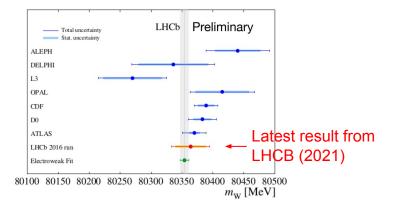
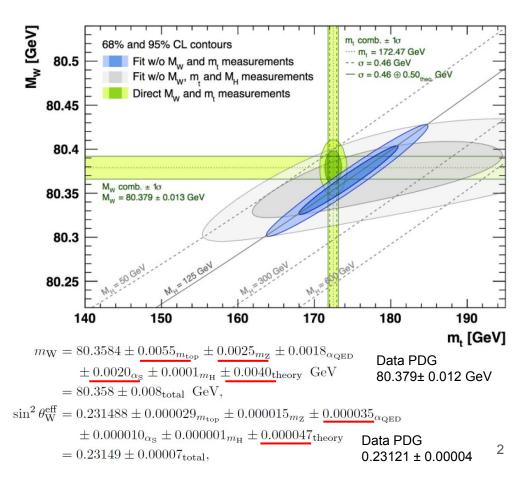
# Electroweak Precision Physics at FCC-ee

Jan Eysermans (Massachusetts Institute of Technology)

EPS-HEP2021 conference – July 26 2021

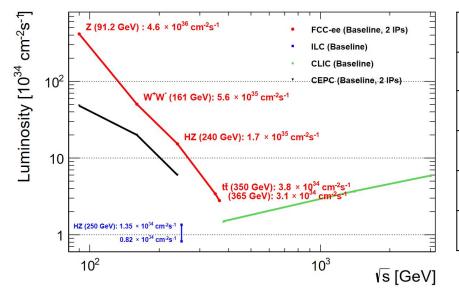




## EWK measurements overview

Contour fits of EWK measurements with experimental data available to date

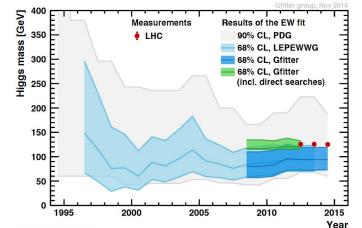
Higher precision on EWK parameters enable further constraints and test SM closure tests:

- Direct sensitive to new physics
- Parameters entangled:  $m_W^{}, m_{top}^{}, \alpha_S^{}, ...$
- Also theory improvements necessary






## **FCCee** overview


- Circular e+/e- collider with ~ 100 km in circumference
- Colliding at 2 interaction points (4 IPs under discussion)
- Facility to host hh collider at later stage (cfr. LEP-LHC)
- Foreseen timeline: construction 2030–40, operation 40–55 (15y)





| Multiple energy points exploiting large range of physics |                                                |                                                    |  |  |
|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------|--|--|
| Center-of-mass                                           | Luminosity                                     | Events                                             |  |  |
| 91 GeV                                                   | 150                                            | 5x10 <sup>6</sup> M Z                              |  |  |
| 161 GeV                                                  | 12                                             | 50M WW                                             |  |  |
| 240 GeV                                                  | 5                                              | 1M ZH                                              |  |  |
| 365 GeV                                                  | 1.5                                            | 1M tt                                              |  |  |
|                                                          | Center-of-mass<br>91 GeV<br>161 GeV<br>240 GeV | Center-of-massLuminosity91 GeV150161 GeV12240 GeV5 |  |  |

## FCCee physics potential



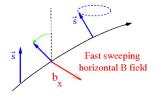
#### "FCCee = TeraZ or Higgs factory": true, but also a discovery machine!

#### Rich physics programme including (EWK) precision measurements:

- Mass, width, cross section of W, Z, top and Higgs
- Strong and electromagnetic coupling constants at various  $\sqrt{s}$
- Neutrino species/Z-invisible
- Flavor physics
- Direct searches for new physics
- ...

