

Higgs boson measurements at Future Circular Colliders

Sylvie Braibant

Bologna University

29th July 2021

Outline

- Future Circular Colliders
- Higgs boson precision measurements on couplings, cross section, total width, mass
- Higgs boson self-coupling measurement
- Higgs boson coupling to electron

→ see <u>Electron Yukawa from s-channel resonant Higgs production at</u> <u>FCC-ee</u> M. David d'Enterria 29/07/2021 16:30

Future Circular Colliders

- Advantages of circular lepton colliders:
 - large luminosities
 - can later be replaced by very high energy pp colliders
- → Sequential implementation of a lepton and a hadron collider maximises the physics reach and covers more than 50 years of exploratory physics

• see Experimental challenges towards a full exploitation of the FCC-ee potential Alain Blondel 26/07/2021 11:00

Future Circular Colliders FCC@CERN

- Future Circular Collider (FCC) at CERN: design study for a post-LHC collider installed in a tunnel with a circumference of 100 km
- In a first phase: e+e- collider FCC-ee

Collider	Туре	\sqrt{s}	N(Det.)	$\mathscr{L}_{\text{inst}}$	\mathscr{L}	Time
				$[10^{34}]$ cm ⁻² s ⁻¹	$[ab^{-1}]$	[years]
FCC-ee	ee	M_Z	2	100/200	150	4
		$2M_W$	2	25	10	1-2
		240 GeV	2	7	5	3
		$2m_{top}$	2	0.8/1.4	1.5	5

• In a second phase: pp-collider FCC-hh

Collider	Туре	\sqrt{s}	N(Det.)	$\mathscr{L}_{\mathrm{inst}}$	L	Time
				$[10^{34}]$ cm ⁻² s ⁻¹	$[ab^{-1}]$	[years]
FCC-hh	pp	100 TeV	2	30	30.0	25

Higgs Boson Production at e+e- Colliders

FCC-ee@CERN

	5 ab⁻¹ @ √s = 240 GeV	0.2 ab ⁻¹ @ √s = 350 GeV 1.5 ab ⁻¹ @ √s = 360 GeV
# H from HZ	1000000	200000
# H from VBF	25000	50000

- ~1.3 · 10⁶ Higgs bosons produced
- Clean environment and small backgrounds

Sylvie Braibant - Higgs boson measurements at Future Circular Colliders 5 /16

Higgs Boson Production at pp Colliders

FCC-hh@CERN

CERN-ACC-2018-0045

FUTURE CIRCULAR COLLIDER

Higgs Boson Coupling to Z @FCC-ee

- Measurement through the recoil mass method in e⁺e⁻ → HZ (Z → ℓ⁺ ℓ⁻)
 - recoil mass distribution exhibits sharp peak at Higgs mass

$$m_{\rm recoil}^2 = s + m_{\ell\ell}^2 - 2\sqrt{s}(E_{\ell^+} + E_{\ell^-})$$

→ decay-mode independent measurement of the HZ coupling

 → expected relative precision on g_{HZZ} of ±0.17%

Higgs Boson Couplings @FCC-INT

arXiv:1905.03764

• Summary of the expected relative precision (%) of the Higgs boson couplings

kappa-3 scenario	CEPC	FCC-ee ₂₄₀	FCC-ee ₃₆₅	FCC-ee/eh/hh
к _W [%]	0.88	0.88	0.41	0.19
$\kappa_Z[\%]$	0.18	0.20	0.17	0.16
$\kappa_{g}[\%]$	1.	1.2	0.9	0.5
κ _γ [%]	1.3	1.3	1.3	0.31
$\kappa_{Z\gamma}$ [%]	6.3	10.*	10.*	0.7
κ_c [%]	2.	1.5	1.3	0.96
$\kappa_t \ [\%]$	3.1	3.1	3.1	0.96
$\kappa_b [\%]$	0.92	1.	0.64	0.48
κ_{μ} [%]	3.9	4.	3.9	0.43
$\kappa_{ au}$ [%]	0.91	0.94	0.66	0.46

