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INTRODUCTION 
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FY Dataset 

Yλ at any given P, T conditions can be obtained from: 

€ 

Yλ (P,T) = Yλ P0,T0( )
1+ P0 ʹ′ P λ T0( )
1+ P ʹ′ P λ T( )

The reconstruction of the shower parameters requires: 

1.-  Absolute values in dry air for all wavelengths, Yλ (P0, T0). Or, 
     alternatively Yref(P0,T0) and Iλ(P0,T0). 

2.- P’λ(T0) for dry air 

3.- T dependence of collisional cross section, αλ	



4.- P’w for all wavelengths (and its αw values if possible). 



Three datasets have been used in cosmic rays experiments: 

1.- Kakimoto-Bunner (K-B): used by HiRes in 2001. 
     - Kakimoto et al.: φ and P’ values for 337, 351, 391 nm at (T0=288 K, P0=1013 hPa)    
     - Remaining bands contribute 30% and are distributed according to Bunner.   

2.- Nagano: 
    - φ and P’ values for 15 bands (T0=293 K, P0=1013 hPa)    

3.- Nagano-Airfly (N-A): presently used by the Auger Collaboration 
      - Nagano et al. Y for 337 band (T0=293 K, P0=800 hPa) 
      - P’ at T0=293 K and relative intensities for 34 bands from Airfly Collaboration 

Datasets in fluorescence telescopes 
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N-A will be the reference dataset in this work 
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COMPARISON OF 
       DATASETS 
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Comparison of Datasets 

- Differences between 
Nagano and Nagano-Airfly 
are almost negligible (∼2%) 

- Discrepancies at the level 
of 20% are observed 
between Kakimoto-Bunner 
and the other datasets 

20% € 

FY Ratio =
Y Dataset

Y N −A

Upper Layers Ground 

YN-A     = fluorescence yield from the Nagano-Airfly dataset 
YK-B     = fluorescence yield from the Kakimoto-Bunner dataset 
YNagano = fluorescence yield from the Nagano dataset 

2% 
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Comparison of Datasets (K-B vs N-A) 

Fluorescence photons are detected with optical systems that have 
λ-dependent response (black line). When this efficiency is taken into 
account the relative intensities of the molecular bands are modified  
(right picture). 
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Comparison of Datasets (K-B vs N-A) 

When the detector 
efficiency is taken into 
account discrepancies 
between Kakimoto-Bunner 
and Nagano-Airfly are 
drastically reduced. 

2% 

Upper Layers Ground 

YNA    = fluorescence yield from the Nagano-Airfly dataset 
YK-B    = fluorescence yield from the Kakimoto-Bunner dataset 

€ 

FY Ratio =
Y Dataset

Y N −A
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T  AND H EFFECTS 
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Temperature and humidity effect 
Temperature and humidity effect in the N-A dataset have been studied 

•  Temperature: 
 AIRFLY Collaboration values for all the 34 bands* 

  

•  Humidity: 
  from AIRFLY*  € 
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*	
  Ave	
  et	
  al.	
  Nucl.	
  Instrum.	
  and	
  Meth.	
  A	
  597	
  (2008)	
  50-­‐54	
  
**	
  	
  The	
  Pierre	
  Auger	
  Coll.	
  AstroparHcle	
  Physics	
  33	
  (2010)	
  108 

Atmospheric profile at Auger Site (Malargüe, Argentina)** 
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YNA        = fluorescence yield from the Nagano-Airfly dataset 
YNA +T+h     = fluorescence yield including T and/or  h contributions  

FY(T,h) vs Depth 

December 

Upper Layers Ground 
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ANALYTICAL METHOD 
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Simple analytical procedure to 
evaluate T,h effect 
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profile of deposited energy described  
by a Gaisser-Hillas function 

Fluorescence yield 

Longitudinal profile of  
fluorescence emission 

photons  g-1 cm2 
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with a given fluorescence profile, a different  FY assumption leads 
to a change in reconstructed energy 
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profile of deposited energy described  
by a Gaisser-Hillas function 

