Dreyer, McDonald, Salam (2021)]

A lot of data is available

^{m P} CMS 1803:08856 (semileptonic tt): 270 plots

A lot of information, not always obvious

Hardness variable	explanation
$p_T^{ m top,had} \ p_T^{ m top,lep} \ p_T^{ m top,lep} \ p_T^{ m top,max} \ p_T^{ m top,max} \ p_T^{ m top,min} \ p_T^{ m top,avg} \ p_T^{ m top,avg} \ p_T^{ m top,avg}$	transverse momentum of hadronic top candidate transverse momentum of leptonic top candidate p_T of the top (anti-)quark with larger $m_T^2 = p_T^2 + m^2$ p_T of the top (anti-)quark with smaller $m_T^2 = p_T^2 + m^2$ $\frac{1}{2}(p_T^{\text{top,had}} + p_T^{\text{top,lep}})$
$\begin{array}{c} \frac{1}{2}H_T^{t\bar{t}}\\ \frac{1}{2}H_T^{t\bar{t}+\mathrm{jets}}\\ \frac{1}{2}H_T^{J,\mathrm{avg}}\\ m_T^{J,\mathrm{avg}} \end{array}$	with $H_T^{t\bar{t}} = m_T^{\text{top,had}} + m_T^{\text{top,lep}}$ with $H_T^{t\bar{t}+\text{jets}} = m_T^{\text{top,had}} + m_T^{\text{top,lep}} + \sum_i p_T^{j_{\ell,i}}$ average m_T of the two highest m_T large- R jets (J_1, J_2)
$rac{1}{2}m^{t\overline{t}}$	half invariant mass of $p^{t\bar{t}} = p^{\text{top,had}} + p^{\text{top,lep}}$
$p_T^{tar{t}} \ p_T^{j_{{t}\!\!/},1}$	transverse component of $p^{t\bar{t}}$ transverse momentum of the leading small- R non-top jet

Hardness variable	explanation
$p_T^{\mathrm{top,had}} p_T^{\mathrm{top,lep}} p_T^{\mathrm{top,lep}} p_T^{\mathrm{top,max}} p_T^{\mathrm{top,max}} p_T^{\mathrm{top,min}} p_T^{\mathrm{top,min}} p_T^{\mathrm{top,avg}} p_T^{\mathrm{top,avg}}$	transverse momentum of hadronic top candidate transverse momentum of leptonic top candidate p_T of the top (anti-)quark with larger $m_T^2 = p_T^2 + m^2$ p_T of the top (anti-)quark with smaller $m_T^2 = p_T^2 + m^2$ $\frac{1}{2}(p_T^{\text{top,had}} + p_T^{\text{top,lep}})$
$rac{1}{2}H_T^{tar{t}} \ rac{1}{2}H_T^{tar{t}} \ rac{1}{2}H_T^{tar{t}+ ext{jets}} \ rac{1}{2}H_T^{J, ext{avg}} \ m_T^{J, ext{avg}}$	with $H_T^{t\bar{t}} = m_T^{\text{top,had}} + m_T^{\text{top,lep}}$ with $H_T^{t\bar{t}+\text{jets}} = m_T^{\text{top,had}} + m_T^{\text{top,lep}} + \sum_i p_T^{j_{\ell,i}}$ average m_T of the two highest m_T large- R jets (J_1, J_2)
$\frac{\frac{1}{2}m^{t\bar{t}}}{\begin{array}{c}p_{T}^{t\bar{t}}\\p_{T}^{j_{\ell,1}}\\p_{T}^{j_{\ell,1}}\end{array}}$	half invariant mass of $p^{t\bar{t}} = p^{top,had} + p^{top,lep}$ Ω_s suppressed, starts at NLO

 $\frac{1}{2}m^{t\overline{t}}$ Very delicate observable at high scales

- Logarithmic enhancement (theoretically delicate beyond LO)
- Contributions from large-y, low-pt tops (issue for boosted reco...)
- Plus: gluon/quark separation → good handle for PDF studies?

"Energetic" tops: expectations vs reality

"Energetic" tops: expectations vs reality

``LO" expectations do not borne out

Understending energetic tops: 1-topologies

- ``NLO"-topologies suppressed by $\alpha_s(1 \text{ TeV}) \sim 0.09$
- $\cdot \ln(p_t/m_t) \sim 2$, not large enough to compensate for α_s
- However...

