

MC RF WG WP summar

Jean-Pierre Delahaye, Alexej Grudiev, Derun Li, Akira Yamamoto on behalf of MC RF WG 3rd muon community meeting

06.10.2021

Objectives, **Deliverables** and **Resources**

MInternational MUON Collider

Objectives

High-level Deliverables

- 1) Baseline design of the RF system for acceleration to high energy (SRF)
- 2) Application of high gradient SRF technology for muon accelerators (SRF)
- 3) Baseline design of the RF system for Muon cooling complex (NRF).
- 4) Conceptual design of the RF system for Muon Cooling Demonstrator (NRF).
- 5) RF test stand and test cavities for R&D on high gradient NRF in strong magnetic field (NRF).

6) Baseline design of RF power sources for muon collider RF systems

Resources	1	2	3		1	2	3
Staff	0.6 + <mark>0.8</mark>	17.4		Student			
Postdoc	3 + <mark>3</mark>	6		Material	2900(9500)		

Interested partners

- 1) CERN(resources in place), Uni of Rostock
- 2) CERN(?)
- 3) CEA, LBNL
- 4) CEA, LBNL
- 5) CEA, Uni of Strathclyde
- 6) Uni of Lancaster

Resources are given in total number of FTE-years for the whole duration and in kEuro for material

Tasks and Resources (1)

WP1 Priority	Task description	staff [FTEy	postdoc		material [kEuro]
1	Baseline design of the RF systems for RCSs including acceleration, longitudinal beam dynamics and stability, bunch length and energy spread control.	0.6	3		
1	Provide specifications for cavity design: frequency, R/Q, HOM suppression				
1	Provide specification for RF power sources: frequency, power,				
1	Calculation of cavity parameters for fundamental mode parameters: R/Q, Vmax; as well as for HOMs and wakes for the baseline design	0.6	3		
2	RF design of the cavities for the RCSs				
2	Design of the RF cavities for LA and RLAs based on the specifications from HEC and BD				
WP2 Priority	Task description	staff [FTEy	postdoc		naterial [kEuro]
1	 Provide limiting values for RF cavity and RF system design from SRF State of the Art: Gradient and Q0 at different frequencies: 300 - 1300 MHz Tolerances to magnetic fields, radiation and beam loss 	0.2			
2	Synergy: Look for synergy in SRF technology with already ongoing projects and R&D activities. Direct them to the parameter space relevant for muon collider	0.2			
3	High gradient prototype at low frequency (~300 - 400 MHz) accelerating structure to target high gradient: >20 MV/m	?	?	?	?

3

=1-

Tasks and Resources (2)

WP3 Priority	Task description	Resource estimate staff postdoc PhD material [FTEy] [FTEy] [FTEy] [kEuro]							
1	Collect specifications for the design of all RF cavities : frequency, gradient, length, B-field, aperture (window size and thickness)	0.4		2					
1	Based on available knowledge both experimental and theoretical, identify best concept for achievable accelerating gradient in magnetic field: material, pulse shape, temperature, gas.								
1	Calculate parameters of all cavities. Provide a consistent set of parameters of all RF cavities and associated RF systems								
2	Integration of RF cavities into cooling cell, adapting design if necessary	3							

WP4 Priority	Task description		:aff FTEy]	Resource postdoc [FTEy]	e estimato PhD [FTEy]	e material [kEuro]	
1	Collect specifications for the design of RF cavity for the MCD: frequency, gradient, length, B-field, aperture (window size and thickness),	0.2		1			
1	Design the RF cavity using the concept identified						
1	Design of the associated RF systems for the MCD						
2	Engineering design of the cavity in its environment including multipackting, cooling, thermal and mechanical stability, alignment, RF diagnostic and tuning, RF coupler	3					
2	Integration of the RF cavity into the MCD cooling cell including SC solenoid, cryo, etc						

.

Tasks and Resources (3)

WP5 Priority	Task description	Resource estimate <mark>(CEA case)</mark> staff postdoc PhD material [FTEy] [FTEy] [FTEy] [kEuro]				
2	 Identify infrastructure available for potential use as (or setting up) an RF test stand for testing RF cavities in strong magnetic field: RF power source, SC solenoid, 	10				2900 MICE 3T solenoid
2	Design and build RF test stand based on the available infrastructure and specified requirements.					OR
2	Propose test program adapted to potential test setup, considering possible limitations in terms of available frequency, power, magnetic field strength and size of a SC solenoid(s)					9500 MRI 7T solenod
2	Design and build test cavities					
2	Test the test cavities					

WP6 Priority	Task description			Resource postdoc [FTEy]	e estimat PhD [FTEy]	e mato [kEu	
2	 Muon cooling complex RF system. Set target specifications and address potential issues including: Large number of different frequencies, High peak power requirements High efficiency 	0.6		3			
2	Baseline Design of high efficiency RF power source for muon collider to provide information on the peak power capability, efficiency and cost						

- - - -