Deep Learning and Classical Machine Learning for
code mapping in Heterogeneous Platforms

Yacine Hakimi

Laboratoire de Méthodes de Conception des Systemes (LMCS)

Ecole nationale Superieure d’Informatique (ESI)
Algiers, Algeria
y_hakimi@esi.dz

Riyad Baghdadi
Computer Science & Artificial Intelligence Lab (CSAIL)
Massachusetts Institute of Technology (MIT)
de Massachusetts, USA
baghdadi@mit.edu

Yacine Challal
Laboratoire de Méthodes de Conception des Systémes (LMCS)
Ecole nationale Superieure d’Informatique (ESI)
Algiers, Algeria
y_challal@esi.dz

Abstract—Programming modern heterogeneous systems is be-
coming more and more challenging due to their complexity.
To simplify software development for such architectures, more
advanced compilers are being designed. Such compilers automat-
ically optimize code and hide the complexity of the target hetero-
geneous architecture from the developer. An example of problems
that these compilers need to solve is to decide whether to map
(run) a piece of code on CPU or GPU (Graphics Processing Unit).
State-of-the-art compilers use accurate optimization heuristics to
solve such problems and decide about how to optimize a code
automatically. Traditional machine learning and Deep Learning
approaches have both been used to build such heuristics. While
traditional machine learning is well suited for training on small
datasets, it is not well suited for extracting a set of high-quality
features, on the other hand, deep learning can automatically
extract features, but it needs a large amount of data to get
satisfactory results.

In this paper, we propose a new machine-learning-based model
that allows a compiler to automatically decide whether to map a
piece of code to CPU or GPU. Our model uses traditional machine
learning and deep learning by exploiting the advantages of each of
them. We show that our proposed model, which requires a small
amount of data and training time, matches and outperforms
state-of-the-art pre-trained deep learning models that require
large amounts of data.

Index Terms—Machine Learning, Deep Learning, Code Opti-
mizations, LLVM-IR, Heterogeneous Platforms.

I. INTRODUCTION

When we try to write a parallel code or parallelize a legacy
code there are a lot of options that we have to choose from,
from selecting the algorithm and parallel programming model
to determining the granularity of parallelism, scheduling, and
mapping strategy, therefore there are many tunable parameters
that can affect a parallel execution of the program. Ideally,
optimal tuning of all these parameters can help in obtaining
efficient execution, and in improving the performance. We can
look at this problem as a problem of optimization, where we
have to select the optimal or near-optimal solution from a set
of possible solutions considering different criteria.

978-1-6654-2821-7/21/$31.00 ©2021 IEEE

Writing parallel code becomes more challenging when we
target heterogeneous systems which have different types of
hardware accelerators (CPUs, GPUs - Graphics Processing
Units-, etc.). Optimizing compilers are used to simplify writing
software for such architectures. These compilers automatically
decide about how the code should be optimized for the target
architectures. One decision that such compilers need to take is
to figure out whether to map a piece of code (kernel) to CPU
or GPU [1] [2] [3] [4].

Because of the great successes in recent years in the field
of machine learning, especially deep learning, the tendency is
to use it in many compiler and code optimization problems
[5] [6]. In previous work, deep learning has shown its ability
to provide better accuracy and solve the problem of feature
extraction and selection [1], but it requires large amounts
of labeled data, which is a real and well-known problem in
compiler and code optimization (because of lack of data).
On the other hand, simple models such as decision trees
and SVM typically work better and require less labeled data
compared to deep learning models but their performance is
greatly affected by the quality of features. Generally, they
work well with a feature vector that has a small number of
dimensions. Extracting a small number of high-quality features
is a nontrivial task.

While feature extraction in traditional machine learning
algorithms depends on the developer’s experience and similar
previous experiences [5], automated feature extraction using
deep learning for code has been greatly influenced by Natural
Language Processing (NLP) approaches [1] [7] (due to simi-
larities between code and natural language). These approaches
especially pre-trained models such as CodeBERT has given
good results in code tasks similar to NLP tasks (code com-
pletion, code to code translation, code summarization. .. etc.)
[8]. However, compiler and code optimization tasks are more
difficult due to the structural nature of the code (function
calls, branching) and the complexity of interactions between

programs and architectures, and the fact that features extracted
have to characterize the semantics of the program and its
behavior on the target architecture.

