The impact of the Fluorescence Yield on the reconstructed shower parameters

J. R. Vázquez¹, M. Monasor^{1,2} D. García Pinto¹ and F. Arqueros¹

¹ Universidad Complutense de Madrid

² University of Chicago - KICP

Outline

- Introduction
- Fluorescence Yield Datasets
- Analytical Method.
- Results
 - Datasets
 - T, h effects
 - Uncertainties
- -Comparison with detailed reconstruction

INTRODUCTION

Fluorescence yield

 Y_{λ} is defined as the number of λ photons emmitted per unit of deposited energy (ph/MeV)

$$Y_{\lambda} = \frac{Y_{\lambda}^{0}}{1 + P/P_{\lambda}'}$$

P' values determine the dependence of the fluorescence yield with atmospheric properties

$$\frac{1}{P'} = \frac{f_{N_2}}{P'_{N_2}} + \frac{f_{O_2}}{P'_{O_2}} + \frac{f_w}{P'_w}$$

 $\frac{1}{P'} = \frac{f_{N_2}}{P'_N} + \frac{f_{O_2}}{P'_O} + \frac{f_w}{P'_O}$ P' contains contributions from all possible quenchers

$$P_i' = \frac{\sqrt{\pi \mu_{Ni} kT}}{\sqrt{8} \tau_0 \sigma_{Ni}}$$
 $\sigma_{Ni} \propto T^{\alpha}$ $P_i' \propto T^{\frac{1}{2} - \alpha}$ P' depends on temperature

$$P_i' \propto T^{\frac{1}{2}-\alpha}$$

FY Dataset

The reconstruction of the shower parameters requires:

- 1.- Absolute values in dry air for all wavelengths, Y_{λ} (P_0 , T_0). Or, alternatively $Y_{ref}(P_0,T_0)$ and $I_{\lambda}(P_0,T_0)$.
- 2.- $P'_{\lambda}(T_0)$ for dry air
- 3.- T dependence of collisional cross section, α_{λ}
- **4.-** P'_w for all wavelengths (and its α_w values if possible).
- Y_{λ} at any given P, T conditions can be obtained from:

$$Y_{\lambda}(P,T) = Y_{\lambda}(P_0,T_0) \frac{1 + P_0/P_{\lambda}'(T_0)}{1 + P/P_{\lambda}'(T)}$$

Datasets in fluorescence telescopes

Three datasets have been used in cosmic rays experiments:

- 1.- Kakimoto-Bunner (K-B): used by HiRes in 2001.
 - Kakimoto et al.: ϕ and P' values for 337, 351, 391 nm at (T_0 =288 K, P_0 =1013 hPa)
 - Remaining bands contribute 30% and are distributed according to Bunner.

2.- Nagano:

- ϕ and P' values for 15 bands (T₀=293 K, P₀=1013 hPa)
- 3.- Nagano-Airfly (N-A): presently used by the Auger Collaboration
 - Nagano et al. Y for 337 band (T_0 =293 K, P_0 =800 hPa)
 - P' at T₀=293 K and relative intensities for 34 bands from Airfly Collaboration

N-A will be the reference dataset in this work

COMPARISON OF DATASETS

Comparison of Datasets

Y^{N-A} = fluorescence yield from the Nagano-Airfly dataset

Y^{K-B} = fluorescence yield from the Kakimoto-Bunner dataset

Y^{Nagano} = fluorescence yield from the Nagano dataset

$$FY Ratio = \frac{Y^{Dataset}}{Y^{N-A}}$$

Comparison of Datasets (K-B vs N-A)

Fluorescence photons are detected with optical systems that have λ -dependent response (black line). When this efficiency is taken into account the relative intensities of the molecular bands are modified (right picture).

Comparison of Datasets (K-B vs N-A)

 Y^{NA} = fluorescence yield from the Nagano-Airfly dataset Y^{K-B} = fluorescence yield from the Kakimoto-Bunner dataset Y^{NA} = Y^{NA}

T AND H EFFECTS

Temperature and humidity effect

Temperature and humidity effect in the N-A dataset have been studied

Temperature:

AIRFLY Collaboration values for all the 34 bands*

$$\frac{1}{P'_{air}(\lambda)} \propto \left(\frac{T}{T_0}\right)^{\frac{1}{2}-\alpha_{\lambda}} \qquad \alpha_{NN} = \alpha_{NO} = \alpha_{Airfly}$$

Humidity:

$$P_{\scriptscriptstyle W}^\prime$$
 from AIRFLY*

Atmospheric profile at Auger Site (Malargüe, Argentina)**

^{*} Ave et al. Nucl. Instrum. and Meth. A **597** (2008) 50-54

^{**} The Pierre Auger Coll. Astroparticle Physics 33 (2010) 108

FY(T,h) vs Depth

YNA YNA +T+h

- = fluorescence yield from the Nagano-Airfly dataset
- = fluorescence yield including T and/or h contributions

ANALYTICAL METHOD

Simple analytical procedure to evaluate T,h effect

Longitudinal profile of fluorescence emission

photons g⁻¹ cm²
$$\frac{dn_{\gamma}(X)}{dX} = \left(\frac{\mathrm{d}E}{dX}\right)Y(X)$$

profile of deposited energy described by a **Gaisser-Hillas function**

 $Y \rightarrow Y'$ with a given fluorescence profile, a different FY assumption leads to a change in reconstructed energy

$$\frac{dE'}{dX} = \frac{Y(X)}{Y'(X)} \frac{dE}{dX} \qquad E' = \int \frac{Y(X)}{Y'(X)} \frac{dE}{dX} dX \qquad \text{FY Ratio} = \frac{Y'}{Y}$$