Fluorescence yield 

Longitudinal profile of  
fluorescence emission 

photons  g-1 cm2 

taking into account optical efficiency and atmospheric transmission: 

Atmospheric  
transmission 

Optical efficiency  
of  telescope 

Simple analytical procedure to 
evaluate T,h effect 



Method 
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This method has been applied 
to different cases 

FY assumptions: 

1.- Datasets (K-B, N-A, Nagano) 

2.- T and h effects 

Typical Gaisser-Hillas profiles for 6 types of showers: 

1.-  Primary energy: 1019 eV, 1020 eV 

2.- Composition: p, Fe 

3.- Geometry: 30º, 60º	
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        RESULTS: 
COMPARISON OF 
      DATASETS        
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Effect of dataset choice (N-A vs K-B) 

δE = 20.6 %  

δE = (E’-E)/E 
ΔXmax = X’max- Xmax Fe 1019 eV, θ= 30º 

Dec 

ΔXmax = -1 g·cm-2  

δE = 1.7 %  
ΔXmax ≈ 0 g·cm-2  
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Effect of dataset choice (Nagano 
& K-B vs N-A) 

                                      δE=(E’-­‐E)/E	
   

Nagano/N-­‐A     K-B / N-A 

Yλ	

     - 1 %       19 % 

Yλ·ελ	

     - 2 %       2 % 

Yλ·ελ·Tλ (30 km)     - 2 %       0 % 

2.- Negligible effect on Xmax 

1.- Average effect on energy 
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         RESULTS: 
T  AND H EFFECTS         
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YNA        = fluorescence yield from the Nagano-Airfly dataset 
YNA +T+h     = fluorescence yield including T and/or  h contributions  

FY(T,h) vs Depth 

December 

Upper Layers Ground 
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Effect of humidity 

δE = 6.1 %  

δE = (E’-E)/E 
ΔXmax = X’max- Xmax Fe 1019 eV, θ=  0º 

Dec 

ΔXmax = 10 g·cm-2  

θ = 0º	



Slant Depth [g cm2] 

Ground 
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Effect of humidity 

δE = 4.3%  

δE = (E’-E)/E 
ΔXmax = X’max- Xmax 

ΔXmax = 8 g·cm-2  

Fe 1019 eV, θ= 30º 
Dec 

θ = 30º	



Slant Depth [g cm2] 

Ground 
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Effect of humidity 

δE = 0.5%  
|ΔXmax| < 1 g·cm-2  

Fe 1019 eV, θ= 60º 
Dec 

θ = 60º	



Slant Depth [g cm2] 

δE = (E’-E)/E 
ΔXmax = X’max- Xmax 
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Effect of temperature 

δE = 2.0%  
ΔXmax = - 5 g·cm-2  

Fe 1019 eV, θ=  0º 
Dec 

θ = 0º	



Slant Depth [g cm2] 

Ground 

δE = (E’-E)/E 
ΔXmax = X’max- Xmax 
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Effect of temperature 

δE = 2.4%  
ΔXmax = - 5 g·cm-2  

Fe 1019 eV, θ= 30º 
Dec 

θ = 30º	



Slant Depth [g cm2] 

Ground 

δE = (E’-E)/E 
ΔXmax = X’max- Xmax 
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Effect of temperature 

δE = 6.1%  
ΔXmax = - 5 g·cm-2  

Fe 1019 eV, θ= 60º 
Dec 

θ = 60º	



Slant Depth [g cm2] 

δE = (E’-E)/E 
ΔXmax = X’max- Xmax 



30	
  

T+h Combined Effect 

-  Geometry dependent 

-  Vertical showers affected by 
humidity. 

-  Inclined showers affected 
by temperature. 

-  The slope of the FY ratio will 
determine ΔXmax. 

30º 60º 

p 
Fe   

Solid line 1020 eV 
Dotted line 1019 eV 
Profiles not scaled 
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Results on E 
Effect of T + h on reconstructed primary energy  

- Vertical showers (affected 
by humidity) show a strong 
seasonal dependence. 

