

MInternational UON Collider Collaboration

Proton driver summary

S Gilardoni, N. Mila<mark>s</mark>, F. Gerigk, H. Bartos<mark>i</mark>k

3nd Community meeting of the International Muon Colliders Design Study - Oct. 2021

Setting the scene

Courtesy of A. Grudiev et al.

Baseline:

- 2 MW
- (eventually 4 MW)
- Linac + 2 rings
- (FFA as option)
- Final energy to be decided

Courtesy of J.P. Delahaye et al.

A first tentative parameter table

System			Driver Linac H- (SPL like) & Comp		Front-End	ront-End Cooling			Acceleration			Collider	Total	
Sub-					Accum &Comp		Initial	6D (2 lines)	Final (2 lines)	Injector Linac	RLA	RCS	Ring	
Reference expert			F.Ge	erigk	?	D.Neuffer	C.Rogers	D.Stratakis	C.Rogers	A.Go	gagz	S.Berg	E.Gianfeli	ce
nereren			NC	SC		Difference	entogers	Distruturis	emogens		0-0-	Siberg	Licianicia	
	Energy	GeV/c	0.16	5	5	0.255	0.255	0.255	0.255	1.25	62.5	1500	1500	
	# bunches (u+ or u-)	#			1	12	12	1	1	1	1	1	1	
	Charge/bunch	E12	40	mA	500	3.60	2.57	7.27	4.43	3.59	3.05	2.22	2.20	
Beam	Rep Freq	Hz	5	5	5	5	5	5	5	5	5	5	5	
(system	Norm Transy Emitt	rad-m				1.5E-02	3.0E-03	8.3E-05	2.5E-05	2.5E-05	2.5E-05	2.5E-05	2.5E-05	
exit)	Norm Long Emitt	rad-m				4.5E-02	1.5E-02	1.9E-03	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	
	Pulse/Bunch length	m	2.2	ms	0.6 (2ns)	1.1E+01	1.1E+01	9.2E-02	9.2E-02	4.6E-02	2.3E-02	2.3E-02	5.0E-03	
	Power (µ+ and µ-)	W	6.40E+04	2.2E+06	2.0E+06	1.8E+04	1.3E+04	3.0E+03	1.8E+03	7.3E+03	3.1E+05	5.4E+06	5.3E+06	
	Technology		Linac4HP	SC		0	NC	Vacuum	NC	SRF	SRF	SRF	SRF	
	Number of cavities	#	23	244		120	367	7182	32	52	360	2694	?	11074
	RF length	m	46	237		30	105	1274	151	82	1364	2802	?	6091
	Frf	MHz	352	704	4?	326to493	325	325-650	20-325	325	650-1300	1300	800	4 to 1300
RF	Grf	MV/m	1-3.7	19 - 25		20	20 to 25	19-28.5	7.2-25.5	20	25 to 38	35	?	7 to 35
cavities	Magnetic Field	Т	0	0		2	3T	1.7-9.6	1.5-4	0	0	0	0	0 to 9.6
	Installed RF field	MV	169	5700		434	2618	30447	1836	1640	50844	98062	250	1.92E+05
	Energy gain	MeV	160	4840		0	0	0	0	1250	62500	1437000	0	1.51E+06
	Recirculations	#	1	1		1	1	1	1	1	4.5 to 5	13 to 23	1000	1 to 1000
	RF Power	MW	25	282		?	?	?	?	52	360	48	?	?
	Tashaalaas		lah satu an							Khata				
	Technology		Riystron	Riystron						Kiytro	on-101			
	Cavities/Power Source	Ŧ	23	244		4				1 to 2	1 to 2	4.005.00	0 707 04	
KF	RF Pulse (beam) duration	r ms	2.42	2.42		4.08E-04	5.04E-04	4.08E-03	5.64E-04	6.36E-04	3.72E-02	1.28E+00	8.70E-01	
power	Prt/Power Source	NIN	11.7	2.47		20				1 52	1			-
sources	Total Power Sources	#	17	244		30				52	341			
	Installed KF Power	NIW	34	352		164	4 555 64	4 205 04	4 5 65 63	52	341	6 435 .00	0.005.00	10.74
	I OTAL KF Energy	IMJ	2.99E-01	3.00E+00		3.35E-01	1.55E-01	4.26E-01	1.56E-02	8.63E-03	3.66E-01	6.13E+00	0.00E+00	10.74

Basic elements

H- source and **accumulator and combiner complex** 10¹⁴-10¹⁵ protons in ns-long bunch

- H^{-} source \rightarrow high intensity
- Few GeV \rightarrow Superconduting Linac (SNS,ESS)
- Accumulator
- Buncher
- Combiner \rightarrow target delivery system
- Challenge: High intensity short bunches @ low rep. rate

Outstanding studies

- H⁻ source : needs further studies/R&D
- Linac BD: ESS linac as most recent example
 - Basic lattice can be deduced from existing machines
- Rings BD lattice design. Collective effects. Intensity limitations. Delivery recombiner system
 - H⁻ stripping : input from SNS
 - Beam stability with short bunches and low rep.rate
- FFA full design \rightarrow Collective effects specific to FFA
 - Magnet design requires particular attentions

Work Package Description

+ 10 in 100

Workpackage Description

Revise design of proton driver for 4 MW operation based on Linac, Accumulator and Compressor and delivery system.