Most precise coupling measurements (to Z and W bosons) are measured to ±0.2-0.4%

Higgs Boson Invisible and Exotic Decays @FCC-INT arXiv:1905.03764

- Higgs boson to invisible decays are predicted in the Higgs-portal model of Dark Matter
 - Selection of events with a Z boson and nothing:
 e+e⁻ → HZ, H→invisible and Z → bb, l+ l⁻
- → Upper limits at the 95% CL: BRinv < 0.19% @FCC-ee
 - FCC-ee will improve upon HL-LHC by an order of magnitude (BRinv < 1.9% @HL-LHC)
 - FCC-hh by another order of magnitude (\rightarrow values below the SM value of 0.11%)

	CEPC	FCC-ee ₂₄₀	FCC-ee ₃₆₅	FCC-ee/eh/hh
BR _{inv} (<%, 95% CL)	0.27	0.22	0.19	0.024
BR _{unt} (<%, 95% CL)	1.1	1.2	1.	1.

 Upper limits at the 95% CL on exotic decays (final states that cannot be tagged as SM decays): BR_{unt} < 1%

Higgs Boson Total Width Γ_H

arXiv:1905.03764

- Total Higgs boson Γ_{H} can be extracted from
 - ZH inclusive cross section
 - in combination with exclusive Higgs decays
- $e^+e^- \rightarrow HZ, H \rightarrow ZZ^* \text{ mostly } @\sqrt{s} = 240 \text{ GeV}$

$$\frac{\sigma(e^+e^- \to ZH)}{\mathrm{BR}(H \to ZZ^*)} = \frac{\sigma(e^+e^- \to ZH)}{\Gamma(H \to ZZ^*)/\Gamma_H} \simeq \left[\frac{\sigma(e^+e^- \to ZH)}{\Gamma(H \to ZZ^*)}\right]_{\mathrm{SM}} \times \Gamma_H$$

- Improvement using
 - other decays particularly $H \rightarrow WW^*$ and $H \rightarrow bb$ decays and
 - vector boson fusion channel $e^+e^- \rightarrow H_{VV}$ mostly $@\sqrt{s} = 365 \text{ GeV}$
- \rightarrow Determination of Γ_{H} to ±1.1%

Higgs Boson Cross Section and Mass

Recent developments on the "recoil mass" method

- Recent efforts to optimise and tune signal parameterisation (2 Crystal-Ball + Gaussian) and to include systematic uncertainties (BES, ISR, ...)
- Negative log-Likelihood scans as a function of the signal strength and of the Higgs mass

Sylvie Braibant - Higgs boson measurements at Future Circular Colliders 11/16

Higgs Boson Mass

Scan of the HZ threshold @FCC-ee

arXiv:2106.15438

- Deviation in the HZ Born cross section due to the Higgs boson selfcoupling
 - relative enhancement maximal (~2%) at the HZ production threshold

• With 5 ab⁻¹ at $\sqrt{s} \approx 217 \text{ GeV} \rightarrow \text{statistical precision on } m_{\text{H}}$: ± 9 MeV

Higgs Boson Self-Coupling

Single Higgs Production @FCC-ee

arXiv:2106.15438

• $\delta\sigma_{HZ}$ can constrain a linear combination of the deviations in the Higgs self-coupling (parameterised as δ_h) and g_{hZZ}/g_{hww} couplings (parameterised as δ_Z)

 → Эннн coupling measurement to ±33% with 2 IP reduced to ±24% with 4 IP

Higgs Boson Self-Coupling Di-Higgs Production @FCC-hh

- Very large di-Higgs samples produced at FCC-hh
 - $\sigma(100 \text{ TeV}) / \sigma(14 \text{ TeV}) \approx 40$
 - L(FCC-hh) / L(HL-LHC) \approx 10
 - → Naively, factor 20 smaller statistical uncertainty

Higgs Boson Self-Coupling Di-Higgs Production @FCC-hh

- Negative log-Likelihood scan as a function of the trilinear self-coupling modifier
- → Higgs self-coupling measurement with a precision in the range [3.4 - 7.8]% at 68% CL depending on the assumed detector performance and systematic uncertainties
 - only possible at a 100 TeV hadron machine
 - possible thanks also to precise BR measurements at FCC-ee

https://doi.org/10.1140/epjc/s10052-020-08595-3

Conclusions

- Fantastic prospects to probe the Higgs sector with FCC:
 - Model-independent measurements of g_{HZZ} and Г_H with FCC-ee
 - Sub-percent precision on several Higgs couplings
 - only possible with FCC-ee
 - Percent precision on Higgs self-coupling
 - only possible with FCC-hh
- Synergy between FCC-ee and FCC-hh Higgs physics
 - FCC-ee and FCC-hh will provide by far the best possible Higgs measurements of any accelerator