#### Put large constraints on SM EWK parameter space, narrowing down closure tests hence sensitive to new physics

Ref.: "Future Circular Collider Study. Volume 1: Physics Opportunities. Conceptual Design Report, preprint edited by M. Mangano et al. CERN accelerator reports. CERN-ACC-2018-0056, Geneva, December 2018. Published in Eur. Phys. J. C"


To further increase and optimize the physics potential, a detailed feasibility study is needed:

- Baseline of machine parameters and detector concepts
- Assess impact on systematic uncertainties with direct feedback to machine/detector R&D
- Assess shortcomings on theory

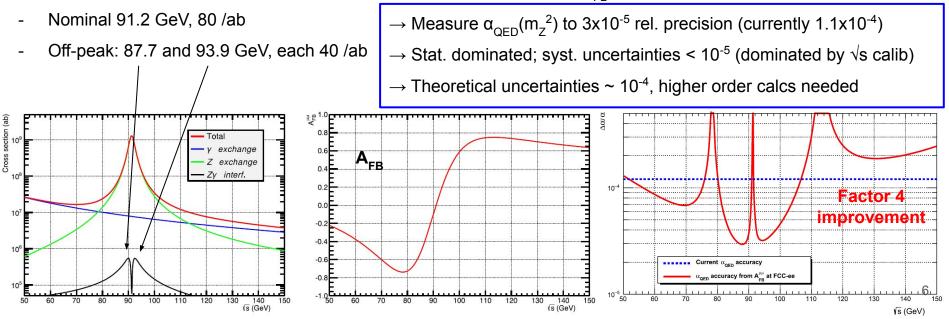
## FCCee key elements

#### Key elements of FCCee for order-of-magnitude(s) improvement of EWK precision measurements

- 1) High statistics (e.g.  $10^7$  times more Zs than LEP1)
- 2) Dedicated energy points for precision measurements and combinations  $\rightarrow$  unique programme!
- 3) In-situ beam energy calibration (<u>arXiv:1909.12245</u>):
  - Center-of-mass uncertainty dominant for many EWK precision (mass) measurements
  - Z/WW: resonant depolarisation measurements on a continuous basis  $\rightarrow 10^{-6}$  relative accuracy achievable 100(300) keV unc. at Z(WW)
  - Higher energies: cannot use RDP, usage of Z-γ radiative return events (~ 2 MeV at 240 GeV)
- 4) Online luminosity meter:
  - Precise knowledge of luminosity important for cross-section and branching fraction measurements
  - Using Bhabha-scattering events with dedicated forward detector  $\rightarrow$  dL/L ~ 10<sup>-4</sup> accuracy achievable Point-to-point ~ 10<sup>-5</sup>
- 5) Detectors: high granularity, improved impact parameter  $\rightarrow$  better reconstruction and resolutions
- 6) Very clean environment (cfr. LEP)






Z lineshape – 
$$\alpha_{QED}(m_Z^2)$$



 $Z \rightarrow \mu\mu$  forward/backward asymmetry sensitive to  $\alpha_{QFD}(m_z^2)$  due to Z- $\gamma$  interference:

$$A_{\rm FB}^{\mu\mu}(s) \simeq \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\mu} \times \left[ 1 + \frac{8\pi\sqrt{2}\alpha_{\rm QED}(s)}{m_Z^2 G_{\rm F} \left(1 - 4\sin^2\theta_{\rm W}^{\rm eff}\right)^2} \frac{s - m_Z^2}{2s} \right] \xrightarrow{\rightarrow} \text{strongly depends on } \sqrt{s}$$
  
$$\rightarrow \text{direct measurement of } \alpha_{\rm QED}(s) \text{ at } \sqrt{s} \text{ != } m_Z$$
  
$$\rightarrow \text{ measure } \sin^2\theta_{\rm W} \text{ to high precision (later)}$$

