
"Study of φ meson radiative decays at KLOE, η/η' mixing angle and η' gluonium content."

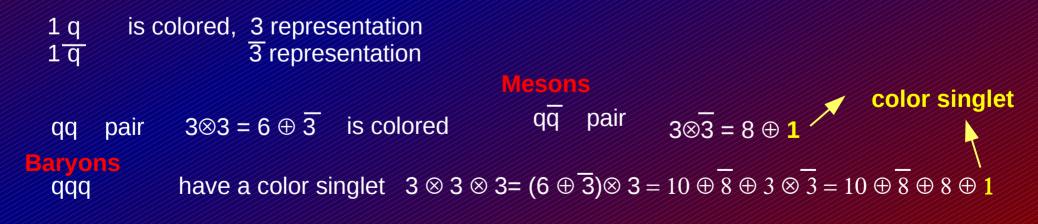
Biagio Di Micco CERN/Università degli Studi di Roma Tre

B. Di Micco

CERN EP/PP

Talk outline

- Do we have evidence of states beyond the quark model predicitions?
- What's the present status of light scalar mesons?
- Kloe results on the 4 quark candidate f_0 and a_0
- Do we have evidence of bound states of gluons?
- KLOE results on $\phi \rightarrow \eta \gamma / \phi \rightarrow \eta ' \gamma$;
- The vector and pseudoscalar mixing angle and the gluonium content in the η ';
- 4q, 2q, meson molecules?

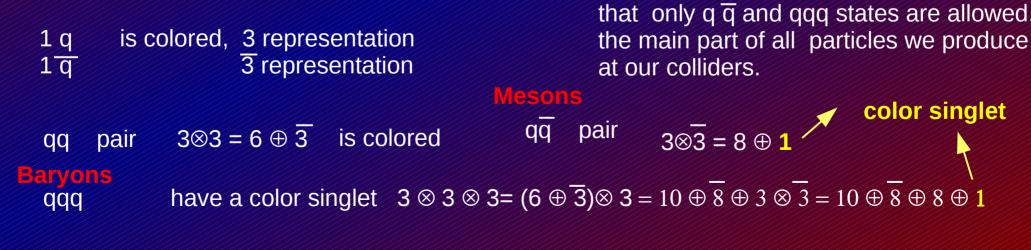

The quark model

Ordinary hadrons are since '60 classified from the quark model as $q\overline{q}$ (mesons) and qqq (baryons)

Quarks are bound by strong force in its non perturbative regime.

Analytical predictions for possible quark states from QCD are impossible to obtain, some progress with numerical computation through QCD on lattice.

The only guiding rule in thinking to possible quark states is the requirement that the states are colorless. Color is an exact SU(3) symmetry, the quark belonging to the fundamental representation 3. All the quark bound states have to be in a singlet representation of SU(3)_{color}


The quark model

Ordinary hadrons are since '60 classified from the quark model as $q\overline{q}$ (mesons) and qqq (baryons)

Quarks are bound by strong force in its non perturbative regime.

Analytical predictions for possible quark states from QCD are impossible to obtain, some progress with numerical computation through QCD on lattice.

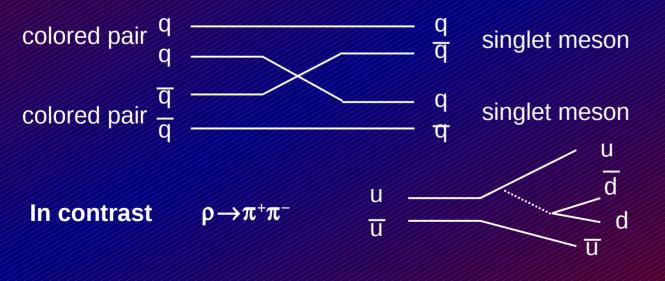
The only guiding rule in thinking to possible quark states is the requirement that the states are colorless. Color is an exact SU(3) symmetry, the quark belonging to the fundamental representation 3. All the quark bound states have to be in a singlet representation of SU(3)_{color} Nice!! just with a bit of algebra we see

CERN EP/PP

"Let's add another quark..."

pppp	(10	⊕8 €	€ €	⊕ 1)	⊗3
qqqq	(10	$\oplus \overline{8}$	Ð 8	⊕1)	⊗3

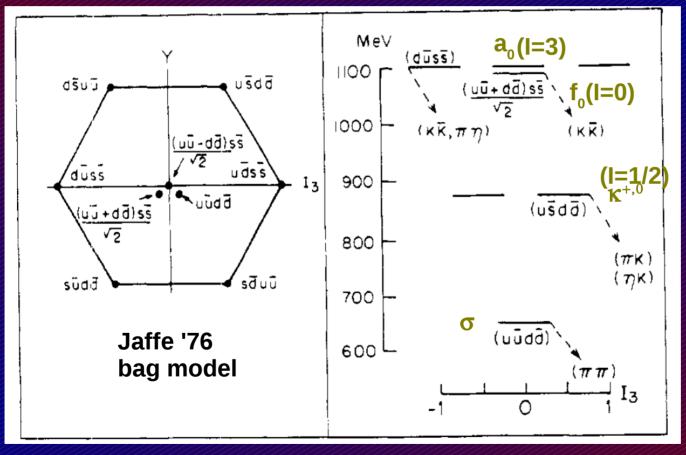
No color singlets can come out from these combination


Let's go back to qq..

qq pair $3 \otimes 3 = 6 \oplus 3$ qq pair $3 \otimes 3 = 6 \oplus 3$

 $qq \overline{qq} \qquad (6 \oplus \overline{3}) \otimes (\overline{6} \oplus 3) = (3 \otimes \overline{3})_1 \oplus (6 \otimes \overline{6})_1$

We can have a color singlet from colored quark pairs. In this case we say we have a 4 quark state. Jaffe (1974).


Due to quark exchange these states have high decay probability to meson pairs, large width Γ , in some cases $\Gamma \sim m$

B. Di Micco

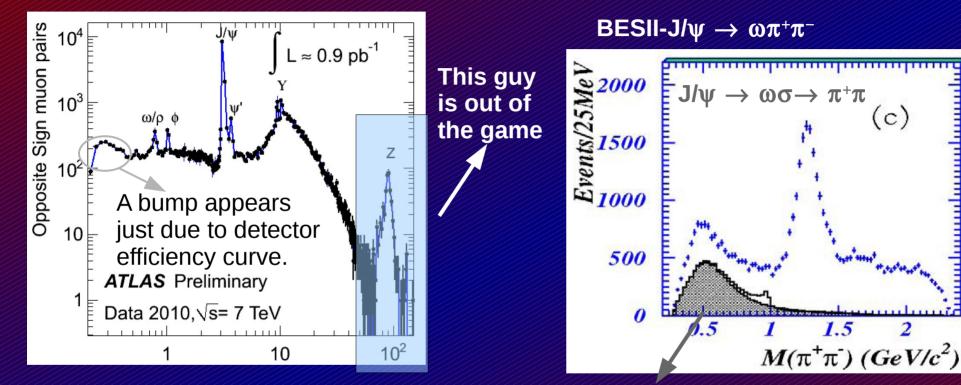
4q Phenomenology

1) Large decay rates to meson pairs.

2) Large widths.

Four quark states

Jaffe '76 bag model


A complete nonet of states is predicted with quantum number $J^{PC} = 0^{++}$

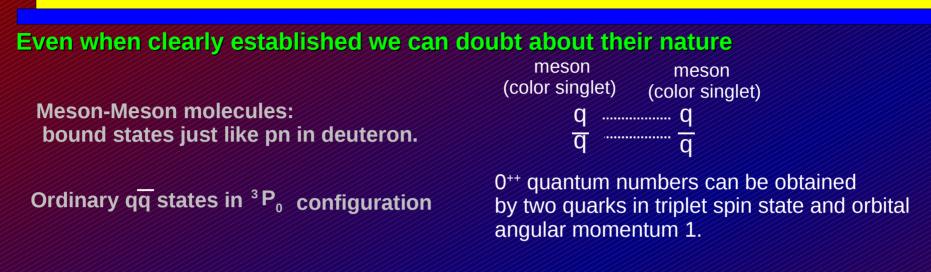
B. Di Micco

CERN EP/PP

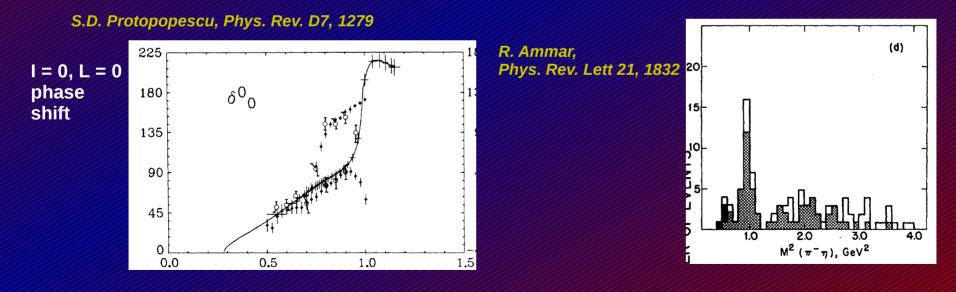
Why are we still talking about them?