Backup

Future Circular Colliders

- Several future colliders are proposed
 - Circular lepton colliders: FCC-ee@CERN and CepC@China
 - pp colliders: FCC-hh@CERN and SppC@China

Future Circular Colliders FCC@CERN https://fcc-cdr.web.cern.ch/

- The Future Circular Collider (FCC) study: Collider installed in a tunnel with a circumference of 100 km
- The e+e- collider FCC-ee is a first step towards a pp collider FCC-hh

 "Most effective and comprehensive approach to thoroughly explore the open questions in modern particle physics is a staged research programme, integrating in sequence lepton (FCC-ee) and hadron (FCC-hh) collision programmes" M.Benedikt

Future Circular Colliders FCC-ee@CERN

Collider	Туре	\sqrt{s}	N(Det.) \mathscr{L}_{inst} [10 ³⁴] cm ⁻² s ⁻¹	$\left \begin{array}{c} \mathscr{L} \\ [ab^{-1}] \end{array} \right $	Time [years]	
FCC-ee	ee	M_Z	2	100/200	150	4	
		$2M_W$	2	25	10	1-2	
		240 GeV	2	7	5	3	
		$2m_{top}$	2	0.8/1.4	1.5	5	
Z peak WW thresho ZH threshol tt threshold	9 old 16 ⁻¹ d 240 36	√s 1 GeV 5 1 GeV 0 GeV 5 GeV	0x10 ¹² e+e 10 ⁸ e+e 10 ⁶ e+e 10 ⁶ e+e	$ \begin{array}{c} & & & \\ & & & \\ \hline \\ \hline$	Z pole WW ×10	HZ ×10 6 7 8 9 10 -	Top ×10 11 12 13 14 15 Years

Sylvie Braibant - Higgs boson measurements at Future Circular Colliders 20/16

Future Circular Colliders FCC-hh@CERN

• pp-collider FCC-hh @ 100 TeV in a second phase

Collider	Туре	\sqrt{s}	N(Det.)	\mathscr{L}_{inst}	L	Time
				$[10^{34}]$ cm ⁻² s ⁻¹	$[ab^{-1}]$	[years]
FCC-hh	pp	100 TeV	2	30	30.0	25

Future Circular Colliders CepC/SppC@China

 First phase: a circular electron-positron collider in a tunnel with a circumference of 50-70 km

Collider	Туре	\sqrt{s}	N(Det.)	\mathscr{L}_{inst}	L	Time
		-		$[10^{34}]$ cm ⁻² s ⁻¹	$[ab^{-1}]$	[years]
CEPC	ee	M_Z	2	17/32	16	2
		$2M_W$	2	10	2.6	1
		240 GeV	2	3	5.6	7

Future Circular Colliders

Detectors FCC-ee

- Consolidated option based on the detector design developed for CLIC: Proven concept, understood performance
 - 2 T solenoid
 - All silicon vertex detector and tracker
 - High granularity calorimeter system
 - Muon detector with RPCs

- New, innovative, probably more costeffective design
- Thin and light 2 T solenoid coil inside calorimeter system
 - Silicon vertex detector
 - Short drift, ultra light wire chamber
 - Dual Readout calorimeter
 - MPGD-based muon detector

Detectors

FCC-hh

- Must be able to cope with:
 - Very large dynamic range of signatures: E = 20 GeV 20 TeV
 - Hostile environment (1k pileup and up to 10¹⁸ cm⁻² MeV neutron equivalent fluence)
- Characteristics:
 - Large acceptance (for low p_T physics)
 - Extreme granularity (for high p_T and pile-up rejection)
 - Timing capabilities
 - Radiation hardness

kappa and EFT Framework

arXiv:1307.1347

- Kappa framework
 - Characterisation of Higgs couplings in terms of a series of Higgs coupling strength modifier parameters \boldsymbol{k}
 - defined as the ratios of the couplings of the Higgs bosons to particles *i* to their corresponding Standard Model values

$$(\sigma \cdot \mathrm{BR})(i \to \mathrm{H} \to f) = \frac{\sigma_i^{SM} \kappa_i^2 \cdot \Gamma_f^{SM} \kappa_f^2}{\Gamma_H^{SM} \kappa_H^2} \to \mu_i^f \equiv \frac{\sigma \cdot \mathrm{BR}}{\sigma_{\mathrm{SM}} \cdot \mathrm{BR}_{\mathrm{SM}}} = \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2}$$