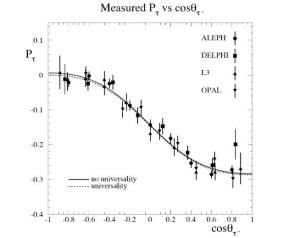
Perform line-scan around Z-pole to maximise Z- $\gamma$  interference and measure A<sub>FB</sub>:



Z peak – 
$$sin^2\theta_w$$

 $Z \rightarrow \mu\mu$  forward/backward asymmetry also used to measure ewk mixing angle sin<sup>2</sup> $\theta_w$  at Z-pole = 91.2 GeV:

$$A_{\rm FB}^{\mu\mu}(s) \simeq \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\mu} \longrightarrow \mathcal{A}_{e} = \frac{g_{\rm L,e}^{2} - g_{\rm R,e}^{2}}{g_{\rm L,e}^{2} + g_{\rm R,e}^{2}} = \frac{2v_{\rm e}/a_{\rm e}}{1 + (v_{\rm e}/a_{\rm e})^{2}}, \text{ with } v_{\rm e}/a_{\rm e} \equiv 1 - 4\sin^{2}\theta_{\rm W}^{\rm eff}$$


$$\bigwedge A_{\rm FB}^{\mu\mu}(s) \sim 3\times10^{-6} \text{ (stat)} + 4\times10^{-6} \text{ (syst)} \longrightarrow \text{Measure } \sin^{2}\theta_{\rm W} \text{ to } 3\times10^{-6} \text{ abs. precision (currently 1.6\times10^{-6})}$$

$$\rightarrow Assumes \ \text{lepton universality: } A_{\rm e} = A_{\mu}$$

$$\rightarrow \text{Mainly dominated by energy calibration (point-to-point)}$$

#### Tau polarization used to constrain the mixing angle to a similar precision

- No assumption on lepton universality (direct separation  $A_{p}$  from  $A_{T}$ )
- $A_e$  from  $P_{\tau}$ : benefit from high statistics and very robust measurement



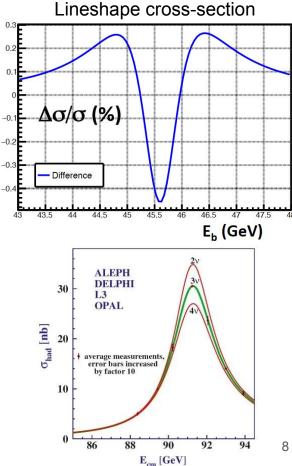
## Z lineshape – mass, width and $\sigma^0_{had}$





Systematics limited due to beam calibration uncertainties (RDP ~ 100 keV)

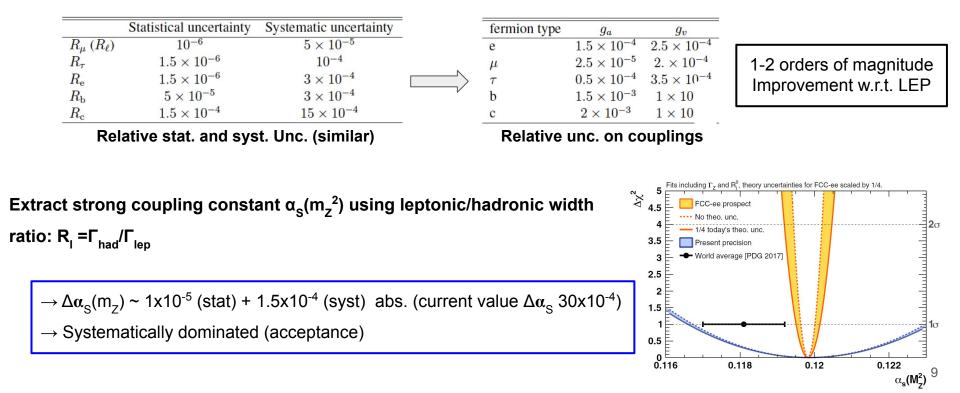
[LEP 2.1 MeV]