To overcome this problem many previous papers attempt
not only to learn a distributed representation of the code in
continuous space using embedding techniques but add other
information to this representation such as control and data flow
[71 [4] [9].

We believe that in NLP and code similar-NLP tasks that the
key to their success is the similarity between the tasks that
are used to learn the distributed representation in pretrained
models and the downstream tasks because most of these
techniques rely on masked language modeling where some
tokens are masked and the model tries to predict them, while
in code optimization the tasks are far from this type of task.

In this paper, we train a language model that can extract
a high-quality features vector with a small number of dimen-
sions relying on Convolutional Neural Networks CNNs. The
characteristics of the features vector allow us to use traditional
machine learning techniques which in turn allows us to use a
small dataset.

We show that even with a very small dataset we can take
advantage of deep learning and traditional machine learning
together to reach results similar or better than state-of-the-art
pre-trained models that require a large dataset. Unlike such
models, our model requires less training time and less data.

The contributions of this paper can be summarized as
follows:

o We propose a new model that maps kernels to CPU or
GPU;

o The proposed model is the first to match the performance
of state-of-the-art pre-trained models without requiring
large amounts of data.

II. RELATED WORK

In the last decade, there have been many attempts to use
machine learning in compiler and code optimization such
as scheduling kernels on CPU/GPU heterogeneous platforms
using SVM [2], Decision trees [3] selecting the best value
for the coarsening factor on GPU using ANN [10], determine
whether parallelism is beneficial using SVM [11], and many
other problems. A comprehensive survey can be found in [12].

The performance of these traditional machine learning tech-
niques is greatly affected by the quality of features. Extracting
high quality features requires expert intervention and a lot of
time, and these features are not always useful for solving other
optimization problems even for the same code [5].

Due to the common characteristics between source code and
natural languages and the huge success of deep learning in the
area of NLP, researchers have turned to use these techniques
for compilers and code optimization to solve the problem of
features extraction.

Working on the problem of device mapping on heteroge-
neous architectures, Cummins et al. [1] try to automatically
extract features from OpenCL source code using embedding
techniques to learn a distributed representation of the code.

Their model, DeepTune, succeeded in obtaining better results
than manual feature extraction methods.

Using the intermediate representation (IR) of the LLVM
compiler (LLVM IR) instead of OpenCL code and working
on the same problem, Barchi et al. [13] try to take advantage
of the features of the LLVM IR to improve the accuracy.
Inst2vec [7] uses the skip-gram model to train an embedding
layer analyzing the ConteXtual Flow Graph (XFG) to add
more information to the distributed representation, this pre-
trained model has shown good results in many downstream
tasks including device mapping problems.

Relying on Graph Neural Networks (GNN) and working on
the same problem, Cummins et al. [4] proposed a graph-based
program representation called Program Graphs for Machine
Learning (PROGRAML), In the same direction, Brauckmann
et al. [9] try to use abstract syntax trees (ASTs) and control-
data flow graphs (CDFGs) as a code representation instead of
code sequence to do the classification.

In IR2VEC [14] the authors proposed for the first time
the use of Knowledge Graph Embeddings (KGE) in code
optimization to learn a code representation using TransE
model. This representation was appropriate to be used as an
input to an XGboost classifier, this work is considered the
state-of-the-art (SOTA) in the device mapping problem.

Barchi et al. [15] introduced the use of Convolutional
Neural Networks (CNNs) instead of Recurrent Neural Net-
works (RNNs). The work showed CNN'’s ability to get good
results, even better than many models that relied on pre-trained
techniques using the small dataset of the device mapping
problem only.