- *EFT* approach
 - introduced to parametrise directly the new physics (rather than its effects) in terms of gauge invariant operators
 - global fit including not only Higgs but also di-boson and EWK precision observables

kappa Framework

arXiv:1209.0040

- Characterisation of Higgs couplings in terms of a series of Higgs coupling strength modifier parameters \boldsymbol{k}
 - defined as the ratios of the couplings of the Higgs bosons to particles *i* to their corresponding Standard Model values

$$(\sigma \cdot \mathrm{BR})(i \to \mathrm{H} \to f) = \frac{\sigma_i^{SM} \kappa_i^2 \cdot \Gamma_f^{SM} \kappa_f^2}{\Gamma_H^{SM} \kappa_H^2} \to \mu_i^f \equiv \frac{\sigma \cdot \mathrm{BR}}{\sigma_{\mathrm{SM}} \cdot \mathrm{BR}_{\mathrm{SM}}} = \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2}$$

 Extension to allow the Higgs boson decays into invisible or all other untagged BSM particles

$$\Gamma_H = \frac{\Gamma_H^{\rm SM} \cdot \kappa_H^2}{1 - (BR_{inv} + BR_{unt})}$$

Higgs Boson Cross Section @FCC-ee

arXiv:2106.15438

- Relative uncertainty on $\sigma_{ZH} \cdot Br(H \rightarrow XX)$ and $\sigma_{Hvv} \cdot Br(H \rightarrow XX)$
- \rightarrow Accuracy to ±0.5 %

\sqrt{s}	$240{ m GeV}$		$365{ m GeV}$	
Integrated luminosity	5 a	b^{-1}	1.5	ab^{-1}
$\delta(\sigma \mathcal{B})/\sigma \mathcal{B}$ (%)	ZH	$\nu_{\rm e}\bar{\nu}_{\rm e}$ H	ZH	$\nu_{\rm e}\bar{\nu}_{\rm e}~{\rm H}$
$\rm H \rightarrow any$	± 0.5	>	± 0.9	
$\mathrm{H} \rightarrow \mathrm{b} \bar{\mathrm{b}}$	± 0.3	± 3.1	± 0.5	± 0.9
$\mathrm{H} \to \mathrm{c}\bar{\mathrm{c}}$	± 2.2		± 6.5	± 10
${ m H} ightarrow { m gg}$	± 1.9		± 3.5	± 4.5
${ m H} ightarrow { m W}^+ { m W}^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \rightarrow \mathrm{ZZ}$	± 4.4		± 12	± 10
$\mathrm{H} \to \tau^+ \tau^-$	± 0.9		± 1.8	± 8
${ m H} ightarrow \gamma \gamma$	± 9.0		± 18	± 22
${ m H} ightarrow \mu^+ \mu^-$	± 19		± 40	
$H \rightarrow invisible$	< 0.3		< 0.6	

Higgs Boson Width Γ_H

arXiv:1905.03764

- With $\Delta k_z/k_z = 0.17\%$ and under the same coupling assumption, one can extract the Higgs total width
- \rightarrow Determination of $\Gamma_{\rm H}$ to ±1.1%

Overview of expected precision

Collider	$\delta\Gamma_H$ [%] from Ref.	Extraction technique standalone result	$\delta\Gamma_H$ [%] kappa-3 fit
CEPC	2.8	κ-framework [103, 104]	1.7
FCC-ee ₂₄₀	2.7	κ-framework [1]	1.8
FCC-ee ₃₆₅	1.3	κ-framework [1]	1.1