[LEP 2.3 MeV]

 $\rightarrow$  Width ± 4 keV (stat) ± 25 keV (syst)

- Systematics dominated by:
  - Relative (point-to-point) uncertainty on the  $\sqrt{s}$  ~ 22 keV
  - Impact on beam-energy spread uncertainty ~ 10 keV
    - Absolute uncertainty on BES ~ 84 MeV
    - Constrained using  $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$  events:
      - $\rightarrow$  Constrain BES uncertainty to per-mille level
      - $\rightarrow$  Taking into account asymmetric beam optics (x-angle  $\alpha$  30 mrad) and  $\gamma\text{-ISR}$
      - $\rightarrow$  Muon angular resolution ~ 0.1 mrad required

| $\rightarrow$ Hadronic cross-section $\sigma^0_{had}$ : ± 4 pb      | [LEP 37 pb]               |
|---------------------------------------------------------------------|---------------------------|
| $\rightarrow$ Number of neutrino families: 1x10 <sup>-3</sup> (abs) | [LEP 7x10 <sup>-3</sup> ] |


Dominated by luminosity uncertainty

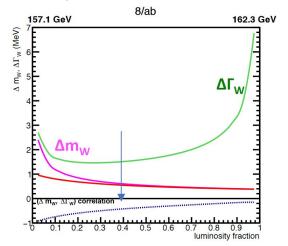


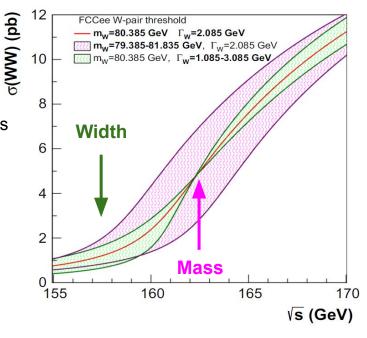
## Z peak – couplings and $\alpha_{s}(m_{z}^{2})$

#### Couplings measured from ratio of hadronic and leptonic partial widths

 $\rightarrow$  need control on detector acceptances: detector precision ~ 10  $\mu m$ 




## WW threshold


#### W mass and width extracted from line-scans using WW xsec

Energy points determined from  $\Delta m_w$  and  $\Delta \Gamma_w$  sensitivities on WW xsec:  $\rightarrow$  **157.1 GeV width measurement:** maximum sensitivity on width

 $\rightarrow$  162.5 GeV mass measurement: minimal impact on width, max. on mass

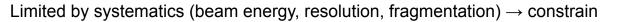
Luminosity (<10<sup>-4</sup>) and center-of-mass (< 0.5 MeV) uncertainties to be controlled, but weaker constraints than on Z pole

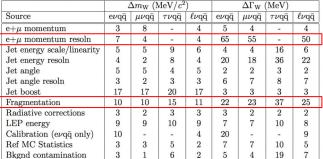




Combined fit with optimized lumi fraction (f=0.4: 5 /ab at 157.1, 7 /ab at 162.5)  $\rightarrow$  precision m<sub>w</sub> to 250 (stat) + 300 (syst) keV (present 15 MeV)  $\rightarrow$  precision  $\Gamma_w$  to 1.2 (stat) + 0.3 (syst) MeV (present 42 MeV)

## W kinematic reconstruction





11


Independent analysis on W mass and width using kinematic reconstruction techniques in WW  $\rightarrow$  qqlv events

- Profit from precise angle and velocity measurements
- Run at all kinematically accessible energy points (WW, ZH and tt)

| ∆m <sub>w</sub> (stat) ~ 250 keV | $\rightarrow$ similar as xsec measurement |
|----------------------------------|-------------------------------------------|
| ΔΓ <sub>w</sub> (stat) ~ 350 keV | $\rightarrow$ reduction factor 2-3        |