di-muon resonance spectrum in pp collisions

$M_{\mu\mu}$ [GeV]

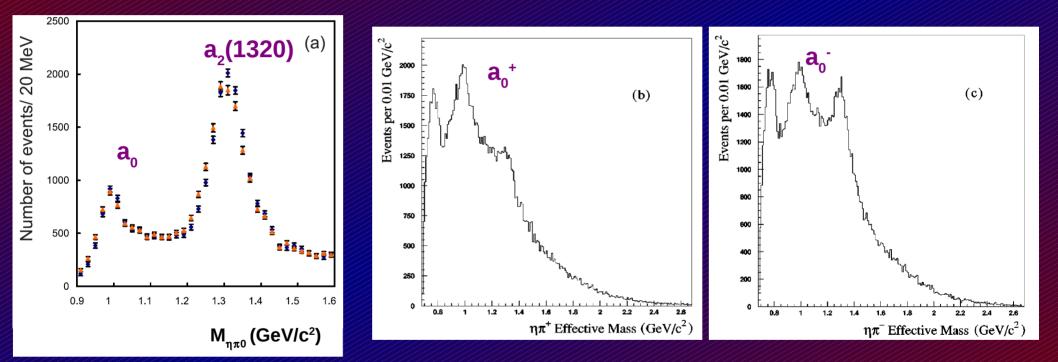

Broad resonance can be easily interpreted as continuum background + efficiency of the detector at threshold and vice versa. 0⁺⁺ contribution from partial wave analysis

$$m = 541 \pm 39$$
 MeV
 $\Gamma = 504 \pm 84$ MeV


B. Di Micco

CERN EP/PP

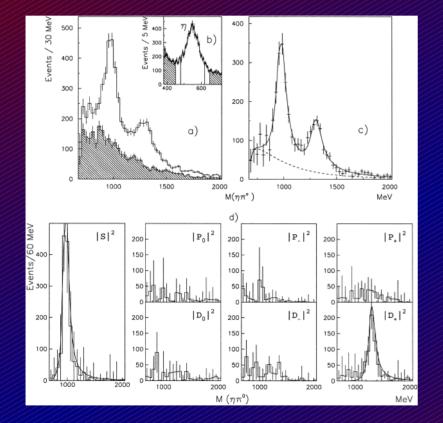
Why are we still talking about them?


a₀ and f₀ mesons, well established since '68 and '73 in $\pi^{-}\eta$ invariant mass and $\pi^{+}\pi^{-}$ scattering. Candidates for KK molecules being m = 980 MeV <~ 2m_k = 997 MeV (K⁰), 987 (K[±]), 991 (K⁰K[±])

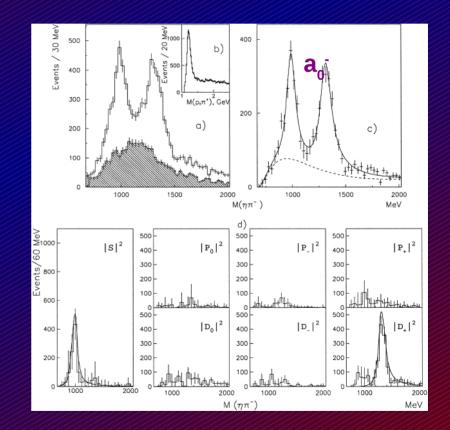
The a₀ isospin triplet

Belle, $e^+e^- \rightarrow (\gamma^*\gamma^*) \rightarrow a_0^- \rightarrow \eta \pi^0$ Phys. Rev. D 80 (2009) 032001

BNL E852, $\pi^{-}p \rightarrow n\eta \pi^{+}\pi^{-}$ Phys. Rev. D59 (1999) 012001



B. Di Micco


CERN EP/PP

The a₀ isospin triplet in pp interaction

D. Barberis, et al. Phys. Lett. B488 (2000) 225 WA102 pp $\rightarrow \eta \pi^0 pp$

WA102 pp $\rightarrow \eta \pi^- p \Delta^{++}$

B. Di Micco

CERN EP/PP

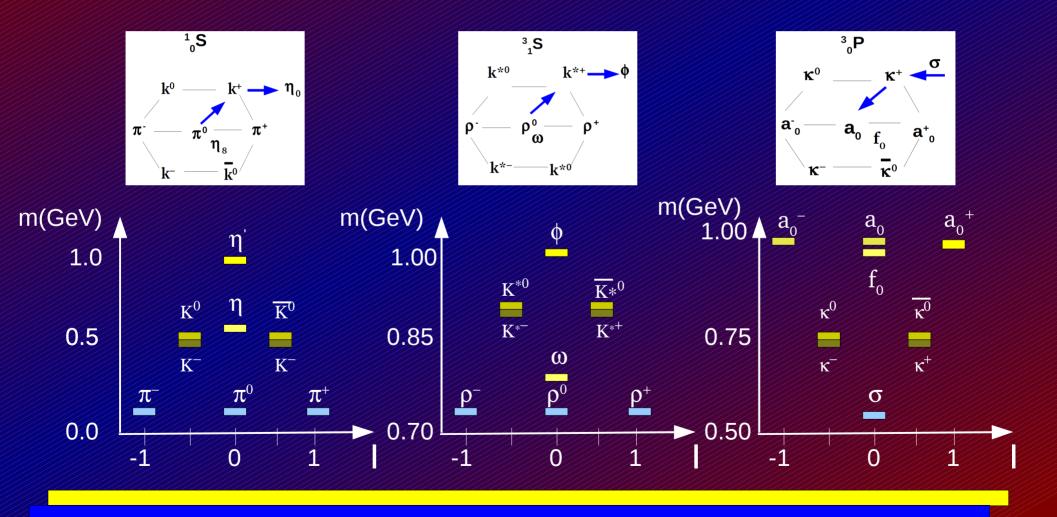
The mass values

 m_{σ} = 541 MeV > 2 m_{π} = 270–280 MeV, cannot be interpreted as $\pi\pi$ molecules Same argument applies to κ, cannot be a K π molecules.

The 2 quark states build a full spectrum as well.

The f_0 meson has I=0, it can be $u\overline{u} + d\overline{d}$ or $s\overline{s}$

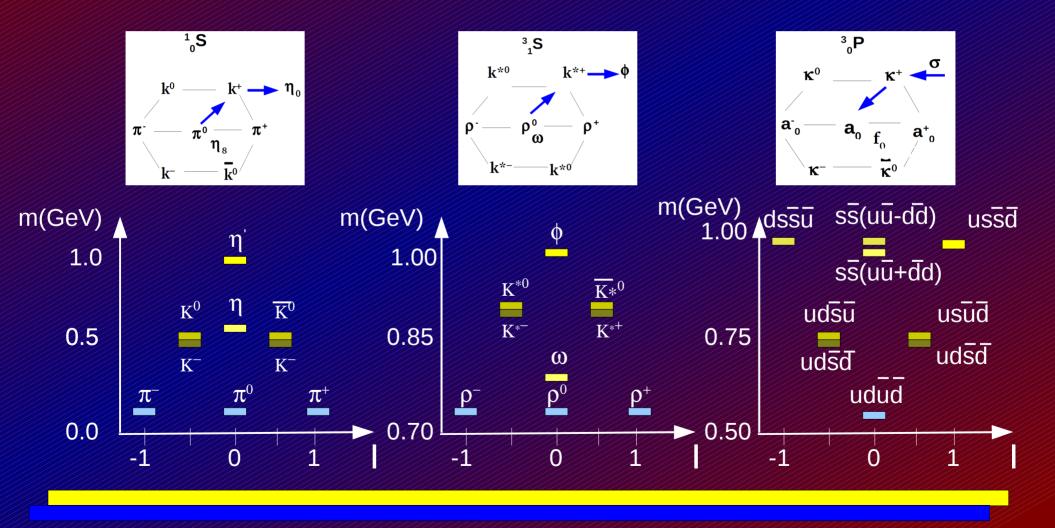
like the ρ , but with higher mass and the $\pi^0\pi^0$ channel open, so we would expect $\Gamma_{f_0} >> \Gamma_{\rho}$, while $\Gamma_{f_0} < \Gamma_{\rho}$