Very different underlying 2→2 scattering

Consider high-pt 2 \rightarrow 2 scattering, i.e. pt = 1 TeV, $\theta = \pi/2$

flavour creation

Comparable results, t-channel exchange compensates for α_s

Very different underlying 2→2 scattering

Consider high-pt $2 \rightarrow 2$ scattering, i.e. $p_t = 1 \text{TeV}, \theta = \pi/2$

flavour creation

Again, ME enhancement compensates for α_s

Very different ``hard" scale

2 \rightarrow 2 cross section decreases very fast, $\sigma(p_t^{2\rightarrow 2} > X) \sim 1/X^7$

Example: $p_t^{top, min}$ If $p_t^{top, min} = 1$ TeV, then

Take this info into account, separate topologies

Algorithm 2 Event analysis algorithm at hadron (particle) level

- **Require:** at least one lepton (we require it to have a transverse momentum of at least 25 GeV), missing transverse momentum and hadrons.
- 1: Cluster the hadronic part of the event with the anti- k_t algorithm with R = 0.4 and discard any jets below some p_t threshold, $p_{T,\min}$, as one would normally (we take $p_{T,\min} = 30 \text{ GeV}$).
- 2: Optionally, e.g. if subject to finite detector acceptance, exclude jets and leptons with an absolute rapidity beyond some y_{max} . The remaining set of jets is referred to as $\{j\}$ and the hadrons contained within that set of jets is $\{H\}$.
- 3: For each jet j, recluster its constituents with the exclusive longitudinally invariant $(R = 1) k_t$ algorithm [61] with a suitable d_{cut} (we use $(20 \text{ GeV})^2$), thus mapping the R = 0.4 jets $\{j\}$ to a declustered set $\{j_d\}$. One applies *b*-tagging to the $\{j_d\}$ (sub)jets to aid with the subsequent top identification.
- 4: Use a resolved top-tagging approach to identify the hadronic and leptonic top-quark candidates from the lepton(s) and from the jets $\{j_d\}$ obtained in step 3. Here, we will adopt the algorithm outlined in Section 4.2.
- 5: Identify all particles from the set $\{H\}$ that do not belong to either of the top-quark candidates. Refer to this subset as $\{H_{\ell}\}$. Cluster the $\{H_{\ell}\}$ with the original jet definition (anti- k_t , R = 0.4) and apply a transverse momentum threshold $p_{T,\min}$ to obtain the set of non-top R = 0.4 jets, $\{j_{\ell}\}$, ordered in decreasing p_T .
- 6: Apply step 3 of Algorithm 1 using $\{j_{f}\}$ and the reconstructed top and anti-top candidates as the inputs.

Relatively easy to separate these contribution, in a safe and practical way

<u>``Perturbative'' expectations recovered</u>

Why is this useful?

1 f	topology	channel	$ \mathrm{ME} ^2$	luminosity	FS splitting	product
$=$ p p p \bar{t}	FCR	$gg \to t \bar{t}$	0.15	0.16	1	0.024
		$q_i \bar{q}_i o t\bar{t}$	0.22	0.13	1	0.028
	FEX	$tg \rightarrow tg$	6.11	0.0039	1	0.024
		$t\Sigma \to t\Sigma$	2.22	0.0170	1	0.038
=	GSP	$gg \to gg (\to t\bar{t})$	30.4	0.16	$\mathcal{P}_{g \to t\bar{t}} \simeq 0.004$	0.020
		$g\Sigma \to g(\to t\bar{t})\Sigma$	6.11	1.22	$\mathcal{P}_{g \to t\bar{t}} \simeq 0.004$	0.031
		$q\bar{q} \rightarrow gg(\rightarrow t\bar{t})$	1.04	0.13	$\mathcal{P}_{g \to t\bar{t}} \simeq 0.004$	0.001

• One process really contains multiple, different information \rightarrow non-trivial to extract

- Each topology has different features \rightarrow sensitivity to different EFTs operators/kinematics regions
- For PDFs: FEX involves $g \rightarrow$ tt IS splitting, higher-x than processes with similar p_t and ``safer"
- Understanding variables crucial when TH is incomplete (e.g.: m_{jj,avg} largely insensitive to FONLL logs $tar{t}$

<u>As we collect more data and get access to more ``exotic" regions, perhaps these</u> <u>kinds of analyis will become quite useful</u>

(otherwise: risk of endless discussion on ``large K-factors", "outside the scale band", `` α_s at the TeV scale" on events with hard scale of ~200 GeV. ...)