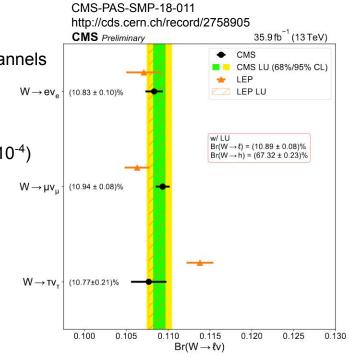


## W decay branching ratios

#### Precise measurement of W decays

- Precise control of lepton ID to avoid cross contamination in signal channels

(e.g.  $\tau \rightarrow e, \mu$  vs.  $e, \mu$  channels)


- Precision of 10<sup>-4</sup> achievable (rel.)
- Simultaneously probe lepton and q/l universality to high precision (~ 10<sup>-4</sup>)

| Decay mode relative precision | $B(W \to e\nu)$   | $B(W \to \mu \nu)$ | $B(W \to \tau \nu)$ | $B(\mathbf{W} \rightarrow qq)$ |
|-------------------------------|-------------------|--------------------|---------------------|--------------------------------|
| LEP2                          | 1.5%              | 1.4%               | 1.8%                | 0.4%                           |
| FCC-ee                        | $3 \cdot 10^{-4}$ | $3 \cdot 10^{-4}$  | $4 \cdot 10^{-4}$   | $1 \cdot 10^{-4}$              |

#### Flavor tagging

- Allows precise measurement CKM matrix elements  $V_{cs}$ ,  $V_{ub}$ ,  $V_{cb}$
- Extract strong coupling constant at WW-threshold

$$R_W = \frac{B_q}{1 - B_q} = \left(1 + \frac{\alpha_S(m_W^2)}{\pi}\right) \sum_{i=u,c;j=d,s,b} |V_{ij}|^2$$

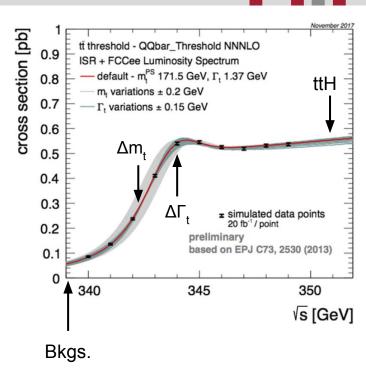


 $\rightarrow \Delta \alpha_{S}(m_{W}) \sim 3x10^{-4} \text{ (abs)}$  $\rightarrow$  Statistically dominated

## Top mass and width measurement

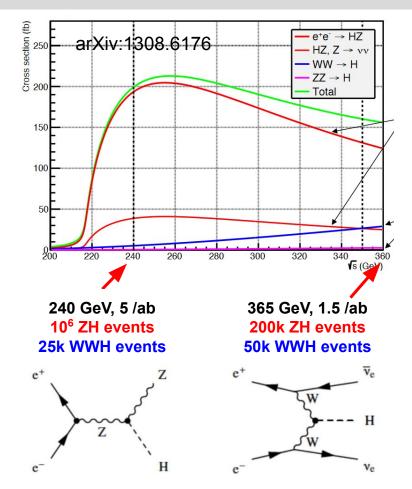
Top mass and width measurements similar as WW line-shape

Though more energy points needed:


- Relative large uncertainty on top mass (+/- 0.5 GeV)
- Need to constrain shape in optimal way
- Possible to constrain backgrounds (below) and ttH (above)

 $\rightarrow$  Multipoint scan in 5 GeV window [340, 345], each ~ 25 /fb

 $\rightarrow \Delta m_{t} \text{ (stat)} \sim 17 \text{ MeV}$ 


 $\rightarrow \Delta \Gamma_{t}$  (stat) ~ 45 MeV

To date: theoretical QCD errors order of 40 MeV for mass and width



## Higgs physics at FCCee





#### Higgs-pole at 240 GeV

- Higgs–strahlung dominant:  $e^+e^- \rightarrow ZH$
- Precise Higgs mass measurement up to ~ 5 MeV
- Measurement of **decay-mode-independent xsec** up to