In this work, we take advantage of deep learning (CNN’s
capability of learning and extracting good features) and tra-
ditional machine learning together in code optimization. Our
work shows that even with a very small dataset that only has
680 data points and without a pre-trained model trained on a
large dataset, we can with our approach outperform the SOTA
models.

ITII. PROPOSED APPROACH

In Our work we use like the recent works the intermediate
representation IR-LLVM as an input to the system, Figure 1
shows all the steps needed to build our model. Our system is
composed of three stages as shown in Figure 2, A. Prepro-
cessing of the IR-LLVM code, B.Training a CNN model, C.
Training a ML model using the feature extractor built based
on the embedding and CNN layers from the CNN model.

A. Preprocessing

We preprocessed the IR-LLVM code by doing the following
in this order: (1) Tokenizing the code, (2) Atomizing the code,
figure 3 shows an example of the preprocessing stage.

1) Tokenization: in this phase, we have taken a slightly dif-
ferent approach comparing to work in [15]. before identifying
the elements or the tokens in the sequence of code we rewrite
the code by:

o Removing the empty line, comments, and unnamed meta-
data starting with (#);

e Replacing the vectors, arrays and constant (float,
integer, double) by a placeholder respecting the
types. (e.g. 0x3FD3333340000000 — float_constant,
23 — int_constant, <float 1.000000e+01, float
1.000000e+01>— vector_float_constant);

o Replacing global and local unnamed identifiers, variable,
and function names with a placeholder.

[Input: IR-LLVM code dataset
Qutput: A predictive model for a device mapping problem
Def Build Predictive Model(dataset.code):

// Define preprocessing function
Det preprocessing (code):
code = Tokinization (code)
code = Atomization (code)
return code

//Build a CNN model
Det CNN_ model (input):
x = Embedding(input)
x= Conv1d(x)
¥ = GlobalMaxpooling 1 Dix)
QOutput = Dense (x)

//Build a Feature extractor model based on CNN
model's layers (Embedding and Convld)

Def Feature extractor Model (input, auxiliary inputs):
x = CNN_model. Embedding(input)

x = CNN model. ConvId(x)

x= GlobalMaxpooling 1 D(x)

Features vector = Concatenate (x, awxiliary inputs)

{Build Our predictive model

Def Our_predictiveModel(input):

Features vector = Feature extractor Model (input)
Prediction = ML (Features vector)

/i Preprocess each code In the training dataset
For each code in Tdataset.code do:
| dataset.code = Preprocessing (code)

/i Train the CNN model on the training dataset
Train (CNN model{ Tdataset.code), dataset.labels)

/{Extract features vector for each code in training dataset
Dataset. features = Feature extractor Model
(dataset.code, dataset.auxiliary inputs)

/i Select a machine leaming algorithm
ML = Select Machine learning_ algorithm ()

// Train the ML on the same
Train (ML, Dataset.features, labels)

Return Our_predictive Model()

Fig. 1.
model.

Build_Predictive_Model: Algorithm showing all steps to build our

[IR-LLVM CODE HPREPROCESSING} E(A)PREPRCESSING

ES

ConviD ConviD

GlobalMaxPooling1D

Features extractor

GlobalMaxPooling1D

podaiess

I

Output
ML Algorithm

(B)Training a CNN model (C) Training a ML model

Fig. 2. System Overview: First training a CNN model, then building a Feature
extractor model by transfer learning, and finally training a ML algorithm using
the output of the Feature extractor as input.

After this process, we finally got a small vocabulary with
164 tokens unlike work in [15].

2) Atomization: this phase we created a dictionary to
index tokens to integers, using this dictionary all tokens are
converted to their integer indexes, finally we get a sequence
of integers representing each code.

B. Training a CNN model

Figure 2 (B) shows the architecture of our CNN model
used in this stage, we use the same architecture used for the
language model in [15].

