

THEORIES BEYOND THE STANDARD MODEL

Gabriele De Marco Liceo Scientifico A. Righi, Bologna (BO)
Cristina Gatto Liceo Scienze Applicate L. Trafelli, Nettuno (RM)
SUPERVISOR: Federico Leo Redi

The STANDARD MODEL

The Standard Model (SM) describes three of the four fundamental interactions among the elementary particles. It includes **Fermions**, which constitute the matter and **Bosons** which are considered as force carriers.

INTERACTIONS

- → Strong interaction
- → **Electromagnetic** interaction
- → Weak interaction
- → Gravitational interaction

Some of the main limits of the Standard Model

1	GRAVITATION ISSUE	Gravitational interaction is not considered by the SM.
2	MASS OF NEUTRINOS	The SM does not incorporate mass in the neutrinos particles.
3	DARK MATTER EXISTENCE	Dark matter (DM) is not mentioned or explained by the SM.
4	MASS HIERARCHY PROBLEM	Each particle has a different mass which is not explained within the interaction with the Higgs field .

4

Dark Photons

- Dark Photons (DP) are thought to be force-carrying particles.
- Unlike massless photons, these dark-matter particles would have a mass.
- Individually, DP hardly interact with normal matter, but as waves, they would exert a very weak force.

The DP can couple very weakly to electrically charged particles through kinetic mixing with the ordinary photon.

Kinetic mixing is a phenomenon in which DP can change back and forth into the regular photon.

LHCb Experiment's sub-detectors

The **photosensitive surface** is designed to capture the particles' emission crossing the radiator. By measuring the angle, θ , of the Cherenkov cone, RICH detectors extract the particle velocity.

LHCb Data analysis

- It is possible to use experimental data of LHCb to correct the efficiency of the PID using simulation correcting the systematic uncertainty.
- PID capability is a function year data taking.

Summary

- 1. The SM is certainly incomplete.
- 2. Demonstrating dark photon's existence could be the key to discover deeper the unknown world of dark matter.
- 3. Particle physics is at crossroads. For the first time in particle physics we know that there are new particles, but we do not know yet where to find them.
- 4. It is even more important to focus on the synergy with cosmology and astrophysics.
- 5. Dark matter's nature hopefully may be uncovered in a couple of years.

Backup

11

Some of the main limits of the Standard Model

1	GRAVITATION ISSUE	Gravitational interaction is not considered by the SM.
2	MASS OF NEUTRINOS	The SM does not incorporate mass in the neutrinos particles.
3	DARK MATTER EXISTENCE	Dark matter (DM) is not mentioned or explained by the SM.
4	MASS HIERARCHY PROBLEM	Each particle has a different mass which is not explained within the interaction with the Higgs field .
5	CP SYMMETRY PROBLEM	The SM does not provide an explanation to the imbalance between matter and antimatter in the universe.

Backup

SUPERSYMMETRY

These new particles would solve a major problem with the SM: fixing the **mass** of the **Higgs boson**.

If the theory is correct, supersymmetric particles should appear in collisions at the LHC

Why should dark photons exist?

- There is a deviation between the measurement and the SM prediction of the anomalous magnetic moment of the muon. Why?
- What causes the positron excess presently seen in the spectrum of cosmic rays?
- Very recently, an anomaly was observed in a nuclear decay of Beryllium. Could this be a first hint for a 17 MeV Dark Photon signal?

Proving the dark photon's existence could answer to all of these questions...

<u>Backup</u>

LHCb Experiment's sub-detectors

Backup

Transverse momentum

17