Higgs Couplings at Future Colliders

arXiv:1910.11775

Higgs Decays to Light Quarks

Sylvie Braibant - Higgs boson measurements at Future Circular Colliders 31/16

Higgs Boson Couplings With/Without HL-LHC

• Precision on a few Higgs boson couplings g_{HXX} in the κ framework

Collider	HL-LHC	ILC_{250}	CLIC ₃₈₀	$CEPC_{240}$	$\text{FCC-ee}_{240 \rightarrow 365}$
Lumi (ab^{-1})	3	2	1	5.6	5+0.2+1.5
Years	10	11.5	8	7	3+1+4
g_{HZZ} (%)	1.5	$0.30 \ / \ 0.29$	$0.50 \ / \ 0.44$	$0.19 \ / \ 0.18$	$0.18 \;/\; 0.17$
$g_{\rm HWW}$ (%)	1.7	$1.8 \ / \ 1.0$	$0.86 \ / \ 0.73$	$1.3 \ / \ 0.88$	$0.44\ /\ 0.41$
g_{Hbb} (%)	5.1	$1.8 \ / \ 1.1$	1.9 / 1.2	$1.3 \ / \ 0.92$	$0.69 \ / \ 0.64$
$g_{ m Hcc}~(\%)$	SM	$2.5 \;/\; 2.0$	4.4 / 4.1	$2.2 \ / \ 2.0$	$1.3 \ / \ 1.3$
$g_{\mathrm{Hgg}} \ (\%)$	2.5	$2.3 \;/\; 1.4$	$2.5 \ / \ 1.5$	$1.5 \ / \ 1.0$	$1.0 \ / \ 0.89$
$g_{\mathrm{H} au au}$ (%)	1.9	$1.9 \;/\; 1.1$	$3.1 \ / \ 1.4$	$1.4 \ / \ 0.91$	$0.74\ /\ 0.66$
$g_{\mathrm{H}\mu\mu}$ (%)	4.4	15. / 4.2	- / 4.4	9.0 / 3.9	$8.9 \ / \ 3.9$
$g_{\mathrm{H}\gamma\gamma}$ (%)	1.8	$6.8 \ / \ 1.3$	- / 1.5	$3.7 \ / \ 1.2$	$3.9 \ / \ 1.2$
$g_{\mathrm{HZ}\gamma}$ (%)	11.	- / 10.	- / 10.	$8.2 \ / \ 6.3$	- / 10.
$g_{ m Htt}$ (%)	3.4	- / 3.1	- / 3.2	- / 3.1	10. / 3.1
(%)	50	_ / 40	_ / 50	_ / 50	44./33.
$g_{\rm HHH}$ (70)	50.	- / 49.	- / 50.	- / 50.	27./24.
$\Gamma_{\rm H}$ (%)	SM	2.2	2.5	1.7	1.1
BR_{inv} (%)	1.9	0.26	0.65	0.28	0.19
BR_{EXO} (%)	SM(0.0)	1.8	2.7	1.1	1.1

P. Janot - 2nd FCC France Workshop 20-21 Jan 2021

Collider	ILC_{500}	ILC_{1000}	CLIC	FCC-INT
$g_{\rm HZZ}$ (%)	$0.24 \ / \ 0.23$	$0.24 \ / \ 0.23$	$0.39 \ / \ 0.39$	$0.17 \ / \ 0.16$
$g_{\rm HWW}$ (%)	$0.31\ /\ 0.29$	$0.26 \ / \ 0.24$	$0.38 \ / \ 0.38$	$0.20\ /\ 0.19$
$g_{\rm Hbb}$ (%)	$0.60 \ / \ 0.56$	$0.50 \ / \ 0.47$	$0.53 \ / \ 0.53$	$0.48 \ / \ 0.48$
$g_{\rm Hcc}$ (%)	$1.3\ /\ 1.2$	$0.91 \ / \ 0.90$	$1.4 \ / \ 1.4$	$0.96 \ / \ 0.96$
g_{Hgg} (%)	$0.98 \ / \ 0.85$	$0.67 \ / \ 0.63$	$0.96 \ / \ 0.86$	$0.52\ /\ 0.50$
$g_{\mathrm{H}\tau\tau}$ (%)	$0.72\ /\ 0.64$	$0.58 \ / \ 0.54$	$0.95\ /\ 0.82$	$0.49\ /\ 0.46$
$g_{\mathrm{H}\mu\mu}$ (%)	9.4 / 3.9	$6.3 \ / \ 3.6$	$5.9 \ / \ 3.5$	$0.43\ /\ 0.43$
$g_{\rm H\gamma\gamma}$ (%)	$3.5 \ / \ 1.2$	$1.9 \ / \ 1.1$	$2.3 \ / \ 1.1$	$0.32\ /\ 0.32$
$g_{\rm HZ\gamma}$ (%)	- / 10.	- / 10.	7. / 5.7	$0.71\ /\ 0.70$
$g_{\rm Htt}$ (%)	$6.9 \ / \ 2.8$	$1.6 \ / \ 1.4$	$2.7 \; / \; 2.1$	$1.0 \ / \ 0.95$
$g_{\rm HHH}$ (%)	27.	10.	9.	5.
$\Gamma_{\rm H}$ (%)	1.1	1.0	1.6	0.91
BR_{inv} (%)	0.23	0.22	0.61	0.024
BR_{EXO} (%)	1.4	1.4	2.4	1.0

