Gas detector in ATLAS experiment Francesco Soddu, Maria Matilde Stellini

ITALIAN HSSIP 2022

Overview

- LHC and the ATLAS experiment
- Detector used: *Micromegas*
- Measurement of the *Gain*
- Collection of the **Data**
- Data Analysis
- Conclusions

LHC AND ATLAS EXPERIMENT

LHC is the Large Hadron Collider, with a diameter of 27 km.

One of its collision point is where the ATLAS experiment lies

ATLAS (A Toroidal LHC ApparatuS) is a general purpose experiment. It consists in several different detectors, including trackers, calorimeters and the muon spectrometer system.

Micromegas

'Micro Mesh Gaseouse Structure'

- Micro pattern gas detector with 1024 read-out strips
- It contains Argon (Ag) and Carbonic Dioxide (CO2) that come in different proportions
- It is made of **3 planes:** the drift electrode, the mesh and the read-out strips
- It detects particles with a high spatial precision

THE RADIOACTIVE SOURCE

- The ⁵⁵Fe is the radioactive source used.
 Since it is instable, it decades in ⁵⁵Mn
- The physics process that happens inside the chamber is the following: when the photon enters the drift region it ionizes the gas and forms an electron-ion couple

$$^{55}Fe \rightarrow ^{55}Mn^* + v_e$$

$$^{55}Mn^* \rightarrow ^{55}Mn + \gamma$$

The electric field

Once the electrons are in the amplification region additional electron-ion couples are formed so an electron avalanche is created because of the strong acceleration of the particles due to the electronic field.

The gain measurement

- The gain is the moltiplicative factor of the primary ionization charge
- The gain depends on electrical fields ratio between the two regions, therefore it can be measured as the ratio of the voltage provided to the drift and read-out plans

• Gain
$$=\frac{N}{N_0}$$

N₀ stands for the number of the primary electron-ion couples in the drift region
N stands for the number of electrons that are formed in the amplification region

Collecting data

- By fixing the drift voltage to -300 V the read-out voltage has been changed with steps of 10 V
- Four different proportion of gas were used: Ag 93%- CO2 7%, Ag 90%-CO2 10%, Ag 85%-CO2 15%, Ag 80%- CO2 20%
- For every proportion it has been measured the signal corresponding to the Auger effect
- Then the gain trend as a function of the read-out voltage has been calculated

Data analysis

The data have been collected with a software used in the laboratory and analysed with Excel.

The analysis has been done in two different ways:

1. Manually, measuring the average value of the read signal

Hv	Centroid										
450	88		Ag= 93%	Co2=7%							
460	121										
470	168	V _{monito}	V _{monitored} [V] tension in fuction of the centroid								
480	232	1800									
490	320										
500	441	1600				,					
510	604	1400									
520	816	1200				1					
530	1165	1000									
540	1622	800									
		600									
		400									
		200									
		0									
		44	40 460	480	500	520	540 560				
							$V_{read-out}[V]$				

			Ag=90%	Co2=109	6						
11	Cambuald										
Hv	Centroid	v ry Centroid									
460	90	v _{monitored} [v]									
470	124	1600									
480	171	1400									
490		1200									
500		1000						1			
510		800									
520											
530		600									
540		400				4					
550	1470	200									
		0									
			440 46	50 48	0	500	520	540	560		
							,	$V_{read-out}[V]$			

Data analysis

2. In a mathematical way, by fitting the signal with a gaussian function

$$A e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Then the best fit of every gaussian function has been calculated and the mean parameter has been used for the gain calculation

Gain measurement

 In conclusion the graphics of the two different analysis have been compared

The mathematical way

The approximated manual way

conclusions

- What we have calculated it is not precisely the gain but it is a measurement that is proportional to it
- The data have an esponential trend
- It should be added a sperimental error to the data which is related to both the inaccurate manual measurement and the fit's parameter (μ) → but for practical impossibilities we didn't have the chance to get them

THANKS FOR THE ATTENTION!

Francesco Soddu, Maria Matilde Stellini

ITALIAN HSSIP 2022