If f_0 were $s\bar{s}$, it would be an angular excitation of the ϕ meson

Already Jaffe prediction of P₀ states had to lie in the m>1 GeV region

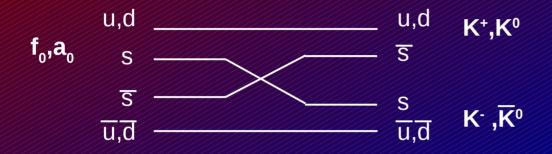
DIMICEO

The nonet mass hierarchy

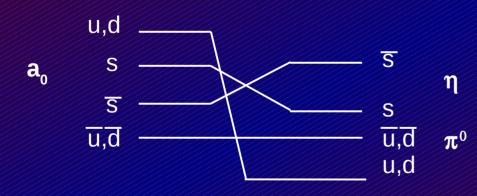

Even if we don't consider the absolute value of the mass, the mass pattern among them cannot be explained in the 2q hypothesis

B. Di Micco

The nonet mass hierarchy


Natural explanation in the 4q hypothesis thanks to the increasing number of s quark, also the degeneracy in mass of f₀ and a₀ gets explained

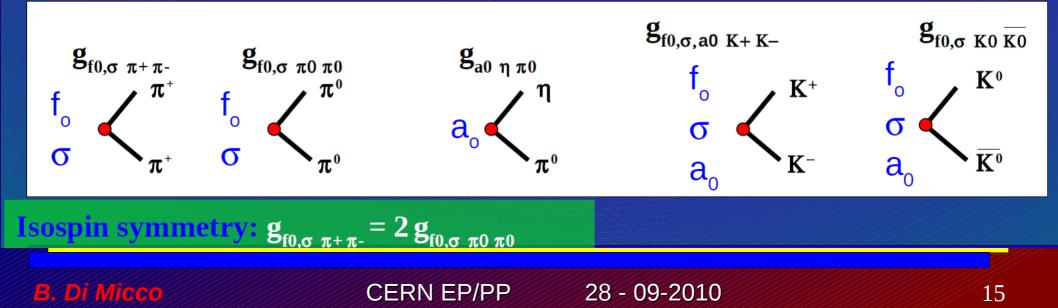
B. Di Micco

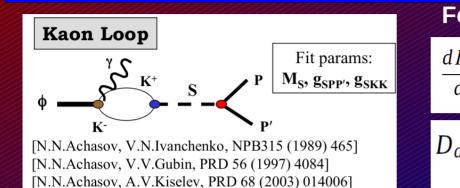

The decays...

In principle large widths and decay rate to pseudoscalars are expected due to the quark exchange process, that's surely true for σ and κ

the process is kinematically suppressed being $m_{f_{0a0}} < 2m_{\kappa}$. Anyway a large coupling to KK is expected.

 $f_0 \rightarrow \pi\pi$ Should vanish unless it mixes with σ


Large coupling is expected.


KLOE scalar study in ϕ decays

 $e^{+}e^{-} \rightarrow \phi \rightarrow (f_{0}^{+} \sigma)\gamma \rightarrow \pi^{0}\pi^{0}\gamma, \pi^{+}\pi^{-}\gamma$ Eur. Phys. J. C49 (2007) 473
Phys. Lett. B 634 (2006) 148 $e^{+}e^{-} \rightarrow \phi \rightarrow a_{0}\gamma \rightarrow \eta\pi^{0}\gamma$ Phys. Lett. B 681 (2009) 5 $e^{+}e^{-} \rightarrow \phi \rightarrow (a_{0}^{-} + f_{0}^{-})\gamma \rightarrow K^{0}\overline{K^{0}}\gamma \rightarrow K_{s}K_{s}\gamma$ Sensitive to the $a_{0}^{-}f_{0}$ interference.

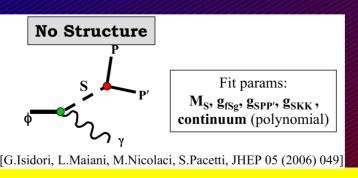
Allow the measurement of the following couplings

Phenomenological parametrisations

For the a_n case:

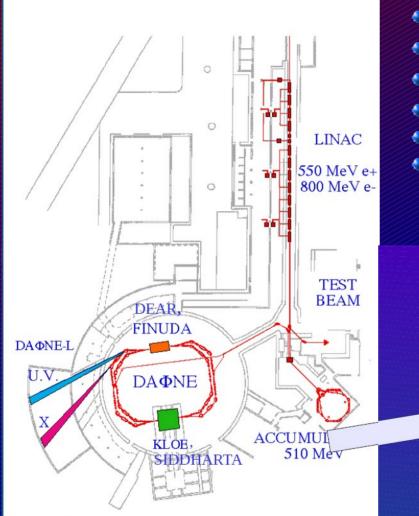
$$\frac{d\Gamma_{\text{scal}}}{dm} = \frac{2|g_{\phi K^+ K^-} g(m)|^2 p_{\eta \pi^0} (M_{\phi}^2 - m^2)}{3(4\pi)^2 M_{\phi}^3} \left| \frac{g_{a_0 K^+ K^-} g_{a_0 \eta \pi^0}}{D_{a_0}(m)} \right|^2}{D_{a_0}(m)}$$
$$D_{a_0}(m) = M_{a_0}^2 - m^2 + \sum \left[\text{Re} \,\Pi_{ab}(M_{a_0}) - \Pi_{ab}(m) \right]^2 + \frac{1}{2} \left[\frac{1}{2}$$

ab


The propagator has a variable width as a function of \sqrt{s} taking into account the opening of the $\pi\pi$ and KK channels

$$\Gamma_{a_0}(m) = \frac{\sum_{ab} \operatorname{Im} \Pi_{ab}(m)}{m} = \frac{\sum_{ab} g_{a_0ab}^2 \rho_{ab}(m)}{16\pi m}$$

Propagator withfinite width corrections $\begin{pmatrix} \pi\pi, \mathbf{K}^{+}\mathbf{K}^{-}, \mathbf{K}^{0}\overline{\mathbf{K}}^{0}, \eta\eta, \eta\eta', \eta'\eta' \text{ for } f_{0}(980) \\ \eta\pi^{0}, \mathbf{K}^{+}\mathbf{K}^{-}, \mathbf{K}^{0}\overline{\mathbf{K}}^{0}, \eta'\pi^{0} \text{ for } a_{0}(980) \end{pmatrix}$

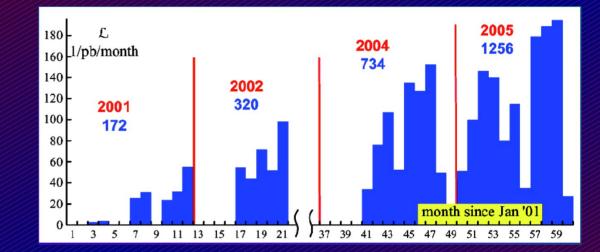

Channel opening threshold $m > m_a + m_b$ $\rho_{ab}(m) = \sqrt{\left(1 - \frac{(m_a + m_b)^2}{m^2}\right)\left(1 - \frac{(m_a - m_b)^2}{m^2}\right)}$

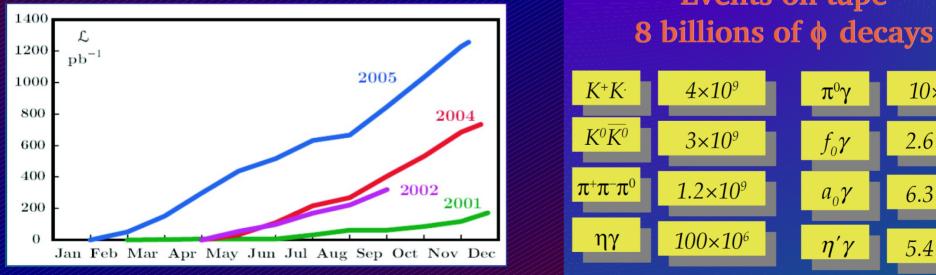
Alternative model Direct coupling to the ϕ

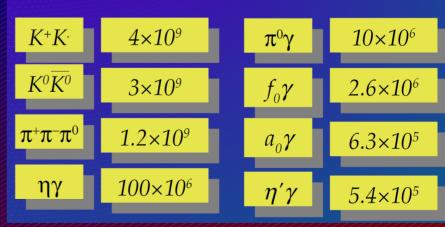
The DAFNE ϕ factory

• $\sqrt{s} = m_{\phi} = 1019.4 \text{ MeV}, \sigma(e^+e^- \rightarrow \phi) \sim 3\mu b$

