# THE ENERGY SCALE OF THE PIERRE AUGER OBSERVATORY

#### Valerio Verzi

for the Pierre Auger Collaboration

Sezione INFN di Roma "Tor Vergata"

# **COSMIC RAYS FLUX**



# WHERE DO COME FROM?

Trajectory in galactic and inter-galactic B





Back to origin!

#### **AUGER SKY**

318 AGNs within 75 Mpc VCV catalogue



# Greisen-Zatsepin-Kusmin (GZK) cutoff

at the highest energies

 $p \gamma_{CMB} \rightarrow N \pi$ 

energy loss ≈ 15 % / interaction

 $\lambda = 5 \div 10 \text{ Mpc}$ 



Above 6x10<sup>19</sup>eV sources must be closer than 50-100 Mpc!

#### AUGER – HYBRID DETECTOR

#### **Surface Detector (SD):**

- detection of the shower front at ground
- (+) Duty cicle ~ 100%
- (-) Shower size at ground  $\propto E$  (systematics)



simulation needs the extrapolation of hadronic interactions beyond accelerator measurements

⇒ <u>FD CALIBRATION</u>

#### Fluorescence Detector (FD):

- •fluorescence light from the N<sub>2</sub> de-excitation
- (+) Longitudinal shower development calorimetric measurement of E sensitivity to CR mass  $(X_{max})$
- (-) **Duty cicle ~ 10%**



### PIERRE AUGER OBSERVATORY

SD



Malargue (Argentina) 3000 km<sup>2</sup>

1600 water Cherenkov detectors on a 1.5 km hexagonal grid





# PIERRE AUGER OBSERVATORY

FD



Malargue (Argentina) 3000 km<sup>2</sup>

4 x 6 fluorescence telescopes

2.2 m diameter diaphragm corrector ring, UV optical filter





spherical mirror 3.4 m m radius of curvature

camera (focal surface) - 30<sup>0</sup>X30<sup>0</sup> FOV 440 PMT's - 100 ns FADC

# SD SHOWER RECONSTRUCTION

**Shower front** from particle arrival times

Core position and S(1000) from LDF (NGK) fit

$$S(r) = S(1000) \left(\frac{r}{1000}\right)^{-\beta} \left(\frac{r + 700}{1700}\right)^{-\beta}$$

S(1000) is the best energy estimator

conversion factor from FD





# FLUORESCENCE YIELD





#### in Auger:

 $5.05 \pm 0.71$  ph/MeV at 337 nm Nagano et al. Astrop. Phy. 22 (2004) 35

spectrum and pressure dependence M.Ave et al. Astrop. Phy. 28 (2007) 41







#### **Atmospheric monitoring**

pressure, temperature and umidity aerosols (clouds, dust, smoke, ...)

Radio soundes to provide atmospheric profiles (pressure, temperature, ...) vs altitude





#### Montly Malargue average model



atmospheric depth X(h):
 deviation of montly mean
 values from the yearly average

355 nm steerable laser

50 shots every 15 min



Laser profiles measured by FD











# SYSTEMATICS RELATED TO ATMOSPHERE

| SOURCE                                        | ΔΕ/Ε        |
|-----------------------------------------------|-------------|
| Quenching effects on fluorescence yield       | +5.5%       |
| Horizontal uniformity                         | 1%          |
| Pressure, temperature and umidity variability | 0.5%        |
| Aerosol optical depth                         | 3.5% - 7.5% |
| λ dependence                                  | 0.5%        |
| Phase function                                | 1%          |
| TOTAL                                         | ≈ 7% - 9%   |

# FD CALIBRATION



We need to know the number of photons at diaphragm per ADC count detected by each pixel

# **ABSOLUTE CALIBRATION**

#### **Drum** absolute calibration

uniform camera illumination with a calibrated light source

 $\sim 5 \gamma/ADC$  9% uncertainty







# CROSS CHECK OF THE ABSOLUTE CALIBRATION

#### **Roving lasers**

 $\lambda = 337 \text{ nm}$ 

 $R \approx 3 \text{ Km}$  (atmospheric attenuation minimized)