1) CNN model architecture: this model consists of 4 layers:

a) Embedding layer: take a sequence of integers as input
and learn a useful distributed representation of it by translating
each integer (index of token) into a vector in the distributed
representation. We choose an input size = 4096 and we use
an Embedding size = 64.

b) One-dimensional convolutional neural network: take
the distributed representation as input and applies 1D convo-
lution over the input using a number of filters, each filter has
a kernel size that defines the number of tokens to consider as
the convolution is passed across the input, we use 64 filters
with kernel size = 32.

c) GlobalMaxpoolinglD: this layer selects the maximum
value of each output of filters, the output is a vector with a
size of 64.

d) Dense: a fully connected layer with 2 outputs and
”Sigmoid” activation to do the classification.

IR-LLVM CODE

%28
%21
%22
%23

fdiv float 1.800000e+88, %1%, !fpmath !12
insertelement <4 x float> undef, float %28, i32 @

fmul <4 x float> %22, %18
tail call <4 x float> @_Z4sqriDvd_f(<4 x float> %23) #4

o
%]
F

%25

shufflevector <4 x float> ¥21, <4 x float> undef, <4 x 132> zeroinitializer

fmul <4 x float> %24, <float @x3FD3333340800808, float @x3FD3333348008080, float @x3FD3333340088000, float @x3FD3333340000080>

(1) Tokenization

_local = fdiv float _float_constant , _local

_local = insertelement 4_float undef , float _local ,
_local = shufflevector 4 _float _local , 4_float undef ,
_local = fmul 4_float _local , _local

_local = tail call 4_float _function (4_float _local)
_local = fmul 4_float _local , _wvectorl_float

i32 _int_constant
4 132 zeroinitializer

(2) Atomization

1, 5, 54, 11, 18, 2, 1,
1, 5, 8%, 62, 74, 2, 11, 1, 2, 21, 4,

1, 5, 113, 62, 1, 2, 62, 74, 2, 82, 112,
1, 5, 25, 62, 1, 2, 1,

1, 5, 23, 28, 62, 19, 18, 62, 1, 17,

1, 5, 25, 62, 1, 2, 96

Fig. 3. Example of transformation of an intermediate representation to a sequence of numbers.

2) Training : The training was performed for 40 epochs
using the Adam optimizer with its default parameters on the
training dataset.

C. Training a Machine Learning model

Figure 2 (C) shows the architecture of our classifier, we
build another CNN model as a Feature extractor with the trans-
fer learning technique, the output of this model concatenated
with auxiliary inputs is used as inputs to train a ML algorithm.

1) Feature extractor: we built this model using the Em-
bedding and the ConvlD layers from the pre-trained CNN
model, this model consists of these two layers, a GlobalMax-
pooling1D layer and a Concatenation layer used to add the
Auxilliary inputs to the output. the result is a vector with
66 values (64 from the output of GlobalMaxpoolinglD + 2
Auxilliary inputs). This model is not trained, it is only used as
a feature extractor, it takes a sequence of integers and auxiliary
inputs as input and produced Features vector as output.

2) Auxiliary Inputs: the auxiliary inputs added to feature
vectors are real values used in the previous works to augment
the source code input. The code optimization depends on many
variables including the hardware, dynamic values can provide
to the model important characteristics of the hardware, the
auxiliary inputs used are workgroup size and byte transfer.

3) Algorithms: Once we get a features vector that has
a small number of dimensions, we can train any Machine
Learning algorithm to do the device mapping task and take
advantage of its ability to deal with a small dataset. In Our
work, we train 7 Machine learning algorithms and compared
their results. Section IV shows the results of the comparison
and discusses them.

4) Ensemble Learning: Ensemble Learning: ensemble
learning is one of the promising techniques to deal with small
and imbalanced datasets [16]. This technique uses a set of

machine learning algorithms to do the classification and then
uses their results to do the final classification. Since we can
use traditional ML with our feature extractor, we can take
advantage of this technique. In our work, we use Stacking-
Classifier, in this model the output of each ML algorithm
(classifier) in the ensemble is stacked and use a classifier
(Meta-classifier) to compute the final prediction from this
stack. Our ensemble learning is a set of Xgboost classifier and
RandomForestClassifier as a classifier and AdaBoost Classifier
as a meta-classifier.