- Separate e⁺e⁻ rings to reduce beam-beam interaction
- Crossing angle: 25 mrad, $p_x \phi \sim 12.6 \text{ MeV}$
- 105 + 105 bunches, 2.7 ns inter bunch time
- Acquisition also during the injection
- Maximum currents $I(e^+)$ 2.4 A $I(e^-)$ = 1.5 A


B. Di Micco


CERN EP/PP


Machine performance and data sample

Collected data

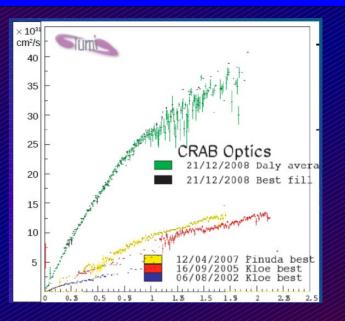
- Last run- March 2006
- Max luminosity 1.3×10³² cm⁻²s⁻¹
- Tot. Integrated 2.5 fb⁻¹
- 200 pb⁻¹ @ $\sqrt{s} = 1000 \text{ MeV}$

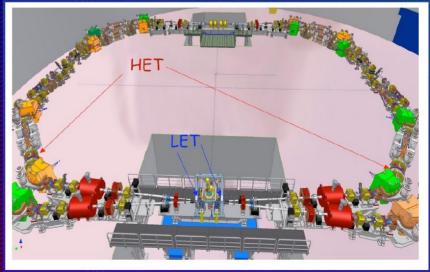
Events on tape

B. Di Micco

CERN EP/PP

KLOE-2, new run starting...

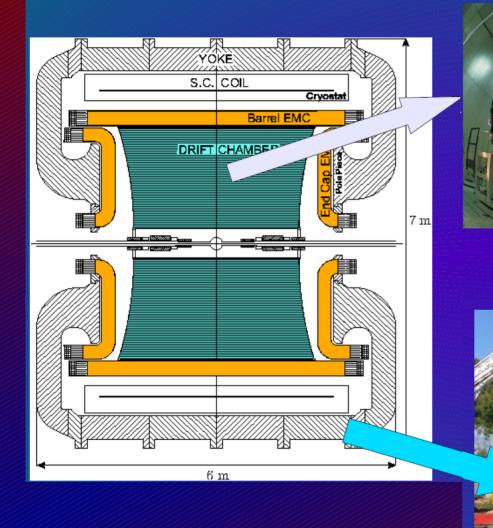

New interaction region


New interaction region and sextupoles have bin designed to apply the crab waist technique;
 The β function is minimized along a large region of beams intersection.

Tagger for $\gamma\gamma$ physics: to detect offmomentum e^{\pm} from $e^+e^- \rightarrow \gamma^*\gamma^* e^+e^- \rightarrow e^+e^- X$

Expected performances

- $L_{peak} = 5.5 \times 10^{32} \text{ cm}^2/\text{s}$
- delivered luminosity 0.5fb⁻¹/month
- Increase the KLOE data sample of a factor 10 in few years.



B. Di Micco

CERN EP/PP

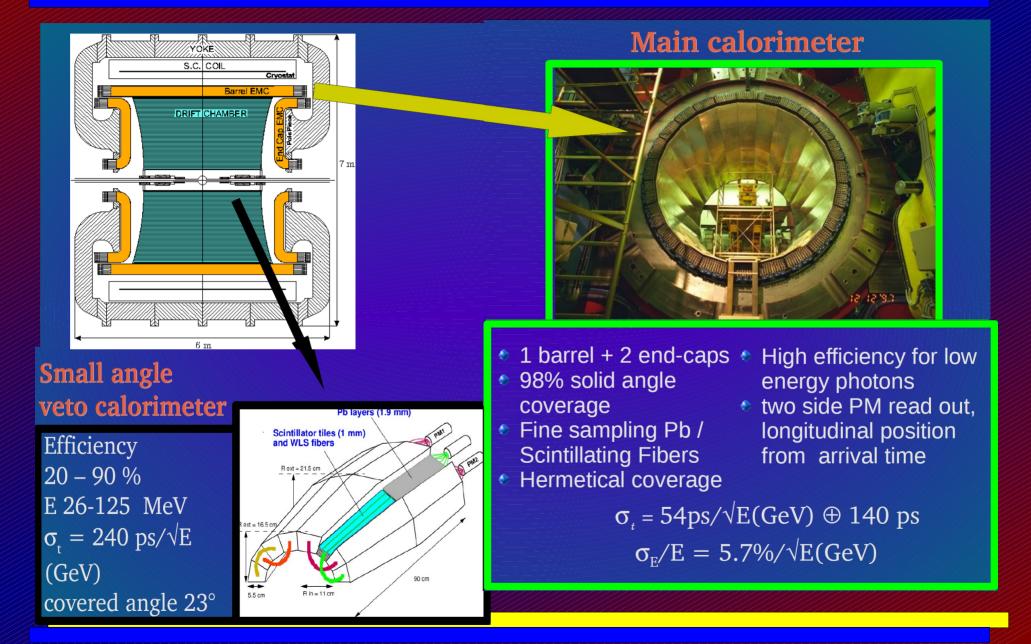
The KLOE detector - the tracker

Detector scheme

Cylindrical Drift Chamber

- Stereo wires structure to reconstruct longitudinal position
- 52140 wires 12582 drift cell
- 90% He 10% iC₄H₁₀

 $\sigma_{vtx} = 1 \text{ mm } \sigma_{pt} / p_t = 0.5\%$ $\sigma_{r*} = 200 \mu \text{m} \sigma_z = 2 \text{ mm}$

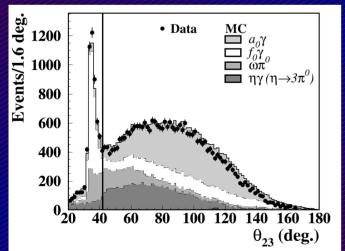

Magnetic system.

- 0.5 T magnetic field
- Cryogenic coil working at 4.2 °K
- Coil current 2300 A

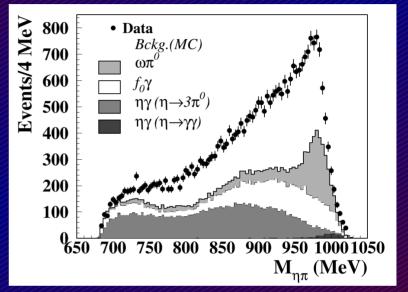
B. Di Micco

CERN EP/PP

The KLOE detector - the calorimeter


B. Di Micco

The $\phi \rightarrow a_0 \gamma \rightarrow \eta \pi^0 \gamma \rightarrow 5 \gamma$


Analysis selection

- 1) 5 energy deposits in calo;
- 2) TOF identification of photons using cluster times;
- 3) Kinematic fit constrained to the ϕ momentum;
- 4) Pairing of the photons to π^0 and η ;
- 5) 2' kinematic fit imposing π^0 and η masses;
- Selection using the χ^2 of the fits;
- 6) kinematic rejection of background channel
- S/B bef. sel. 0.05, after selection 1

MC prediction corrected using enriched background samples on data, fitting discriminant variables.

Selection efficiency 38.5%

$$Br(\phi \to \eta \pi^0 \gamma) = (7.01 \pm 0.10 \pm 0.20) \times 10^{-5}$$

Systematic error

Source	Uncertainty $(\times 10^{-5})$
Photon counting	0.08
Selection efficiency	0.12
$Br(\eta \to \gamma \gamma)$	0.04
$Br(\phi \to \eta \gamma)$	0.13
$Br(\eta \to \pi^0 \pi^0 \pi^0)$	0.05

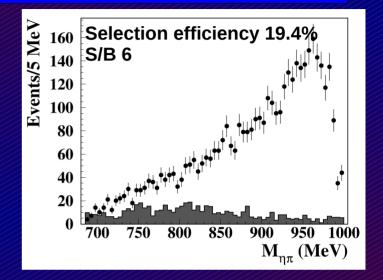
B. Di Micco

The $\phi \rightarrow a_0^{} \gamma \rightarrow \eta \pi^0 \gamma \rightarrow \pi^+ \pi^- \pi^0 \pi^0^{} \gamma \rightarrow \pi^+ \pi^- 5 \gamma$

Analysis selection

- 1) 5 energy deposits in calo;
- 2) TOF identification of photons using cluster times;
- 3) 2 track in one vertes close to the I.P.
- 3) Kinematic fit constrained to the ϕ momentum;
- 4) Pairing of the photons to π^0 and η ;

5) 2' kinematic fit imposing π^0 and η masses;


Selection using the χ^2 of the fits;

