

MInternational UON Collider Collaboration

Summary of the RP Working Group

Ahdida, C. Carli, A. Lechner, G. Lerner, H. Mainaud Durand, N. Mokhov, Y. Robert, P. Vojtyla, M. Widorski 3rd Muon Community Meeting 6th October 2021

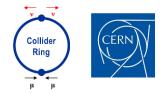
Recap – Main challenges identified by RP WG

Neutrino radiation challenges

<u>Unprecedented</u>: Substantial neutrino induced radiation hazard at very far distance from the source

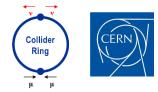
μ

μ



,Conventional' radiation challenges are principally well understood and can mitigated to levels as low as reasonably possible, but to be addressed at an early design stage

→ At given stage mainly relevant for Test Facility


Neutrino Radiation Work Package Description

- One of the main challenges of the muon collider is the **neutrino radiation** and the related **dosimetric impact** on the **public**
- A **refined dose model** for an accurate estimation of neutrino-induced radiation hazard outside the accelerator complex shall therefore be developed and used for a **collider ring optimisation** to **minimise** the **effective dose** to members of the public
- The dose model shall include a more **detailed topographical model** to evaluate the spatial dose distribution
- Mitigation strategies shall be investigated and developed, such as the concept for the technology of large-stroke, high-resolution movers

Neutrino Radiation Work Package Objectives and Deliverables

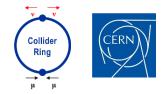
Objectives

Basic: Assess whether the neutrino flux can in principle be mitigated sufficiently to allow implementation of the collider in the Geneva area or elsewhere.

Develop a concept of the neutrino flux mitigation technology and assess its maturity.

High-level Deliverables

- 1) Assessment of the dose and a plan to demonstrate compliance
- 1) Verification that the proposed mitigation method does not compromise beam operation
- 2) A basic concept for the mechanical system including the cryogenics.
- 2) A basic concept of accurate large-stroke, high-resolution mover and alignment system


	Task description	Resource estimate					
	(2021-2025)		postdoc [FTEy]		material [kEuro]		
	Further verification of the neutrino induced dose model	0.5	1				
ld on	Intercomparison of FLUKA+MARS predictions of \boldsymbol{v} induced dose	0.5*	T				
sive							

To build on extensive accomplishments with MARS15!

*FNAL + assuming support by DOE and Snowmass/P5

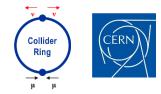
Resources in black identified

	Task description (2021-2025)	staff [FTEy]	Resource postdoc [FTEy]		e material [kEuro]
>	Further verification of the neutrino induced dose model	0.5	4		
ld on	Intercomparison of FLUKA+MARS predictions of \boldsymbol{v} induced dose	0.5*	1		
ia on sive iplish-	Develop tool to link the collider to the surface map and optimise position	0.3 <mark>0.2</mark>	1	1 (2021-2022)	

To build on extensive accomplish ments with MARS15!

*FNAL + assuming support by DOE and Snowmass/P5

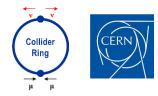
Resources in black identified



	Task description (2021-2025)		Resource postdoc [FTEy]	e estimate PhD [FTEy]	material [kEuro]
—	Further verification of the neutrino induced dose model	0.5	1		
To build on	Intercomparison of FLUKA+MARS predictions of \boldsymbol{v} induced dose	0.5*	T		
To build on extensive accomplish- ments with MARS15!	Develop tool to link the collider to the surface map and optimise position	0.3 0.2	1	1 (2021-2022)	
	Use tool with realistic source term from beam	0.25 <mark>0.25</mark>	,		

*FNAL + assuming support by DOE and Snowmass/P5

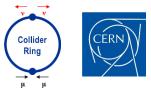
Resources in black identified

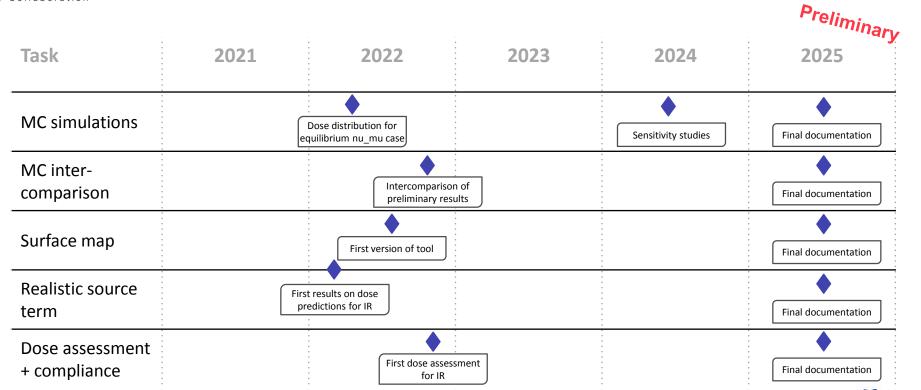


	Task description (2021-2025)		Resource postdoc [FTEy]		material [kEuro]
To build on extensive accomplish- ments with MARS15!	Further verification of the neutrino induced dose model	0.5	1		
	Intercomparison of FLUKA+MARS predictions of $\boldsymbol{\nu}$ induced dose	0.5*	1		
	Develop tool to link the collider to the surface map and optimise position	0.3 <mark>0.2</mark>	1	1 (2021-2022)	
	Use tool with realistic source term from beam	0.25 0.25	0.25 (20) 0.25 (20)		
	Assess dose and develop possible methods to demonstrate compliance	0.4 1.1			