IV. EVALUATIONS

In this section, we evaluate our model on the device
mapping problem using the same dataset and metrics used
in previous works.

A. Dataset

o In our work we use the dataset used in [14], this dataset
is the same dataset used in the previous works on device
mapping problem including [1], the only difference be-
tween these two is that in the first the OpenCL code was
already converted to IR-LLVM code.

o The dataset is composed of 680 data for each of the two
GPU devices (NVIDIA GTX 970 and AMD Tahiti 7970)
obtained by executing 256 unique kernels on CPU and
GPU with different workgroups size and byte transfer
values. these kernels are from different benchmark suites
comprising AMD SDK, NPB, NVIDIA SDK, Parboil,
PolybenchGpu, Rodinia, and SHOC. each data is com-
posed by kernel converted to IR-LLVM code, the optimal
target device CPU or GPU, parameters (workgroup size,
byte transfer).

TABLE I
COMPARISON OF ML ALGORITHMS ACCURACY USING THE FEATURE EXTRACTOR

Algorithm
dataset Logistic Ensemble
XG boost | Random forest | Ada Boost SVM Gaussian NB SISt .

Regression | Learning

?}SE 90.58% 89.53% 89.83% 70.85% 64.12% 40.95% 92.22%

Nvidia 88.19% 82.81% 85.20% 58.59% 53.36% 57.24% 91.03%

Average 89.38% 86.17% 87.51% 64.72% 58.74% 49.10% 91.62%

TABLE 11
COMPARISON OF THE ACCURACY WITH THE STATE-OF-THE-ART MODELS
dataset Model
Grewe et al. | DeepTune | Inst2vec (NCC) | ProGraML | DeepLLVM | IR2VEC | Our System

?;\1/1[1?1 73.38% 83.67% 82.79% 86.6% 85.60% 92.82% 92.22%
Nvidia 72.94% 80.29% 81.76% 80.0% 85.32% 89.68% 91.03%
Average 73.16% 81.98% 82.27% 83.3% 85.46% 91.25% 91.62%

B. Metrics

Like previous works and to be able to compare with it,
we use the accuracy metrics with 10-fold cross-validation to
evaluate our system. The data is randomly split into 10 sets
and we train 10 classifiers changing the subset used as test-
set. We first train the CNN model on the train-set, then we
build the Feature extractor model by transfer learning, and
finally, we train the ML algorithm on the same train-set using
the output of the Feature extractor as input. The prediction is
done by the model shown in Figure 2 (C) on the test dataset
to compute the accuracy.

C. Machine learning algorithms comparison

We compare the accuracy of 7 ML algorithms including the
Ensemble learning, Results are presented in Table 1.

The parameters we used in each model are as follows:
Xgboost: max_depth 6,
n_estimators = 100, n_jobs =10;
Random forest: max_depth = 5, n_estimators = 50;
AdaBoost, SVM, GuassianNB, LR: Default parameters;
Ensemble Learning: The models used in it have the same
parameters as the previous ones.

learning_rate 0.1,

As Table 1 shows, the ensemble technique tree-based al-
gorithms (Xgboost, Randomforest, Adaboost) provide good
results in contrast to the rest, and this is to be expected since
we are dealing with a very small dataset, also, the goal of
extracting appropriate features for traditional machine learning
was to be able to take advantage of these techniques. We build
our ensemble learning based on these three algorithms and it
provides the best accuracy.

D. Comparison with previous works

We compare the accuracy of our system with the previous
works, Table 2 shows this comparison. Our system provides
roughly the same accuracy compared to the state-of-the-art
model IR2VEC on the AMD dataset while providing better
accuracy than it on the Nvidia dataset. Our model outperforms

all other models despite we use only the small dataset of device
mapping and without trying to add any other information such
as control and data flow.

Our model provides similar or better results than state-
of-the-art models with less data and without any additional
information or pre-trained on large data.

V. CONCLUSION AND FUTURE WORK

In this work we proposed a new model that maps kernels to
CPU or GPU, our model provides similar or even better per-
formance compared to state-of-the-art models. Our approach
match and even outperforms the pre-trained models used only
a very small dataset by using the advantages of deep learning
and traditional machine learning together.