6)
$$|p_{\pi^+}| + |p_{\pi^-}| < 418 \text{ MeV}, |p_{\pi^+}| + |p_{\pi^-}| > 430 \text{ MeV}$$

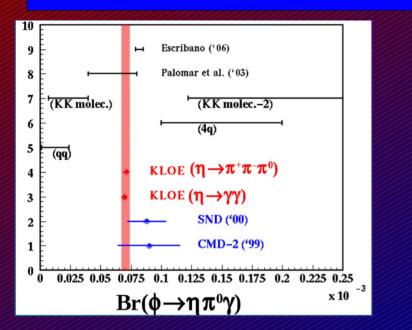
- to reject $K_s \rightarrow \pi^+ \pi^-$ background
- 7) $E_{w} > 20$ MeV (to remove fake photons)

Background contribution

 $\begin{array}{l} \mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \omega \pi^{0} \rightarrow \pi^{+}\pi^{-} \ 2\pi^{0} \rightarrow \pi^{+}\pi^{-}4\gamma + 1 \ \text{fake} \\ \phi \rightarrow \mathbf{K}_{s}\mathbf{K}_{L} \rightarrow \pi^{+}\pi^{-} \ 3\pi^{0} \rightarrow \pi^{+}\pi^{-}6\gamma \quad 1 \ \text{lost} \\ \phi \rightarrow \mathbf{K}_{s}\mathbf{K}_{L} \rightarrow 2\pi^{0}\pi^{+}\pi^{-}\pi^{0} \rightarrow \pi^{+}\pi^{-}6\gamma \ 1 \ \text{lost} \\ \phi \rightarrow \mathbf{K}_{s}\mathbf{K}_{L} \frac{\rightarrow 2\pi^{0}\pi^{+}\pi^{-}\pi^{0} \rightarrow \pi^{+}\pi^{-}6\gamma \ 1 \ \text{lost} \\ \end{array}$

$$Br(\phi \to \eta \pi^0 \gamma) = (7.12 \pm 0.13 \pm 0.22) \times 10^{-5}$$

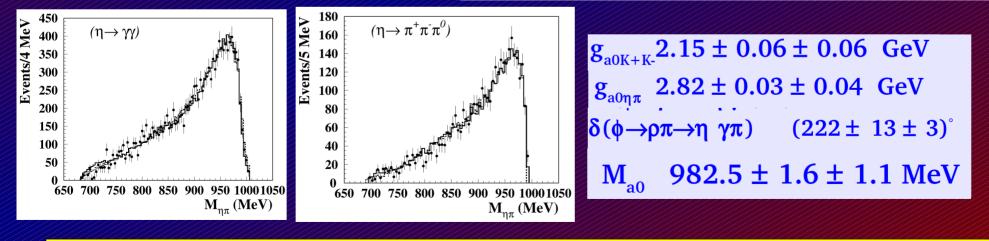
Systematic error from bkg estimate and efficiency.

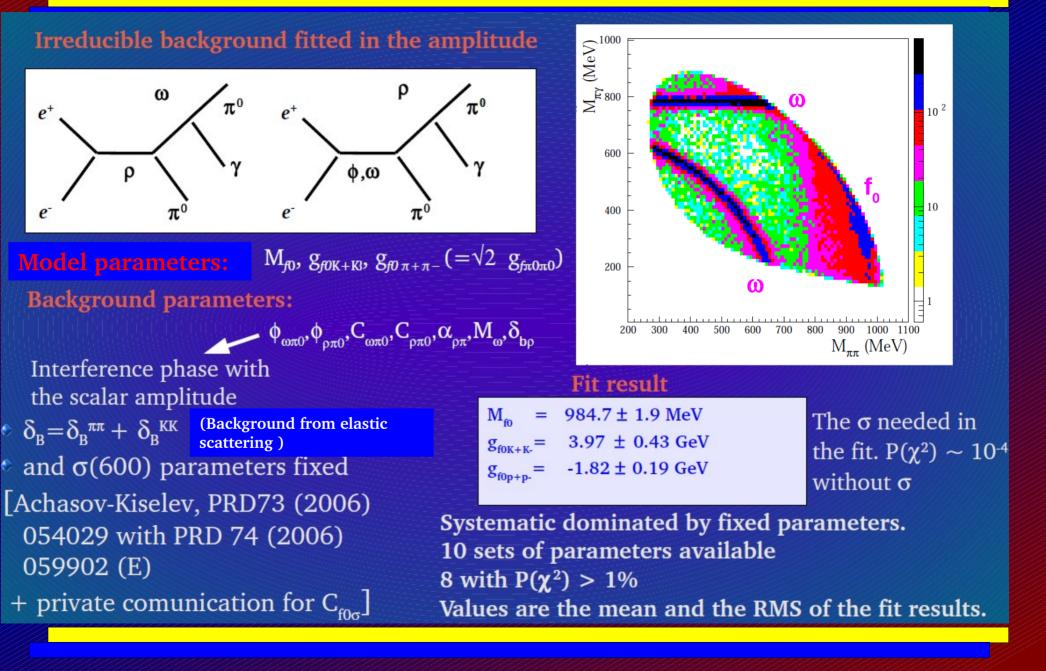

Combined result

$$Br(\phi \to \eta \pi^0 \gamma) = (7.06 \pm 0.22) \times 10^{-5}$$

B. Di Micco

CERN EP/PP


Spectral shape and results


qq: Achasov-Ivanchenko NPB315(1989) Close et al., NPB389(1993) 4q: Achasov-Ivanchenko NPB315(1989) KK molec.: Close et al., NPB389(1993) Achasov et al., PRD56(1997) KK molec.-2: Kalashnikova et al., EPJA24(2005) Palomar et al., NPA729(2003): U χ PT Escribano, PRD74(2006): Linear σ model

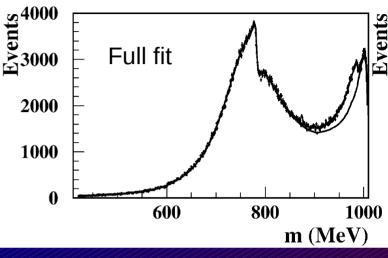
Combined fit to the Kaon Loop model

Br($\phi \rightarrow \rho \pi \rightarrow \eta \gamma \pi$) (0.92 ± 0.40 ± 0.15)×10⁻⁶

The $\phi \rightarrow f_0 \gamma \rightarrow \pi^0 \pi^0 \gamma \rightarrow 5\gamma$

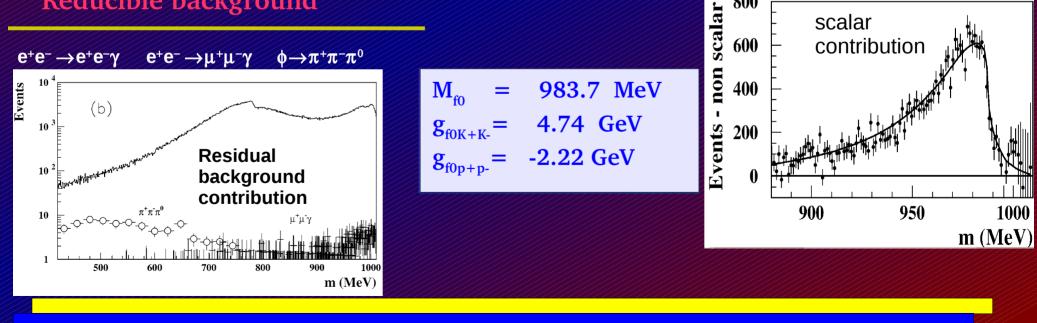


B. Di Micco


The $\phi \rightarrow f_0 \gamma \rightarrow \pi^+ \pi^- \gamma$

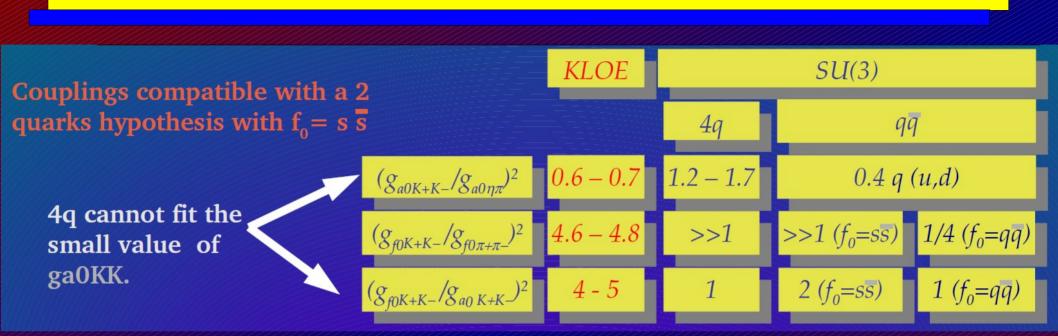
Analysis selection

- 1) 2 track vertex close to the IP;
- 2) $\theta_{\pi\pm} > 45^{\circ}, \theta_{\gamma} > 45^{\circ}$
- 3) π ID against e using TOF and shower profile;
- 4) Cut on the track mass in $tr^+tr^-\gamma$ hypothesis;
- 5) Calorimeter cluster in the direction pointed by the missing charged track momentum;
- 6) TOF and charged track veto for γ ID;
- 7) E > 10 MeV