Investigate the potential limitations to reach such power. Provide a preliminary lattice for the rings and the linac.

Explore state-of-the art main systems, with particular attention to the H- source and the ring H- injection. Investigate an alternative FFA based scheme.

Investigate the possibility of a proton driver test stand.

Very tentative and educated guess initial planning

at in it

- 2021-2022 :
 - Wrap-up of previous studies and performances of existing and future similar proton sources.
 - Define preferred rings schemes : w. or w/o acceleration in accumulator.
 - Identify studies with the BD work package to define possible energy intervals if any wrt to collective effects
 - Specify dedicated studies for FFA option wrt collective effects
 - Revise existing design of Linacs \rightarrow needs to define final emittance (spot size on target)
- 2022 :
 - revision of state of the art of H⁻ sources and define best promising source technology
 - preliminary ring lattice design and target delivery system
 - conceptual design of recombination scheme \rightarrow revision of MAPS
 - FFA first lattice design
 - Improved studies of collective effects
- **2023**:
 - Definition of the preferred energy range
 - Integration of linac and rings in real geometry
- 2024
 - conceptual design of proton complex

Initially proposed Tasks and Resources

Linac+Accumulator	Resource estimate					
	staff [FTEy]	postdoc [FTEv]	PhD [FTEy]	material [kEuro]		
Linac design to extrapolate to 4 MW Study and preliminary lattice design for accumulator	0.1*3	1*3	1*3	50		
Investigate existing H-source	0.1*3		1*3			
Investigations on H- injection and stripping techniques	0.1*3		1*3			

2	Compressor/Buncher	Resource estimate				
		staff [FTEy]	postdoc [FTEy]	PhD [FTEy]	material [kEuro]	
	Study and preliminary lattice design for compressor	0.1*3	0.8*3	1*3	50	
	Study of target delivery system		0.2*3			

3	FFA option		Resource estimate				
		staff [FTEy]	postdoc [FTEy]	PhD [FTEy]	material [kEuro]		
	Study and preliminary design FFA based option	0.1*3	1*3	1*3	50		

Working hypothesis

Initial proposal further reduced to some key aspects for which currently the project cannot secure resources

Proof of concept

- Preliminary lattice design for accumulator (and linac)
- H- source exploration
- Preliminary design of compressor (and target delivery system)
- Addressing fundamental charge density limit
- FFA option as alternative

Staff	Postdoc	Student	Material	Sum
FTEy	FTEy	FTEy	kEuro	MEuro
5.7	13	15	0	

Quenched into (for the moment): Preliminary design of compressor (+ target delivery system

→ Define beam on target (time structure, transverse distributions, etc..)

Compress.	0.1*3y	1*3y	0	

From MAPS studies

Recommendations: • No showstoppers

Program

identified

 Adapt concept for likely proton source

BROOKHAVEN

Courtesy of M. Palmer

Next steps

- Foster discussion with other programs and look for other potential sources of man-power
 - Past collaborators "not-yet" back in the study
 - EU funded programs : ESS proposal excellent start EU proposal for including H⁻ source, accumulator and compressor included in ESSnuSB
- Recover as much as possible from past studies
 - Recover MAPS studies (thanks to M. Palmer)
 - Revise past design
- Provide input for target design

ESS proposal for EU funding

Proposal for a EU Horizon Europe Design Study 2022-2025

We are planning to submit in Spring 2022 a proposal to EU Horizon Europe for a Design Study of features of the ESSnuSB design not yet studied during 2019-2021, like the civil engineering, licensing and safety required at the ESS and Far Detectors sites, preparation of the ESSnuSB R&D phase and a conceptual design study of a 0.5 GeV nuSTORM race track ring for low energy neutrino cross-section measurements with the aim to deliver an Technical Proposal in 2025.

The plan would be to include resources in the requested budget for a conceptual design study of the Muon Collider proton-complex test-facility described above.

HORIZON-INFRA-2022-DEV01 Developing European Research Infrastructures to maintain global leadership Deadline: 24 March 2022

Topics	Type of Action	Budgets (EUR million)	Expected EU contribu tion per	Number of projects expecte					
		2022	project	d to be					
			(EUR million)	funded					
Opening: 10 Nov 2021									
Dea	dline(s): 24	Mar 2022							
HORIZON-INFRA-2022- DEV-01-01	RIA	24.00	1.00 to 3.00	10					
Overall indicative budget		24.00							

Courtesy of T. Ekelof

NUFACT2021 in Cagliari Tord Ekelof Uppsala University

Conclusions

- Operational experience from J-PARC and SNS proved that > 1 MW proton sources (drivers) are a reality
- Citing Frank:
 - "There are no fundamental show-stoppers on the proton driver side" → Also to go to 4 MW
 - "The technologies and the power ramp-up are challenging but can be solved by continued commissioning effort and gradual improvements (e.g. as done at SNS to ramp up the power, you should count 5-10 years to get to nominal)"
 - by Andrei and John : "Technical and physics related challenges are there, but solutions have been found"
- H⁻ sources and the accumulator compressor rings are the most critical items
- In the designing of the µ-pd we will profit from experience of existing and operational machines and R&D already ongoing for the high-power proton sources in construction (PIP-II, ESS).

MInternational UON Collider Collaboration

Thank you very much for the discussions and inputs