We used a deep learning CNN based model to build a
Features extractor by transfer learning, this Features extractor
model was able to extract features suitable for use by tradi-
tional machine learning algorithms, which allowed us to take
advantage of known techniques to deal with the problem of
small dataset such as ensemble learning.

We believe that our model can be used on other code
optimization problems since the lack of labeled data is a well-
known problem in this field.

Evaluate the performance of this model on other code
optimization problems or even on the similar-NLP code clas-
sification tasks will be considered in future work. Another
direction could be to try to improve the Features extractor to
get better features and thus better performance.

REFERENCES

[1] C.Cummins, P. Petoumenos, Z. Wang, and H. Leather, “End-to-end deep
learning of optimization heuristics,” in 2017 26th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT).
IEEE, 2017, pp. 219-232.

[2] Y. Wen, Z. Wang, and M. E. O’boyle, “Smart multi-task scheduling
for opencl programs on cpu/gpu heterogeneous platforms,” in 20714
21st International conference on high performance computing (HiPC).
IEEE, 2014, pp. 1-10.

[3]

[4]

[5]
[6]

[7]

[8

[t}

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. Grewe, Z. Wang, and M. F. O’Boyle, “Portable mapping of data
parallel programs to opencl for heterogeneous systems,” in Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 1EEE, 2013, pp. 1-10.

C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, and H. Leather,
“Programl: Graph-based deep learning for program optimization and
analysis,” arXiv preprint arXiv:2003.10536, 2020.

Z. Wang and M. O’Boyle, “Machine learning in compiler optimization,”
Proceedings of the IEEE, vol. 106, no. 11, pp. 1879-1901, 2018.

A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano,
“A survey on compiler autotuning using machine learning,” ACM
Computing Surveys (CSUR), vol. 51, no. 5, pp. 1-42, 2018.

T. Ben-Nun, A. S. Jakobovits, and T. Hoefler, “Neural code compre-
hension: A learnable representation of code semantics,” arXiv preprint
arXiv:1806.07336, 2018.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

A. Brauckmann, A. Goens, S. Ertel, and J. Castrillon, “Compiler-based
graph representations for deep learning models of code,” in Proceedings
of the 29th International Conference on Compiler Construction, 2020,
pp. 201-211.

A. Magni, C. Dubach, and M. O’Boyle, “Automatic optimization of
thread-coarsening for graphics processors,” in Proceedings of the 23rd
international conference on Parallel architectures and compilation,
2014, pp. 455-466.

Z. Wang, G. Tournavitis, B. Franke, and M. F. O’boyle, “Integrat-
ing profile-driven parallelism detection and machine-learning-based
mapping,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 11, no. 1, pp. 1-26, 2014.

S. Memeti, S. Pllana, A. Binotto, J. Kolodziej, and I. Brandic, “Using
meta-heuristics and machine learning for software optimization of paral-
lel computing systems: a systematic literature review,” Computing, vol.
101, no. 8, pp. 893-936, 2019.

F. Barchi, G. Urgese, E. Macii, and A. Acquaviva, “Code mapping in
heterogeneous platforms using deep learning and llvm-ir,” in 2019 56th
ACM/IEEE Design Automation Conference (DAC). 1EEE, 2019, pp.
1-6.

S. VenkataKeerthy, R. Aggarwal, S. Jain, M. S. Desarkar, R. Upadrasta,
and Y. Srikant, “Ir2vec: Llvm ir based scalable program embeddings,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 17, no. 4, pp. 1-27, 2020.

F. Barchi, E. Parisi, G. Urgese, E. Ficarra, and A. Acquaviva, “Explo-
ration of convolutional neural network models for source code classi-
fication,” Engineering Applications of Artificial Intelligence, vol. 97, p.
104075, 2021.

X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble
learning,” Frontiers of Computer Science, vol. 14, no. 2, pp. 241-258,
2020.