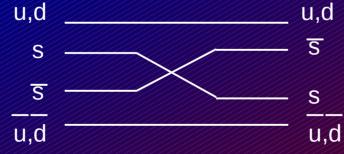


Fitted amplitude

800


Reducible background

B. Di Micco

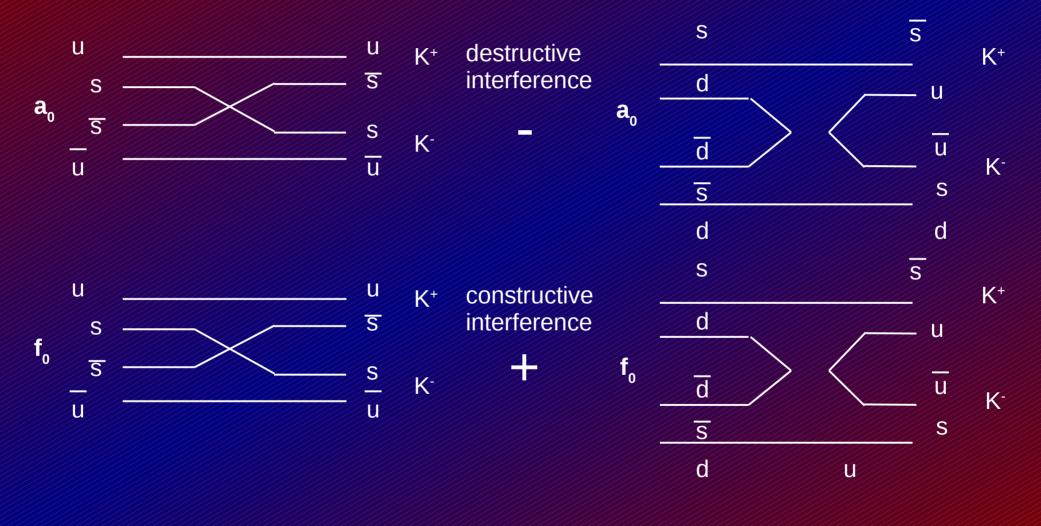

CERN EP/PP

What's the structure?

We would expect nearly same coupling of f_0 and a_0 to KK in the 4q hypothesis, And a null coupling of f_0 to $\pi^+ \pi^-$. New amplitude,

B. Di Micco

The instanton amplitude and the a_0 , $f_0 \rightarrow K^+K^-$



Different couplings of a_0 and f_0 to KK are possible

The same without instanton

F. Giacosa, N. Pagliara, Nuclear Physics A 833 (2010) 138–155

B. Di Micco

CERN EP/PP

The $a_0 \rightarrow \eta \pi^0$

The a_0 couples to the ss and $u\overline{u}$ +dd component of the η meson in different ways.

 $|q\bar{q}\rangle = \frac{|u\bar{u}\rangle + |d\bar{d}\rangle}{\sqrt{2}} \qquad |\eta\rangle = \cos\psi_{P}|q\bar{q}\rangle - \sin\psi_{P}|s\bar{s}\rangle$

 η ' is almost SU(3) singlet, without flavor quantum numbers, it can mix with states without quarks.

$$|\eta'\rangle = X_{\eta'}|q \ \overline{q}\rangle + Y_{\eta'}|s \ \overline{s}\rangle + Z_{\eta'}|G\rangle$$

$$X_{\eta'} = \sin \psi_P \cos \psi_G$$
$$Y_{\eta'} = \cos \psi_P \cos \psi_G$$
$$Z_{\eta'} = \sin \psi_G$$

|G> is called gluonium, It can be interpreted as a mixing with a pure gluon state.

B. Di Micco

CERN EP/PP

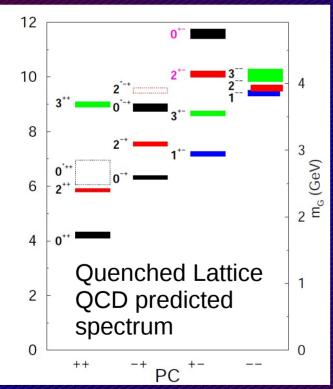
The glue balls

Gluons carry color charge like quarks, color singlets can be built just using gluons, gluons belong to the 8 representation of SU(3)

GG

 $\mathbf{8}\otimes\mathbf{8}=\mathbf{27}\oplus\mathbf{10}\oplus\overline{\mathbf{10}}\oplus\mathbf{8}\oplus\mathbf{8}\oplus\mathbf{1}$

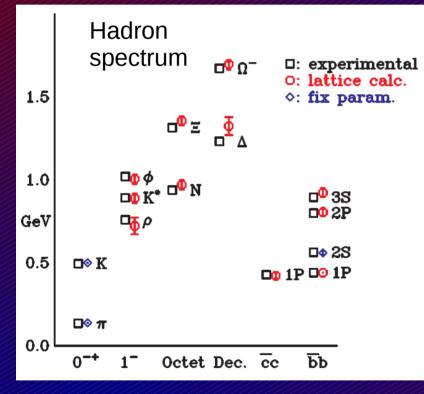
A singlet term is present


A 2 gluon singlet states has a total symmetric color component. Lattice QCD predicts the following quantum numbers and masses:

C.J. Morningstar, M. Peardon Phys. Rev. D60 (1999) 034509

Potential models dealing with massive gluons (the constituent mass is acquired by the confinement into the potential), predict also quantum numbers 1⁻⁺

In V. Mathieu et al., Phys. Rev. D 77 (2008) 11402 using mass-less gluons all J = 1 states are missing.


Pseudoscalar glue-ball predicted with high mass. m> 2GeV.

B. Di Micco

Is the lattice predicted spectrum reliable?

Ch. Hoebling, Lattice 2010 MILC collaboration η,η' states are out of the computation, difficult to obtain

Results from unquenched calculations

	m_η [MeV]	$m_{\eta'}$ [MeV]	θ [°]
RBC/UKQCD	583(15)	853(123)	-9.2(4.7)
Expt.	548	958	

Glue ball mass 0⁻⁺ from UKQCD m_g = 1 -1.5 GeV A. Hart, M. Teper, Phys. Rev. D65 (2002) 034502

M_c = 2.4 GeV C. M. Richards et al., Phys. Rev. D82 (2010) 034501

Computational problems when treating SU(3) singlets states.

QCD vacuum fluctuation enters in the computation making difficult to evaluate the masses.

B. Di Micco

The model used to evaluate the mixing JHEP 07 (2009), 105

$V \rightarrow P\gamma$ decays

ρ , ω mixing angle

$$R_{\phi} = \frac{Br(\phi \to \eta' \gamma)}{Br(\phi \to \eta \gamma)}$$

$$R_{\phi} = \cot^2 \psi_P \cos^2 \psi_G \left(1 - \frac{m_s}{\bar{m}} \frac{Z_q}{Z_s} \frac{\tan \psi_V}{\sin 2\psi_P} \right)^2 \left(\frac{p_{\eta'}}{p_{\eta}} \right)^3$$

