

# Magnets

T. Ogitsu, A. Yamamoto, L. Quettier, C. Rogers

# **Objectives**, **Deliverables** and **Resources**



#### **Objectives**

Basic: Promote R&D tasks required to developed magnet designs to allow implementation of the collider in the Geneva area or elsewhere.

Propose a magnet design for each area and assess its maturity

#### **High-level Deliverables**

- 1) Define a high field/large bore solenoid for the target area
- 2) Develop high field HTS magnets for cooling stage; develop and test a complete cooling module, with a superconducting solenoid and a NC RF
- 3) Define a conceptual magnet design for the accelerator ring

### 4) Define a conceptual magnet design for the collider ring

| Resources           | 1 | 2 | 3 |          | 1 | 2 | 3 |
|---------------------|---|---|---|----------|---|---|---|
| Staff               |   |   |   | Student  |   |   |   |
| Postdoc             |   |   |   | Material |   |   |   |
| Interested partners |   |   |   |          |   |   |   |
| CEA, RAL, ???       |   |   |   |          |   |   |   |

Resources are given in total number of FTE-years for the whole duration and in kEuro for material



| WP1<br>Priority | Target end solenoid                                                                                                |       | Resource<br>postdoc<br>[FTEy] | estimate<br>PhD<br>[FTEy] | e<br>material<br>[kEuro] |
|-----------------|--------------------------------------------------------------------------------------------------------------------|-------|-------------------------------|---------------------------|--------------------------|
| 1               | Define magnet specification                                                                                        | 1x0,5 | 1x3                           |                           |                          |
| 1               | Evaluate realistic parameters (conductor mechanical performances, radiation loads, material radiation tolerance)   | 1x3   |                               |                           |                          |
| 1               | Assess the nominal cooling operation from the physics;<br>evaluate the required cooling power and the cooling mode | 0,5x3 |                               |                           |                          |
| 3               | Conceptual design of a +15T large bore solenoid and of the ancillaries (cryoplant, quench protection system, DAQ)  | 3     | 1                             |                           |                          |
|                 |                                                                                                                    |       |                               |                           |                          |
|                 |                                                                                                                    |       |                               |                           |                          |



| WP2<br>Priority | Cooling magnet                                                                                                     | staff<br>[FTEy] | Resource<br>postdoc<br>[FTEy] | estimate<br>PhD<br>[FTEy] | e<br>material<br>[kEuro] |
|-----------------|--------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|---------------------------|--------------------------|
| 2               | Engineering design of a 30T horizontal cooling solenoid                                                            | 2x3             | 1x3                           | 1                         |                          |
| 3               | Prototype and mock-up fabrication to demonstrate winding techniques, mechanical design, quench protection strategy | 1x3             | 1x3                           | 1                         | 300                      |
| 3               | Components procurement and 30T magnet fabrication                                                                  | 2x3             | 1x3                           | 1                         | 1100                     |
| 3               | Cryo tests of the 30T solenoid                                                                                     | 0.5x3           | 1x3                           | 1                         | 50                       |
| 1               | Feasibility studies of a 50T solenoid                                                                              | 1x3             | 1x3                           | 1                         |                          |
| 1               | Conceptual design of a rectlinear cooling channel, and of the associated magnets                                   | 1x3             | 1x3                           | 1                         |                          |



| WP2      | Muon cooling module                                                                                                      | Resource estimate |                   |                          |                     |
|----------|--------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|--------------------------|---------------------|
| Priority |                                                                                                                          | staff<br>[FTEy]   | postdoc<br>[FTEy] | PhD<br>[FTEy]            | material<br>[kEuro] |
| ,        |                                                                                                                          |                   |                   | ,1                       | [                   |
| 1        | HTS magnet design based on a existing design (20T-25T with proven technologies), and interface definition with the RF WG | 1.0x3             | 1x3               | 1                        |                     |
| 2        | Magnet components procurement and magnet fabrication                                                                     | 0.5x3             | 1x3               | 1                        | 800                 |
| 2        | Integration and tests (In collaboration with the RF WG)                                                                  | 0.5x3             | 0,5x3             | 1                        | 200                 |
|          |                                                                                                                          |                   |                   |                          |                     |
| WP3      | Accelerator ring                                                                                                         |                   |                   | e<br>material<br>[kEuro] |                     |
| 2        | VFFA cost scaling model                                                                                                  | 0.5x3             |                   |                          |                     |
|          |                                                                                                                          |                   |                   |                          |                     |
| 3        | VFFA engineering design based on ISIS upgrade model                                                                      | 1.5x3             |                   |                          |                     |
| 1        | Fast ramped magnet (to be added here ?)                                                                                  | 0.5x3             | 1x3               |                          |                     |
|          |                                                                                                                          |                   |                   |                          |                     |



| WP4 | Collider ring                                                                                          |     | Resource<br>postdoc<br>[FTEy] | PhD | e<br>material<br>[kEuro] |
|-----|--------------------------------------------------------------------------------------------------------|-----|-------------------------------|-----|--------------------------|
| 1   | Define magnet specification, and radiation level                                                       | 1   | 1.5                           | 1   |                          |
| 2   | Evaluate available options for combined function magnet (nested coils <i>vs.</i> L/R asymmetric coils) | 0.5 | 1.5                           | 1   |                          |
|     | Conceptual design of open mid-plane magnets (optional)                                                 |     |                               |     |                          |
|     |                                                                                                        |     |                               |     |                          |
|     |                                                                                                        |     |                               |     |                          |
|     |                                                                                                        |     |                               |     |                          |

### Work Package Description



### Workpackage Description

Explain the important issue addressed and how it is addressed.