Higgs Boson Couplings

Improvements compared to HL-LHC

 Improvement is shown as the ratio of the precision at the HL-LHC over the precision at the future collider

kappa Framework

arXiv:1209.0040

- Characterisation of Higgs couplings in terms of a series of Higgs coupling strength modifier parameters κ
 - defined as the ratios of the couplings of the Higgs bosons to particles *i* to their corresponding Standard Model values

$$(\boldsymbol{\sigma} \cdot \mathbf{BR})(i \to \mathbf{H} \to f) = \frac{\boldsymbol{\sigma}_i^{SM} \kappa_i^2 \cdot \Gamma_f^{SM} \kappa_f^2}{\Gamma_H^{SM} \kappa_H^2} \to \mu_i^f \equiv \frac{\boldsymbol{\sigma} \cdot \mathbf{BR}}{\boldsymbol{\sigma}_{SM} \cdot \mathbf{BR}_{SM}} = \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2}$$

- Extension to allow the Higgs boson decays to invisible or untagged BSM particles
 - Higgs boson decays to BSM particles separated in two classes:
 - decays into invisible particles
 decays into all other "untagged" particles
 \$\Gamma_H = \frac{\Gamma_H^{SM} \cdot \kappa_H^2}{1 (BR_{inv} + BR_{unt})}\$

kappa Scenarios

Scenario	B R _{inv}	B <i>R</i> _{unt}	include HL-LHC
kappa-0	fixed at 0	fixed at 0	no
kappa-1 kappa-2	measured measured	fixed at 0 measured	no no
kappa-3	measured	measured	yes

Higgs Boson Width Γ_H

arXiv:1905.03764

- Total Γ_H can be extracted from a combination of measurements in a model independent way using
 - the inclusive cross section of the ZH process from the mass recoil method
 - in combination with measurements of exclusive Higgs decay cross sections
- $e^+e^- \rightarrow HZ$, $H \rightarrow ZZ^*$ mostly at $\sqrt{s} = 240$ GeV:

$$\sigma \left(e^+ e^- \to ZH, H \to ZZ \right) = \sigma \left(e^+ e^- \to ZH \right) \frac{\Gamma_{H \to ZZ}}{\Gamma_H} \propto \frac{g_{HZZ}^4}{\Gamma_H}$$
$$\sigma \left(e^+ e^- \to ZH \right) \propto g_{HZZ}^2$$
$$\Gamma_H \propto \frac{\sigma \left(e^+ e^- \to ZH, H \to ZZ \right)^2}{\sigma \left(e^+ e^- \to ZH \right)} \quad \text{[limited by H} \to ZZ \text{ stat.]}$$

Higgs Boson Width Γ_H

arXiv:1905.03764

- Improvement using
 - other decays particularly $H \rightarrow WW^*$ and $H \rightarrow bb$ decays and
 - vector boson production channels e+e- → H_{VV} mostly at √s = 365 GeV

 $\frac{\sigma(\text{ee} \rightarrow \text{ZH}) \cdot \text{BR}(\text{H} \rightarrow \text{WW}) \cdot \sigma(\text{ee} \rightarrow \text{ZH}) \cdot \text{BR}(\text{H} \rightarrow \text{bb})}{\sigma(\text{ee} \rightarrow \nu\nu\text{H}) \cdot \text{BR}(\text{H} \rightarrow \text{bb})}$ $\propto \frac{g_{\text{HZ}}^2 \cdot g_{\text{HW}}^2}{\Gamma} \cdot \frac{g_{\text{HZ}}^2 \cdot g_{\text{Hb}}^2}{\Lambda} \cdot \frac{\Lambda}{g_{\text{HW}}^2 \cdot g_{\text{Hb}}^2} = \frac{g_{\text{HZ}}^4}{\Gamma}$