3

$$\frac{\Gamma(\omega \to \eta\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = \frac{1}{9} \left[Z_{q} \cos\psi_{P} - 2\frac{\bar{m}}{m_{s}} Z_{s} \tan\psi_{V} \sin\psi_{P} \right]^{2} \left(\frac{m_{\omega}^{2} - m_{\eta}^{2}}{m_{\omega}^{2} - m_{\pi^{0}}^{2}} \right)^{3}$$

$$\frac{\Gamma(\rho \to \eta\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = Z_{q}^{2} \frac{\cos^{2}\psi_{P}}{\cos^{2}\psi_{V}} \left(\frac{m_{\rho}^{2} - m_{\eta}^{2}}{m_{\omega}^{2} - m_{\pi^{0}}^{2}} \frac{m_{\omega}}{m_{\rho}} \right)^{3}$$

$$\frac{\Gamma(\phi \to \eta\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = \frac{1}{9} \left[Z_{q} \tan\psi_{V} \cos\psi_{P} + 2\frac{\bar{m}}{m_{s}} Z_{s} \sin\psi_{P} \right]^{2} \left(\frac{m_{\rho}^{2} - m_{\eta}^{2}}{m_{\omega}^{2} - m_{\pi^{0}}^{2}} \frac{m_{\omega}}{m_{\rho}} \right)^{3}$$

$$\frac{\Gamma(\phi \to \pi^{0}\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = \tan^{2}\psi_{V} \cdot \left(\frac{m_{\rho}^{2} - m_{\pi^{0}}^{2}}{m_{\omega}^{2} - m_{\pi^{0}}^{2}} \frac{m_{\omega}}{m_{\rho}} \right)^{3}$$

$$\frac{\Gamma(K^{*+} \to K^{+}\gamma)}{\Gamma(K^{*0} \to K^{0}\gamma)} = \left(\frac{2\frac{m_{s}}{\bar{m}} - 1}{1 + \frac{m_{s}}{\bar{m}}} \right)^{2} \cdot \left(\frac{m_{K^{*+}}^{2} - m_{K^{*+}}^{2}}{m_{K^{*0}}^{2} - m_{K^{0}}^{2}} \cdot \frac{m_{K^{*0}}}{m_{K^{*+}}} \right)^{3}$$

$$\frac{\Gamma(\eta' \to \rho\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = 3\frac{Z_{q}^{2}}{\cos^{2}(\psi_{V})} \left(\frac{m_{\eta'}^{2} - m_{\rho}^{2}}{m_{\omega}^{2} - m_{\pi}^{2}} \cdot \frac{m_{\omega}}{m_{\eta'}} \right)^{3} \left[Z_{q}X_{\eta'} + 2\frac{\bar{m}}{m_{s}} Z_{s} \cdot \tan\psi_{V}Y_{\eta'} \right]^{2}$$

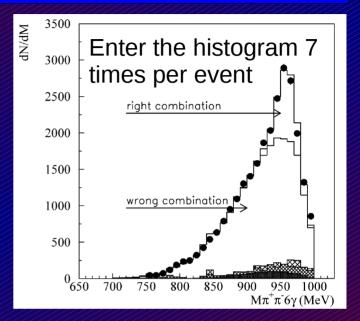
We perform a fit to branching ratios and decay widths. Using KLOE data for R_{ϕ} , η mass, Br($\omega \rightarrow \pi^{0}\gamma$) and PDG 2008 η' , ρ , K^{*} branching ratios and correlation matrix.

B. Di Micco

CERN EP/PP

Measurement of $R_{\phi} = Br(\phi \rightarrow \eta \gamma)/Br(\phi \rightarrow \eta \gamma)$

Signal topology


 $\phi \longrightarrow \eta' \gamma \longrightarrow \pi^{+}\pi^{-} \eta \gamma \longrightarrow \pi^{+}\pi^{-} 3\pi^{0}\gamma \longrightarrow \pi^{+}\pi^{-}7\gamma$ $\phi \longrightarrow \eta' \gamma \longrightarrow \pi^{0}\pi^{0} \eta \gamma \longrightarrow \pi^{0}\pi^{0} \pi^{+}\pi^{-}\pi^{0}\gamma \longrightarrow \pi^{+}\pi^{-}7\gamma$

Analysis selection

- 1) 2 track vertex close to the IP;
- 2) 7 energy deposits in calo ($E_{\gamma} > 10$ MeV, $21^{\circ} < \theta_{\gamma} < 169^{\circ}$);
- 3) TOF identification of photons using cluster times;
- 4) Kinematic fit constrained to the ϕ momentum;
- 5) selection using the χ^2 of the fits;
- 6) kinematic rejection of background channel;
- 7) Rejection of K_s decays using $m_{\pi+\pi-}$;

Background channels

Residual background contamination 9%.

No pairing applied to the photons.

$$R_{\phi} = (4.77 \pm 0.09_{\text{stat}} \pm 0.19_{\text{syst}}) \times 10^{-3}$$

Systematic is dominated by the error on the $\eta' \rightarrow \pi \pi \eta$ branching fractions.

B. Di Micco

CERN EP/PP

The two photon width and experimental correlation

E. Kou, , Phys. Rev. D 63 (2001) 054027

$$if_{q}p^{\mu} = \langle 0|u\gamma^{\mu}\gamma_{5}\bar{u} + d\gamma^{\mu}\gamma_{5}\bar{d}|\frac{u\bar{u} + d\bar{d}}{\sqrt{2}}\rangle$$

$$if_{s}p^{\mu} = \langle 0|s\gamma^{\mu}\gamma_{5}\bar{s}\rangle$$

$$if_{\pi}p^{\mu} = \langle 0|u\gamma^{\mu}\gamma_{5}\bar{u} + d\gamma^{\mu}\gamma_{5}\bar{d}|\frac{u\bar{u} - d\bar{d}}{\sqrt{2}}\rangle$$

Y

$$\frac{\Gamma(\eta' \to \gamma\gamma)}{\Gamma(\pi^0 \to \gamma\gamma)} = \frac{1}{9} \left(\frac{m_{\eta'}}{m_{\pi}}\right)^3 \left(5\frac{f_{\pi}}{f_q}X_{\eta'} + \sqrt{2}\frac{f_{\pi}}{f_s}Y_{\eta'}\right)^2$$

exact isospin symmetry limit

$$f_q/f_{\pi} = 1$$
 $f_s/f_{\pi} = \sqrt{2f_K^2/f_{\pi}^2 - 1}$

 $f_{K}/f_{\pi} \qquad \begin{array}{l} \text{from lattice (UKQCD)} \\ \textbf{E.Follana et a l.} \\ \textbf{Phys. Rev. Lett. 100 (2008) 062002} \end{array}$

Correlation matrix of the η' branching fractions

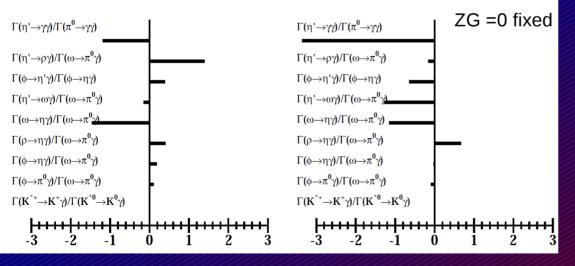
$ ho\gamma$	-0.34]
$\pi^0\pi^0\eta$	-0.78	-0.29					
$\omega\gamma$	-0.35	-0.24	0.32				
$\gamma\gamma\over 3\pi^0$	-0.26	-0.12	0.26	0.08			
$3\pi^0$	-0.28	-0.11	0.35	0.11	0.09		
$\Gamma_{\eta'}$	0.32	-0.02	-0.24	-0.05	-0.88	-0.08	
	$\pi^+\pi^-\eta$	$ ho\gamma$	$\pi^0\pi^0\eta$	$\omega\gamma$	$\gamma\gamma$	$3\pi^0$]

Br and Γ strongly correlated (above all $\Gamma(\eta' \rightarrow \gamma \gamma)$)

the Γ is measured using:

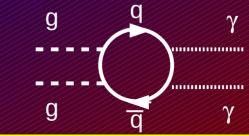
$$e^+e^- \rightarrow \eta' e^+ e^-$$

B. Di Micco


CERN EP/PP

Fit results

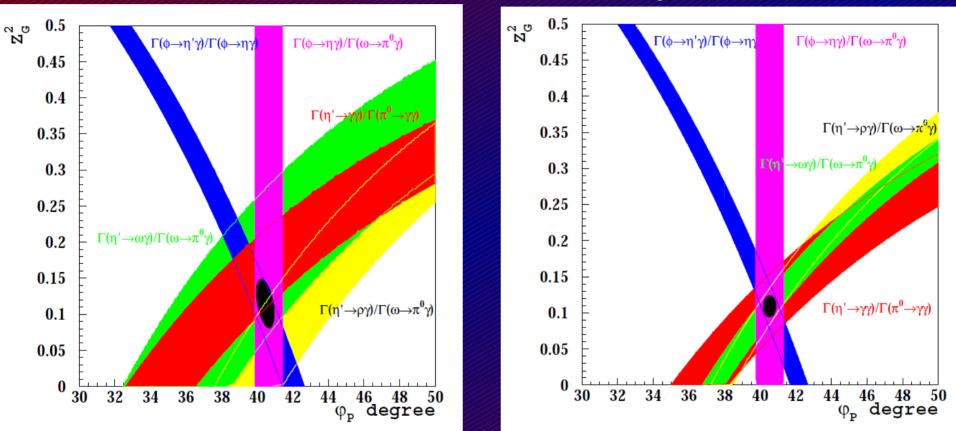
	Z_G free	$Z_G = 0$ fixed
$\chi^2/\mathrm{ndf}(\mathrm{CL})$	4.6/3~(20%)	14.7/4~(0.5%)
Z_G^2	0.115 ± 0.036	0
ψ_P	$(40.4 \pm 0.6)^{\circ}$	$(41.4 \pm 0.5)^{\circ}$
Z_q	0.936 ± 0.025	0.927 ± 0.023
Z_s	0.83 ± 0.05	0.82 ± 0.05
ψ_V	$(3.32 \pm 0.09)^{\circ}$	$(3.34 \pm 0.09)^{\circ}$
m_s/\bar{m}	1.24 ± 0.07	1.24 ± 0.07


Good fit allowing for gluonium component. Stable value of the pseudoscalar mixing angle respect to the gluonium hypothesis.