% level, sensitive to new physics  ${\rm H} \rightarrow {\rm invisible}$ 

- Higgs width extracted from  $H \rightarrow ZZ$  at % level

#### Top threshold at 365 GeV

- Opens significance for WW fusion:  $e^+e^- \to WWvv \to Hvv$
- Significant reduction in couplings and width

#### Combined performance at both energy points


- Higgs coupling precision < % level
- In particular, exotic Higgs decays constraint to < 1 %</li>
- Probing CP violation using  $H \rightarrow \tau \tau$  phase
- $\rightarrow$  See dedicated talk Thursday by S. Braibant

## Summary



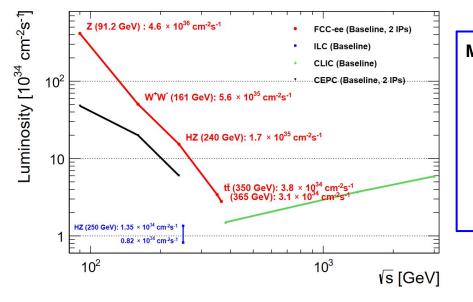
#### Rich physics programme at Z-threshold and higher energies

- FCC delivers excellent precision on various EWK parameters with improvements of 1-2 orders of magnitude
- Combined results at all energy thresholds provides unique closure tests for SM
- $\rightarrow$  Ongoing efforts with several analyses to evaluate physics potential
- → Feedback towards detector and machine
   R&D for systematic uncertainty reduction on
   key measurements
- $\rightarrow$  Work on theoretical side needed to cope with experimental level of accuracy