Is perturbation theory enough?

Beyond pQCD

$d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) \, d\sigma_{\text{part}}(x_1, x_2) F_J \, (1 + \mathcal{O}(\Lambda_{\text{QCD}}^p / Q^p))$

Everything we discuss is valid only provided that we can neglect $(\Lambda_{OCD}/Q)^p$ terms. At the percent level, this may not be the case if p=1 contributes

- For DIS: solid proof that $p \ge 2$
- For inclusive quantities (e.g. DY total xsec): <u>leading</u> NP corrections have p=2 (non-trivial!)
- For more exclusive quantities: potential sources of linear power corrections.
- Top, Jets are known to have linear power corrections. What about color singlet?

Asymmetric color configuration: linear dependence on small gluon ``kick"

Vanishes upon azimuthal integration \rightarrow not affecting the total xsec

Beyond pQCD

<u>The obvious problem: at colliders, we cannot deal with QCD non-perturbatively</u> <u>However</u>: we know one source of NP that ``creeps'' into perturbative results. When integrating over soft momenta \rightarrow Landau pole ambiguity Must cancel against NP corrections \rightarrow use it as an estimate of the latter (it turns out that many other sources of NP corrections are suppressed, e.g. instantons)

To probe Landau pole: give the gluon a small mass (tricky...) and use it as an IR probe

This can be made precise, and it has a solid QFT foundation. NP \leftrightarrow non-analytic terms in m_g². ``Large n_f approximation", ``IR Renormalons"

<u>Caveat:</u> cannot deal with processes involving gluons at Born level. Results I'll show have some hidden assumptions...

Z pt and linear renormalons

[Ferrario Ravasio, Limatola, Nason (2020)]: Numerical study based on renormalon calculus

Fit consistent with $b=0 \rightarrow$ no linear power corrections

Z pt and linear renormalons

Can we understand and generalise this result?

[FC, Ferrario Ravasio, Limatola, Melnkov, Nason (2021)]

With some caveats:

- it is remarkably complicated for QCD to generate linear power corrections
- only IR regions contribute (obvious)
- virtual corrections: only HQ mass renormalization
- collinear region: always quadratic
- <u>soft region can lead to linear power corrections. Need next-to-eikonal analysis</u>

<u>Two immediate results</u>

- no linear power corrections for ``inclusive" enough color singlet distributions (total xsec, rapidity distribution, pt distribution)
- relatively easy to introduce linear PC from observable definition... In several cases, easy to compute linear correction...

The strong coupling can be determined from fits to e+e- event shapes

Long-standing issue of ``weirdly low" value NP corrections important, and included with some assumption

Are the assumptions justified? [Luisoni, Monni, Salam (2020)]

- C=0: degenerate configuration, easy to compute NP. Standard approach: extrapolate them to all values of C
- But also C=3/4 is degenerate \rightarrow also here easy to compute NP. Different result! [Luisoni, Monni, Salam (2020)]

Are the assumptions justified? [Luisoni, Monni, Salam (2020)]

LMS approach: we know NP at two points. Interpolate between them and see

<u>Using our results, we can compute NP corrections for arbitrary C</u> (with some caveats)

<u>Preliminary</u> pheno investigations: right direction $\alpha_s \sim 0.117(1)!$

Conclusions and outlook

- Progress in precision SM phenomenology keeps proceeding at a remarkable pace
 - ✤ N³LO, complex NNLO, QCD-EW, EW...
 - ✤ More and more elaborate resummations, non-leading logs...
 - Parton shower...
 - Computational tools (\rightarrow ingredients for N³LL resummation)
 - ✤ SM/BSM interplay: EFTs...
- This is necessary but not sufficient for physics at the few percent. Many unexpected issues that keep popping up
- A better understanding of NP corrections may be required
- Future ahead: not only computations. Very interesting analysis, from hardcore pheno to subtle QFT...

Thank you very much for your attention!