Fit pulls

The 2 photon decay width of the η' is too low if gluonium is not present.

The glue balls have small branching fractions to $\gamma\gamma$, the coupling being mediated by a qaurk loop.


B. Di Micco

CERN EP/PP

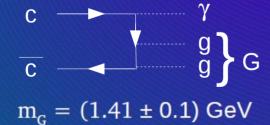
Graphical view of the fit

Present result

Expected result with 1% accuracy at KLOE-2

CERN EP/PP

28 - 09-2010


B. Di Micco

The glue ball mass relation

 Z_{η} can be interpreted as a mixing with a glue ball. The mass of this glue ball has been determined [Hai-Yang Cheng, Phys. Rev. D79 (2009) 014024]

$$\theta_i = 54.7^\circ$$
 $\phi \rightarrow \psi_P$ $\phi_G \rightarrow \psi_G$

$$\frac{c\theta(s\phi - c\theta s\theta_i \Delta_G)m_{\eta'}^2 - s\theta(c\phi + s\theta s\theta_i \Delta_G)^2 m_{\eta}^2 - s\theta_i c\phi_G m_G^2}{c\theta(c\phi - c\theta c\theta_i \Delta_G)m_{\eta'}^2 + s\theta(s\phi - s\theta c\theta_i \Delta_G)^2 m_{\eta}^2 - c\theta_i c\phi_G m_G^2} = \frac{\sqrt{2}f_s}{f_q},$$

The glue-ball is identified as $\eta(1405)$ copiously produced in $J/\psi \rightarrow \eta(1405)\gamma$ It is not observed in $\gamma\gamma$ production. Prediction Br($\eta(1405) \rightarrow \gamma\gamma$) = $6 \pm 1 \times 10^{-5}$ Decay never observed

B. Di Micco

CERN EP/PP

Let's come back to the scalar structure...

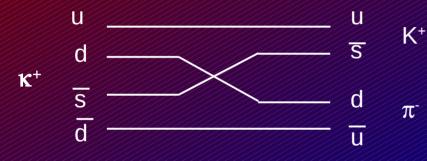
Using the model from T'Hooft, the pseudoscalar mixing angle and the $f_0 \pi \pi$ couplings from KLOE as well meson masses, we calculate the strength of the quark exchange and instanton amplitude and the predicted a_0 couplings.

A coherent picture in terms of 4q structure is obtained.

	KLOE (KL)		4q	2q
g _{f0K+K} – (GeV)	3.97 - 4.74	1	$c_{I} = -2.83.4 \text{ GeV}^{-1}$	$c_{I} = -3.94.8 \text{ GeV}^{-1}$
g _{f⁰π+π (GeV)}	-1.822.23	5	c _f = 20.5 – 24.5 GeV ⁻¹	$c_f = 16.5 - 19.7 \text{ GeV}^{-1}$
			↓	↓ ↓
g _{a0K+K} _ (GeV)	2.01 - 2.15		2.1 - 2.5	2.4 - 2.9
g _{a0ηπ} (GeV)	2.46 - 2.82		3.3 - 3.9	6.6 – 7.9

B. Di Micco

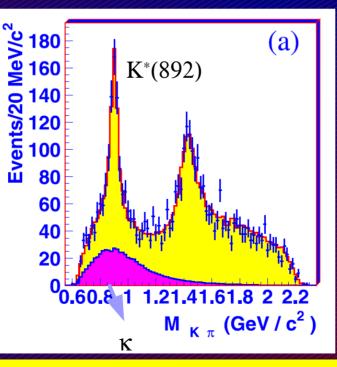
The role of the σ


Caprini PRL 96, 132 CLEO Phys. Rev. D BES2 Phys. Lett. Be $J/\psi \rightarrow \omega \pi$	76 012001 645 19	m _o MeV 441 466 541	Γ MeV 544 446 504	8 _{σπ+π-} GeV ⁻¹ 3.5 3.5 3.2		eeds further studies to efinitive answer.
	KLOE	(KL)			4q	2q
g _{f0K+K} – (GeV)	3.97 —	4.74	1	$c_{I} = -2$.8 – - 3.4 GeV	$c_{I} = -3.94.8 \text{ GeV}^{-1}$
g _{f⁰π+π⁻} (GeV)	-1.82 —	-2.23	5	$c_{f} = 20$.5 — 24.5 GeV ⁻¹	$c_f = 16.5 - 19.7 \text{ GeV}^{-1}$
					↓	↓
g _{a0K+K} _ (GeV)	2.01	2.15			2.1 - 2.5	2.4 - 2.9
g _{a0ηπ} (GeV)	2.46 —	2.82			3.3 - 3.9	6.6 - 7.9
g _{σπ+π-} (GeV)	m _σ 44				1.6 - 2.0	1.8 - 2.2
g _{σπ+π-} (GeV)	m _g 54	41 Me	V			2.9 - 3.6

B. Di Micco

CERN EP/PP

κ the missing guy


Still outside from the PDG summary table, it's a very broad resonance, needed to complete the nonet.

 m_{κ} = 800 MeV > $m_{\kappa+}$ + m_{π} Γ_{κ} = 600 MeV

The last determination from J/ψ decays

Article in press: PLB:26968

The result comes out as a continuum distribution under a dominant K^{*} background.

Still far from clear evidence.

B. Di Micco

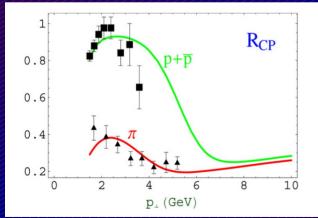
The quark content studied in heavy ion collision

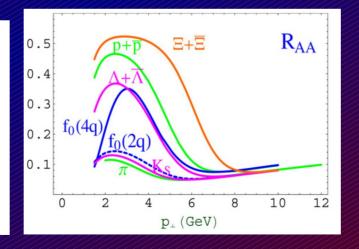
L. Maiani et al., Phys. Lett. B 645 (2007) 138 Recombination of quarks In the soft spectrum, independent from number of quarks

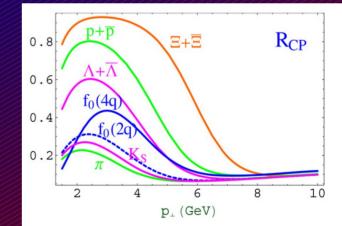
Fragmentation of hard quarks

Expectation at LHC

Standard Production


Less probable with increasing number of quarks.


The recombination is higher in central ion-ion collision respect to peripheral collision or p+p collision, an higher yield in central interaction is expected respect to p+p.


$$R_{AA} = \frac{d^2 N_{Au+Au}(b=0)/dP_{\perp}^2}{N_{\text{coll}}(b=0) d^2 N_{p+p}/dP_{\perp}^2}$$

$$R_{CP} = \frac{N_{\text{coll}}(b) d^2 N_{\text{Au}+\text{Au}}(b=0) / dP_{\perp}^2}{N_{\text{coll}}(b=0) d^2 N_{\text{Au}+\text{Au}}(b) / dP_{\perp}^2}$$

 $p\overline{p}$ and π^{0} production (RHIC)

B. Di Micco

CERN EP/PP

Conclusions

- The high statistics of f₀ and a₀ meson at KLOE gives important constraint on their nature;
- A second process (instanton or gluon mediation) is needed to giustify the KK couping of the a_0 ;
- A coherent picture of a_0 , f_0 , σ meson is obtained justifying their masses and couplings;
- Recent measurements of $\gamma\gamma$ coupling are also in favour of a 4q structure
- Measurement and possible observation of σ in $\gamma\gamma$ collision will be possible at KLOE-2
- A gluonium component is needed to describe radiative decays of vector meson to

psudoscalars meson, and $\gamma\gamma$ decay width.

• A natural candidate is $\eta(1405)$ mixing with η' , even if its mass is too light for lattice calculations.

B. Di Micco

CERN EP/PP