Simple analytical procedure to evaluate T,h effect

Longitudinal profile of fluorescence emission

photons g⁻¹ cm²
$$\frac{dn_{\gamma}(X)}{dX} = \left(\frac{\mathrm{d}E}{dX}\right)Y(X)$$

profile of deposited energy described by a **Gaisser-Hillas function**

 $Y \rightarrow Y'$ taking into account optical efficiency and atmospheric transmission:

$$E' = \int_0^\infty \frac{\mathrm{d}E}{\mathrm{d}X} \frac{\sum_\lambda Y_\lambda(X) \varepsilon_\lambda T_\lambda(X)}{\sum_\lambda Y_\lambda'(X) \varepsilon_\lambda T_\lambda(X)} \mathrm{d}X$$
 Optical efficiency of telescope

Method

$$E' = \int_0^\infty \frac{dE}{dX} \frac{\sum_{\lambda} Y_{\lambda}(X) \varepsilon_{\lambda} T_{\lambda}(X)}{\sum_{\lambda} Y_{\lambda}'(X) \varepsilon_{\lambda} T_{\lambda}(X)} dX = \int_0^\infty \frac{dE}{dX} \frac{1}{\text{FY ratio}} dX$$

This method has been applied to different cases

Typical Gaisser-Hillas profiles for 6 types of showers:

- 1.- Primary energy: 10¹⁹ eV, 10²⁰ eV
- 2.- Composition: p, Fe
- 3.- Geometry: 30°, 60°

FY assumptions:

- 1.- Datasets (K-B, N-A, Nagano)
- 2.- T and h effects

RESULTS: COMPARISON OF DATASETS

Effect of dataset choice (N-A vs K-B)

$$\delta E = (E'-E)/E$$

 $\Delta X_{max} = X'_{max} - X_{max}$

$$\delta E = 20.6 \%$$

 $\Delta X_{max} = -1 \text{ g} \cdot \text{cm}^{-2}$

$$\delta E = 1.7 \%$$

$$\Delta X_{\text{max}} \approx 0 \text{ g} \cdot \text{cm}^{-2}$$

Effect of dataset choice (Nagano & K-B vs N-A)

1.- Average effect on energy

	δE=(E'-E)/E	
	Nagano/N-A	K-B/N-A
Y_λ	- 1 %	19 %
$Y_{\lambda} \cdot \varepsilon_{\lambda}$	- 2 %	2 %
$Y_{\lambda} \cdot \varepsilon_{\lambda} \cdot T_{\lambda}$ (30 km)	- 2 %	0 %

2.- Negligible effect on X_{max}

RESULTS: T AND H EFFECTS

FY(T,h) vs Depth

YNA **Y**NA +T+h

- = fluorescence yield from the Nagano-Airfly dataset
- = fluorescence yield including T and/or h contributions

Effect of humidity

Effect of humidity

Effect of humidity

Effect of temperature

Effect of temperature

Effect of temperature

T+h Combined Effect

- Geometry dependent
- Vertical showers affected by humidity.
- Inclined showers affected by temperature.
- The slope of the FY ratio will determine ΔX_{max} .

Solid line 10²⁰ eV Dotted line 10¹⁹ eV Profiles not scaled

Results on E

Effect of T + h on reconstructed primary energy

- Vertical showers (affected by humidity) show a strong seasonal dependence.
- Inclined showers (more affected by temperature) are fairly regular.

Invisible energy taken into account:

$$E_{inv} \approx 10\% \Rightarrow \delta E_{tot} = \delta E_{cal} / 1.1$$

Results on X_{max}

Effect of T + h on shower maximum depth

- As vertical showers develop in the transition zone, the effect on X_{max} is highly variable.
- In inclined showers the X_{max} position decreases due to positive slope of the FY ratio in the upper layers of the atmosphere.

EFFECT OF UNCERTAINTIES

Effect of uncertainties in quenching parameters

- α and P'_w are difficult to measure and its uncertainties are still very large.
- -To explore the effect of this uncertainties we have repeated the calculations increasing (decreasing) α values 50% and P'_w values 20%

Effect of uncertainties in quenching parameters

Effect of uncertainties in quenching parameters

Large uncertainties in α and P'_{w} do not translate to the reconstructed shower parameters

41

CROSS-CHECKS

Comparison with previous results on δE

B. Keilhauer and M. Unger 31st ICRC

Reasonable agreement with detailed reconstruction

Comparison with previous results on ΔX_{max}

Reasonable agreement with detailed reconstruction

Simple cross-check with real data

COMMENTS & CONCLUSIONS

Some comments on these calculations

- In a real case only a fraction of the longitudinal development is available for the reconstruction. We have recalculated the modified profile using typical intervals $X_1 - X_2$ (field of view of the FD in real showers). No significant effects have been found.

- Cherenkov light information is not taken into account in this simple model. The effect of neglecting this is not yet studied, but could explain this small discrepancies on δE .

Conclusions

- A simple analytical procedure for the evaluation of the effect of changing the FY dataset on the reconstructed energy and X_{max} has been developed
- Effect of dataset choice (K-B, Nagano, N-A) almost negligible
- Effect of neglecting h and T on E and X_{max} reconstruction strongly dependent on shower geometry.
- Large uncertainties in α and P'_w do not translate to the reconstructed shower parameters
- On average, reasonable agreement with detailed reconstruction.

THANKS

Detector efficiency and atmospheric transmission

The number of observed fluorescence photons depends on detector efficiency ε_{λ} and air transmission T_{λ} (X,X₀) (including both molecular and aerosol effects).

