FCC

FCC challenges: Centre of mass Energy Calibration

Context: FCC technical and financial feasibility study approved as CERN 'plan A'. First stage: 'tunnel and e+e- H/ EW factory'.

Motivation: precision measurement of m_7 , Γ_7 , $A_{EB}(m_7)$, m_W allow exploring existence of more particles with SM Couplings

Opportunities: Huge lumi. \rightarrow tiny stat. err. 4 keV on m₇, Γ_7 Resonant depolarization \rightarrow 100keV (LEP,Z) or 6keV (VEPP4,J/ ψ) monochromatization maybe feasible for e+e- \rightarrow H ($\Gamma_{\rm H}$ =4MeV)

Challenges: can systematics match achievable statistics?

Plan to measure Energy by RDP on non-colliding pilot bunches. (1/10min)

Average energies E₀ around the ring are determined by the magnetic fields → same for colliding or non-colliding beams -- measured by resonant depolarization -- can be different for e⁺ and e⁻

at the Z : $\Delta_{SR} = 2\Delta_{SRi} + 2\Delta_{SRe} = 36 \text{ MeV}$ $\Delta_{SRe} - \Delta_{SRi} \approx \alpha/2\pi \Delta_{SR} = 0.17 \text{ MeV}$ = 0 up to 0.62 MeV Δ_{PC} Beamstrahlung E loss compensated by RF.

Issue from collision offset x parasitic opposite sign IP dispersion

 \rightarrow vernier scans and $D_{x,y}$ measurements Radiative Bhabha monitor to measure beam-beam kick of colliding particles

A few big challenges

Dide optics with Q_x=0.1, Q_y=0.2, Q_s=0.05

- -- large ground motion! ±90MeV
- -- E_b vs f_{RDP} in imperfect ring
- -- interference with s,x,y motions
- -- parasitic IP dispersions IP offsets
- -- how well can we measure nul polarization?
- -- how do we operate it all ?

Muon pairs can be used to measure CM energy spread and average boost of CM

Compton Polarimeter uses scattered e & γ $e \rightarrow \mathcal{F} \mathcal{Y} \mathcal{F} \mathcal{Z} \& Eb \quad \gamma \rightarrow \mathcal{F} \mathcal{Y} \mathcal{F} \mathcal{X}$

> FCC EPOL group: arxiv 1909.12245

AB, E. Gianfelice