Energy probe to measure the beam intensity --> 10% uncertainty



### FD SHOWER RECONSTRUCTION





Systematic uncertainty ~ 10%

#### related to light collection

- select pixels close to SDP to maximize S/N
- accounts for the light detected by not selected pixels (finite shower width, optic imperfections, ...) where the signal is completely masked by the noise



Shower Detector Plane (SDP)

# FD SHOWER RECONSTRUCTION

expected dE/dX profile: fitted Gaisser-Hillas function

$$E_{cal} = \int dX \frac{dE}{dX}$$

From  $E_{cal}$  to shower energy only a 10% model dependent correction  $\sim$  4% uncertainty on shower energy





# SD CALIBRATION USING FD ENERGY

$$S_{38} = S(1000, \theta = 38^{\circ})$$

Attenuation curve derived using constant intensity cut technique

$$E_{FD} = A \cdot S_{38}^B$$

$$B \approx 1.07$$



#### $50 \text{ VEM} \sim 10^{19} \text{ eV}$





#### measurement of the energy resolution

14%-S<sub>38</sub> 9%-E<sub>FD</sub> 
$$\sqrt{14^2 + 9^2} \approx 17\%$$

$$\sqrt{14^2 + 9^2} \approx 17\%$$

#### FD ENERGY SCALE vs SIMULATION

Detailed analysis of S(1000) - separation of muonic and elettromagnetic components



[a] 
$$E_{MC} = 1.26^{+0.05}_{-0.04} (syst.) \times E_{FD}$$

compatible within FD uncertainties (22%)

### TRUSTING ON OUR DATA









# SYSTEMATIC UNCERTAINTIES ON AUGER ENERGY SCALE (PUBLISHED RESULTS)

| SOURCE                      | ΔΕ/Ε  |
|-----------------------------|-------|
| Absolute fluorescence yield | 14%   |
| Atmosphere                  | 8%    |
| FD calibration              | 9.5%  |
| FD reconstruction           | 10%   |
| Invisible energy            | 4%    |
| TOTAL                       | ≈ 22% |

# SYSTEMATIC UNCERTAINTIES ON AUGER ENERGY SCALE (PUBLISHED RESULTS)

| SOURCE                      | ΔΕ/Ε           |              |
|-----------------------------|----------------|--------------|
| Absolute fluorescence yield | 14% -          | <b>→</b> 5%  |
| Atmosphere                  | 8%             | -            |
| FD calibration              | 9.5%           | -            |
| FD reconstruction           | 10%            | -            |
| Invisible energy            | 4%             | -            |
| TOTAL                       | ≈ 22% <b>—</b> | <b>→</b> 18% |

#### **OUTLOOK**

• Systematic uncertainty on the energy scale is

**22%** (Phys. Rev. Lett. 101 (2008), 061101)

dominated by the uncertainty on absolute fluorescence yield (14% - *Nagano et al. Astrop. Phy. 22 (2004) 35)* 

• We are working to reduce the systematics and soon there will be an update of the energy scale. It will be worthwhile to use a more precise value of the absolute fluorescence yield

• An important goal of this series of workshops <u>is to provide a recommendation</u> <u>on what is the best fluorescence yield</u> (combination of different experiments?), including <u>spectrum</u>, <u>pressure dependence</u>, ....

#### **OUTLOOK**

• Systematic uncertainty on the energy scale is

**22%** (Phys. Rev. Lett. 101 (2008), 061101)

dominated by the uncertainty on absolute fluorescence yield (15% - *Nagano et al. Astrop. Phy. 22 (2004) 35)* 

• We are working to reduce the systematics and soon there will be an update of the energy scale. It will be worthwhile to use a more precise value of the absolute fluorescence yield

• An important goal of this series of workshops <u>is to provide a recommendation</u> <u>on what is the best fluorescence yield</u> (combination of different experiments?), including <u>spectrum</u>, <u>pressure dependence</u>, ....

#### **AUGER vs HIRES SPECTRUM**



fairly agreement between systematics

Notice: HIRES uses a different fluorescence yield (FLASH) and spectrum (Bunner)