Higgs Boson CP

arXiv:1905.03764

- Detecting non-zero CP-odd components in the Higgs interactions with SM particles would point to BSM physics
- Departures from the SM parametrised in terms of dimension-6 operators

$$\delta \mathscr{L}_{\text{CPV}}^{hVV} = \frac{h}{v} \Big[\tilde{c}_{gg} \frac{g_s^2}{4} G_{\mu\nu}^a \tilde{G}_{\mu\nu}^a + \tilde{c}_{aa} \frac{e^2}{4} A_{\mu\nu} \tilde{A}_{\mu\nu} + \tilde{c}_{za} \frac{e\sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} \tilde{A}_{\mu\nu} + \tilde{c}_{zz} \frac{g^2 + g'^2}{4} Z_{\mu\nu} \tilde{Z}_{\mu\nu} + \tilde{c}_{ww} \frac{g^2}{2} W_{\mu\nu}^+ \tilde{W}_{\mu\nu}^- \Big]$$

• CP-violating interactions of the Higgs boson with fermions can be parametrised as:

$$\mathscr{L}_{\rm CPV}^{hff} = -\bar{\kappa}_f m_f \frac{h}{v} \bar{\psi}_f (\cos\alpha + i\gamma_5 \sin\alpha) \psi_f$$

where angle α parametrizes the departure from the CP-even case

• @FCC-ee

- Most promising direct probe of CP violation in fermionic Higgs decays is the ττ decay channel (relatively large branching fraction (6.3%)
- @FCC-eh: CP violation in the top quark interactions
 - a precision of 1.9% could be achieved on α_t

Higgs Boson Self-Coupling @FCC-ee

- Higgs trilinear indirectly constrained through loop corrections to σ_{ZH}
- $\delta\sigma_{HZ}$ can constrain a linear combination of the deviations in the selfcoupling (parameterised as δk_{λ}) and HZZ/HWW couplings (parameterised as δc_{Z})

$$\delta_{\sigma}^{240} = 100 \left(2\delta_Z + 0.014\delta_h \right) \%$$

Higgs Boson Self-Coupling Di-Higgs Production @FCC-hh

• Assumed detector performance and systematic uncertainties:

Table 2 Performance of physics objects for the various scenarios. Objects efficiencies and mistag rates are given for a representative $p_T \approx 50$ GeV. For b and τ -tagging (and their respective mistag rates) numbers for two different working points are given (medium and tight)

Scenario I	Scenario II	Scenario III
82–65%	80–63%	78–60%
15–3%	15–3%	15-3%
1-0.1%	1-0.1%	1-0.1%
80–70%	78–67%	75–65%
2-1%	2-1%	2–1%
0.1-0.04%	0.1-0.04%	0.1-0.04%
90	90	90
0.1	0.2	0.4
1.2	1.8	2.9
10	15	20
	Scenario I 82–65% 15–3% 1–0.1% 80–70% 2–1% 0.1–0.04% 90 0.1 1.2 10	Scenario I Scenario II 82–65% 80–63% 15–3% 15–3% 1–0.1% 1–0.1% 80–70% 78–67% 2–1% 2–1% 0.1–0.04% 0.1–0.04% 90 90 0.1 0.2 1.2 1.8 10 15

https://doi.org/10.1140/epjc/s10052-020-08595-3

Higgs Boson Self-Coupling Summary @FCC-INT

- 68% CL uncertainties on δκλ with di-Higgs and single-Higgs (all combined with HL-LHC)
- *k*_A coupling measurement to ±5%
 - only possible at a 100 TeV hadron machine
 - possible thanks also to precise BR measurements at FCC-ee

Higgs Boson Self-Coupling Di-Higgs Production @FCC-hh

- Studied a number of final states: bbyy most sensitive channel
- Per-cent level precision of HHH coupling
 - Only possible at a 100 TeV hadron machine
 - δκ_λ 5% possible thanks also to precise BR measurements at FCC-ee