## Backup

## **FCCee Physics Performance overview**


| Observable                                                                          | present             | FCC-ee     | FCC-ee  | Comment and                            |
|-------------------------------------------------------------------------------------|---------------------|------------|---------|----------------------------------------|
|                                                                                     | value $\pm$ error   | Stat.      | Syst.   | leading exp. error                     |
| m <sub>Z</sub> (keV)                                                                | $91186700 \pm 2200$ | 4          | 100     | From Z line shape scan                 |
|                                                                                     |                     |            |         | Beam energy calibration                |
| $\Gamma_{\rm Z}  (\rm keV)$                                                         | $2495200 \pm 2300$  | 4          | 25      | From Z line shape scan                 |
|                                                                                     |                     |            |         | Beam energy calibration                |
| $\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$                                      | $231480 \pm 160$    | 2          | 2.4     | from $A_{FB}^{\mu\mu}$ at Z peak       |
|                                                                                     |                     |            |         | Beam energy calibration                |
| $1/\alpha_{\rm QED}({ m m_Z^2})(	imes 10^3)$                                        | $128952 \pm 14$     | 3          | small   | from $A_{FB}^{\mu\mu}$ off peak        |
|                                                                                     |                     |            |         | QED&EW errors dominate                 |
| $R_{\ell}^{Z}$ (×10 <sup>3</sup> )                                                  | $20767 \pm 25$      | 0.06       | 0.2-1   | ratio of hadrons to leptons            |
|                                                                                     |                     |            |         | acceptance for leptons                 |
| $\alpha_{ m s}({ m m_Z^2})~(	imes 10^4)$                                            | $1196\pm 30$        | 0.1        | 0.4-1.6 | from $R^{Z}_{\ell}$ above              |
| $\sigma_{\rm had}^0$ (×10 <sup>3</sup> ) (nb)                                       | $41541 \pm 37$      | 0.1        | 4       | peak hadronic cross section            |
|                                                                                     |                     |            |         | luminosity measurement                 |
| $N_{\nu}(\times 10^3)$                                                              | $2996 \pm 7$        | 0.005      | 1       | Z peak cross sections                  |
|                                                                                     |                     |            |         | Luminosity measurement                 |
| $R_b (\times 10^6)$                                                                 | $216290 \pm 660$    | 0.3        | < 60    | ratio of bb to hadrons                 |
|                                                                                     |                     |            |         | stat. extrapol. from SLD               |
| $A_{FB}^{b}, 0 (\times 10^{4})$                                                     | $992 \pm 16$        | 0.02       | 1-3     | b-quark asymmetry at Z pole            |
|                                                                                     |                     |            |         | from jet charge                        |
| $A_{FB}^{pol,\tau}$ (×10 <sup>4</sup> )                                             | $1498 \pm 49$       | 0.15       | <2      | $\tau$ polarization asymmetry          |
| 12                                                                                  |                     |            |         | $\tau$ decay physics                   |
| $\tau$ lifetime (fs)                                                                | $290.3\pm0.5$       | 0.001      | 0.04    | radial alignment                       |
| $\tau$ mass (MeV)                                                                   | $1776.86 \pm 0.12$  | 0.004      | 0.04    | momentum scale                         |
| $\tau$ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)                                 | $17.38 \pm 0.04$    | 0.0001     | 0.003   | $e/\mu$ /hadron separation             |
| m <sub>W</sub> (MeV)                                                                | $80350 \pm 15$      | 0.25       | 0.3     | From WW threshold scan                 |
|                                                                                     |                     |            |         | Beam energy calibration                |
| $\Gamma_{\rm W} ~({\rm MeV})$                                                       | $2085 \pm 42$       | 1.2        | 0.3     | From WW threshold scan                 |
|                                                                                     |                     |            |         | Beam energy calibration                |
| $\frac{\alpha_{\rm s}({\rm m}_{\rm W}^2)(\times 10^4)}{{\rm N}_{\nu}(\times 10^3)}$ | $1170 \pm 420$      | 3          | small   | from $R_{\ell}^{W}$                    |
| $N_{\nu}(\times 10^3)$                                                              | $2920 \pm 50$       | 0.8        | small   | ratio of invis. to leptonic            |
|                                                                                     |                     |            |         | in radiative Z returns                 |
| $m_{top} (MeV/c^2)$                                                                 | $172740 \pm 500$    | 17         | small   | From tt threshold scan                 |
|                                                                                     |                     |            |         | QCD errors dominate                    |
| $\Gamma_{\rm top}~({\rm MeV/c}^2)$                                                  | $1410 \pm 190$      | 45         | small   | From tt threshold scan                 |
|                                                                                     |                     |            |         | QCD errors dominate                    |
| $\lambda_{ m top}/\lambda_{ m top}^{ m SM}$                                         | $1.2 \pm 0.3$       | 0.10       | small   | From tt threshold scan                 |
|                                                                                     |                     |            |         | QCD errors dominate                    |
| ttZ couplings                                                                       | $\pm 30\%$          | 0.5 - 1.5% | small   | From $\sqrt{s} = 365 \mathrm{GeV}$ run |

#### ArXiv 2106.13885

## **FCCee** overview

- Circular e+/e- collider with ~ 100 km in circumference
- Colliding at 2 interaction points (4 IPs under discussion)
- Facility to host hh collider at later stage (cfr. LEP-LHC)
- Foreseen timeline: construction 2030–40, operation 40–55 (15y)





#### Multiple energy points exploiting large range of physics

| • | Z-pole  | 91.2 GeV | ~ 150 /ab | $\rightarrow 5\Box 10^{12} Z$  |
|---|---------|----------|-----------|--------------------------------|
| • | WW-pole | 161 GeV  | ~ 12 /ab  | $\rightarrow 5\Box 10^7 WW$    |
| • | H-pole  | 240 GeV  | ~ 5 /ab   | $\rightarrow 1 \Box 10^{6} ZH$ |

• **tt-pole** 365 GeV ~ 1.5 /ab  $\rightarrow 1 \Box 10^6$  tt