USING THE FD TELESCOPES TO DETECT THE MICROWAVE RADIATION PRODUCED BY ATMOSPHERIC SHOWERS

F. Bracci, <u>C. Di Giulio</u>, C. Mangone, G.Matthiae, G. Salina and V. Verzi

INFN Roma And INFN LNGS

FD Telescope

- Spherical mirror with radius of curvature of 3.4 m
- Camera of pmt placed on a spherical focal surface with a $FOV \sim 30^{\circ} x 30^{\circ}$

FD camera

light collectors to recover border inefficiencies

"mercedes star" with aluminized mylar reflecting walls

→ Auger FD: 10560 PMTs

FD Telescope

- Spherical mirror with radius of curvature of 3.4 m
- Camera of pmt placed on a spherical focal surface with a $FOV \sim 30^{\circ} x 30^{\circ}$
- Diaphragm with diameter of2.2 m

Schmidt optics Spherical aberration Circle of minimum **Confusion** Diameter 1.5 cm Coma suppressed **Coma aberration** Diaphragm Spherical focal surface

FD Telescope

- Spherical mirror with radius of curvature of 3.4 m
- Camera of pmt placed on a spherical focal surface with a $FOV \sim 30^{\circ} x 30^{\circ}$
- Diaphragm with diameter of2.2 m
- Corrector ring to increase the aperture
- + UV optical filter

FDWAVE

Pixels without photomultipliers (removed to be installed in HEAT - Photonis stopped the production)

220 pixels available (not considering the columns adjacent to pmts)

<u>Use LL1 & LL6 to detect microwave radiation equipping the empty</u> <u>pixels with microwave radio receivers</u>

FDWAVE

Use the standard FD trigger and readout the radio receivers every FD shower candidate

Use the profile reconstructed with pmts to estimate the energy deposit seen by radio receivers

Reflector

Optics

LL mirrors are produced with aluminium --> good reflectivity

Parabolic microwave telescope

in the focus all rays have the same phase!

Spherical FD

A Schmidt-Camera for Radio Waves
February 1953
JAAKKO TUOMINEN.

BUT:

the parabolic dish is not suitable for track imaging purposes because of the strong aberrations for inclined rays

⇒ the best reflector is spherical !!!

FD optics simulation

Simulation without Diaphragm and Camera shadow

Simulation with Diaphragm and Camera shadow

Optimal Wavelenght

optimal v

1.50: 5 GHz \Leftrightarrow 6 cm

inserting antenna in camera holes \Rightarrow lower limit on ν

Antenna

Conical Horn in the frequency range [9-11] GHz (0.70-0.80)

support (can be removed) connector for output signal (can be put in another position) circular aperture Ø 42 mm waveguide (<a) Ø 24.5 mm (<b)

camera holes b=38 mm maximum aperture a=45.6 mm

Contacts with SATIMO experts to lower the frequency

Telescope Aperture

aperture from Gain

$$A_{eff} = \frac{\lambda^2 G}{4\pi}$$

Signal / Background

Expected flux density

P.W.Gorham et al., Phys.Rew. D78, 032007 (2008)

$$I \approx \left(\frac{E[EeV]}{0.34}\right)^{\alpha} \frac{1}{R[km]^2} \cdot 3 \cdot 10^{-22} \frac{W}{m^2 Hz}$$

Background

Signal / Background

Rate in LL6 above 10^{18.5}eV: 50 events/year

Possibility to increase $I/\Delta I$: $\Delta t > 100$ ns

averaging over more showers and FADC traces

Elettronics & DAQ

use the FD FADCs

- → a trigger signal is needed
- → radio signals will be available in a friendly style

CONCLUSIONS

- The possibility to detect the microwave emission from air shower using the FD telescope optic it's under investigation.
- To detect different part of the same shower with different techinque (Fluor. and Microwave) it will be nice.
- We need a background measurement in the FD building to estimate the system noise temperature.

RECOVERING PMT PULSE

Parabolic Reflector with Diaphragm

Spherical Reflector with Diaphragm

Filter attenuation: as tempered glass??

Tempered Glass 3dB Transfert loss.

Fig. 4 Transfer characteristics

Experimental results of 2.45, 3.5, 5, and 10GHz radio propagation characteristics