-  Inclined showers (more  
affected by temperature) are  
fairly regular.  

Invisible energy taken into account: 
Einv ≈ 10% ⇒ δEtot=δEcal/1.1 
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Results on Xmax 

Effect of T + h on shower maximum depth 

- As vertical showers develop 
in the transition zone, the effect 
on Xmax is highly variable. 

-  In inclined showers the Xmax  
position decreases due to 
positive slope of the FY ratio 
in the upper layers of the 
atmosphere.  
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    EFFECT OF  
UNCERTAINTIES 
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Effect of uncertainties in 
quenching parameters 

- α and P’w are difficult to measure and its 
  uncertainties are still very large. 

- To explore the effect of this uncertainties  
 we have repeated the calculations  
 increasing (decreasing) α values 50%  
 and P’w values 20% 
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Effect of uncertainties in 
quenching parameters 

α	
  
P’w	
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Effect of uncertainties in 
quenching parameters 

1.5	
  α	
  
0.8	
  P’w	
  	
  

Only 2% 
increase 
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Effect of uncertainties in 
quenching parameters 

α	
  
P’w	
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Effect of uncertainties in 
quenching parameters 

Only 2% 
decrease 

0.5	
  α	
  
1.2	
  P’w	
  	
  



39	
  

Effect of uncertainties in 
quenching parameters 

Same for Xmax 

α	
  
P’w	
  	
  



40	
  

Effect of uncertainties in 
quenching parameters 

1.5	
  α	
  
0.8	
  P’w	
  	
  

Only up to 
2 g·cm-2 

variation 
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Effect of uncertainties in 
quenching parameters 

0.5	
  α	
  
1.2	
  P’w	
  	
  

Only up to 
2 g·cm-2 

variation 

     Large uncertainties in α and P’w do not translate to the reconstructed 
shower parameters 
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CROSS-CHECKS 
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B. Keilhauer and M. Unger   
31st ICRC  

5.6% 1.7 gcm-2 

Reasonable agreement with detailed reconstruction 

Comparison with previous  
          results on δE 

MC Sample 
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B. Keilhauer and M. Unger   
31st ICRC  

5.6% 

-1.7 gcm-2 

Comparison with previous results 
                    on ΔXmax 

Reasonable agreement with detailed reconstruction 

MC Sample 
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Simple cross-check with real 
data 

Detailed reconstruction 
          (no T+h)  

Real Data 

G-H profile 
FY (T, h) 

modified G-H profile 

E 
Xmax 

Real Data E 
Xmax 

Det Rec Meth. 

Mean 1.0%  

Mean 0.1 gcm-2  

Det Rec results in agreement with our simple 
analythical method (within 1 % percent in 
E and 0.1 g cm-2 in Xmax)  

Detailed reconstruction 
          (T+h)  δE 

ΔXmax 
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   COMMENTS 
            & 
CONCLUSIONS 
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Some comments on these 
          calculations 

-  In a real case only a fraction of the longitudinal development is 
  available for the reconstruction. We have recalculated the 
  modified profile using typical intervals X1 – X2  (field of view of 
  the FD in real showers). No significant effects have been found. 

-  Cherenkov light information is not taken into account in this 
  simple model. The effect of neglecting this is not yet studied, but 
  could explain this small discrepancies on δE. 



Conclusions 
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•  A simple analytical procedure for the evaluation of the effect of  
  changing the FY dataset on the reconstructed energy and Xmax 

  has been developed 

•  Effect of dataset choice (K-B, Nagano, N-A) almost negligible 

•  Effect of neglecting h and T on E and Xmax reconstruction  
  strongly dependent on shower geometry. 

•  Large uncertainties in α and P’w do not translate to the  
  reconstructed shower parameters  

•  On average, reasonable agreement with detailed reconstruction. 



THANKS	
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Detector efficiency and atmospheric 
transmission  

	
   The number of observed fluorescence photons depends on detector 
efficiency ελ and air transmission Tλ (X,X0) (including both molecular and 
aerosol effects). 

X0 