*FNAL + assuming support by DOE and Snowmass/P5

Resources in black identified




	Task description (2021-2025)	staff [FTEy]	Resource postdoc [FTEy]	e estimate PhD [FTEy]	e material [kEuro]				
	Further verification of the neutrino induced dose model	0.5	1						
huild on	Intercomparison of FLUKA+MARS predictions of $\boldsymbol{\nu}$ induced dose	0.5*	1						
To build on extensive accomplish-	Develop tool to link the collider to the surface map and optimise position	0.3 <mark>0.2</mark>	1	1 (2021-2022))				
, with	Use tool with realistic source term from beam	0.25 <mark>0.25</mark>	0.25 (20) 0.25 (20)						
MARS15!	Assess dose and develop possible methods to demonstrate compliance	0.4 <mark>1.1</mark>							
	Study impact of lattice deformation on beam and assess tolerances and time needed to recover from movements	In HE-Acceleration package							
			Resources ir	n black ident	ified				

*FNAL + assuming support by DOE and Snowmass/P5

Neutrino Radiation Work Package Dose model – milestone plan

-1- :

(2022-2026)

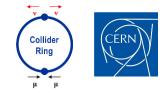
Neutrino Radiation Work Package Tasks and Resources (2/2)

			material [kEuro]
Assess impact of movements on mechanical, cryogenics, RF and other systems	1.0	6	

Resources not yet identified

	Task description	Resource estimate				
		staff [FTEy]	postdoc [FTEy]		material [kEuro]	
22-2026)	Assess impact of movements on mechanical, cryogenics, RF and other systems	1.0	6			
2-2025)	Develop concept of large-stroke, high-resolution movers	0.5		4	50	

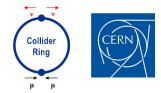
First prototype of mover including 3D models + detailed design office drawings + prototype itself by an external company (hardware and control/ command software)



	Task description		Resource postdoc [FTEy]	e estimat PhD [FTEy]	e material [kEuro]	
(2022-2026)	Assess impact of movements on mechanical, cryogenics, RF and other systems	1.0	6			Reso
(2022-2025)	Develop concept of large-stroke, high-resolution movers	0.5		4	50	no
(2022-2026)	Develop solution to remotely control positions over a large range	0.5	3	3	50	ider

First prototype of alignment sensor (with a large range of measurement and a high resolution), including 3D models + detail design office drawings of the sensor + prototype itself by an external company

Resources not yet identified



	Task description		Resource estimate			
		staff [FTEy]	postdoc [FTEy]	PhD [FTEy]	material [kEuro]	
(2022-2026)	Assess impact of movements on mechanical, cryogenics, RF and other systems	1.0	6			Resources
(2022-2025)	Develop concept of large-stroke, high-resolution movers	0.5		4	50	not yet
(2022-2026)	Develop solution to remotely control positions over a large range	0.5	3	3	50	identified
(2023-2026)	Develop concept of accurate reference system with respect to the surface	0.5		4	50	

Prototype of permanent system to transfer the position of the surface in the tunnel within a very good accuracy. In that case, prototype would be rather different proposals of measurement concepts (3D models + detailed drawings) + simulations and qualification studies

Neutrino Radiation Work Package Summary

Objectives

Basic: Assess whether the neutrino flux can in principle be mitigated sufficiently to allow implementation of the collider in the Geneva area or elsewhere.

Develop a concept of the neutrino flux mitigation technology and assess its maturity.

High-level Deliverables

1) Assessment of the dose and a plan to demonstrate compliance

1) Verification that the proposed mitigation method does not compromise beam operation

2) A basic concept for the mechanical system including the cryogenics.

2) A basic concept of accurate large-stroke, high-resolution mover and alignment system

Resources	1	2	3		1	2	3				
Staff	1.45, <mark>2.05</mark>	2.5		Student	1	11					
Postdoc	0.25, <mark>2.25</mark>	9		Material		150					
Interested partners											
CEPN rosou	CERN recourses partly in place, ENAL with support by DOE and Spowmass/PE										

CERN, resources partly in place, FNAL with support by DOE and Snowmass/P5

Resources are given in total number of FTE-years for the whole duration and in kEuro for material

'Conventional' RP Work Package Description

- According to the radiation protection principles, the exposure of persons to radiation and the radiological impact on the environment must be optimised
- Based on the experience from past design studies the RP and radiological environmental impact of a MW facility should be **manageable** at the **present state of technology**
- The past studies have however also shown that the **RP considerations strongly determine** the **design** of high power facilities and should be taken into account from the design phase onwards
- The design of the **test facility** and **key areas** of the **muon collider complex** will have to be optimised w.r.t. prompt and residual radiation, air/He/N activation, water and soil activation, and radioactive waste production

'Conventional' RP Work Package Objectives and deliverables

- att in the

Objectives										
Basic: Optimize the design of the test facility as well as key areas of the complex for the exposure of persons to radiation and the radiological impact on the environment										
High-level Deliverables										
1) RP assessment of the test facility (2022-2025)										
3) First RP assessment of the key areas of the complex*										
Resources	1	2	3		1	2	3			
Staff	1		(0.4)*	Student						
Postdoc	4			Material						
Interested pa	Interested partners									
CERN										

*In case of first studies for a MW facility until the next ESPPU

MInternational UON Collider Collaboration

Thank you for your attention!