
# Upgrades of the ESSnuSB design required to enable tests of the Muon Collider Proton Complex





## The Muon Collider Proton Complex

The Muon Collider proton complex and the target with pion collector is one of the critical parts of the Muon Collider project because of the combination of very high power, order 2 MW, to be delivered in 5 pulses per second, each pulse being of about 2 ns length and each containing 5x10<sup>14</sup> protons of 5 GeV.



Given the ESS proton linac under construction and the ESSnuSB design already made of the linac upgrade and of an accumulator ring, it is proposed to enlarge the scope of the current design study of the linac and the accumulator and fading adding a design study of a compressor/buncher ring generating 2 ns bunches of order 10<sup>14</sup>-10<sup>15</sup> protons and of a target and capturing system (horn or solenoid) that can stand such

## A Neutrino Factory proton complex based on the SPL

A study was made in 2013 of the design and lay-out of the accumulator and compressor rings for a Neutrino Factory based on the use of the then planned CERN Super Proton Linac SPL project with the linac design parameters 5 GeV, 4 MW, 50 Hz and 10<sup>14</sup> protons per pulse.

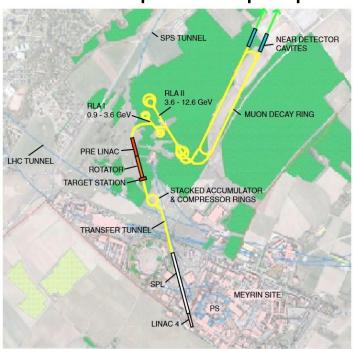
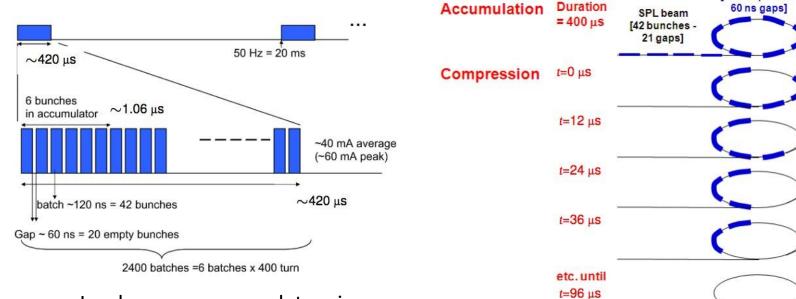



TABLE II. Parameters of the accumulator and compressor rings for the CERN proton-driver scenario.

| Parameter                     | Value                  |  |  |
|-------------------------------|------------------------|--|--|
| Accumulator ring              |                        |  |  |
| Circumference                 | 185 m                  |  |  |
| No. of turns for accumulation | 640                    |  |  |
| Working point (H/V)           | 7.37/5.77              |  |  |
| Total bunch length            | 120 ns                 |  |  |
| rms momentum spread           | $0.863 \times 10^{-3}$ |  |  |
| Compressor ring               |                        |  |  |
| Circumference                 | 200 m                  |  |  |
| No. of turns for compression  | 86                     |  |  |
| rf voltage                    | 1.7 MV                 |  |  |
| Gamma transition              | 2.83                   |  |  |
| Working point                 | 4.21/2.74              |  |  |


Proton driver scenarios at CERN and Rutherford Appleton Laboratory
J. W. G. Thomason, R. Garoby, S. Gilardoni, L. J. Jenner, J. Pasternak
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS16, 054801 (2013)

### A Neutrino Factory proton complex based on the SPL

## CERN SPL with Accumulator and Compressor Rings

From
C. Carli
'Proton Driver
considerations'
at
Muon Collider –
Preparatory Meeting,
CERN, 11th April 2019

From PRSTAB 16,054801 and CERN-2014-007



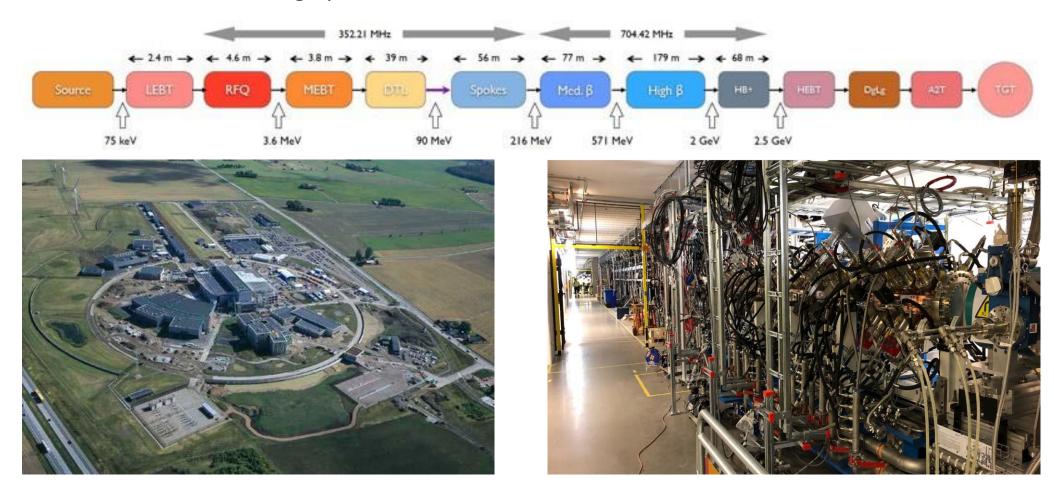
- Isochronous accumulator ring
  - No RF needed, longitudinal space charge impedance not an issue (energy change of head and tail
    of bunch acceptable)
  - Detailed simulations on bunch compression: final rms bunch length of 2 ns
- Compressor ring slightly shorter than accumulator to generate time structure for neutrino factory (irrelevant for muon collider)
- Some investigations on transvers and longitudinal impedances and instabilities
  - Scheme feasible at least for the short durations the beam stays in the rings

Accumulator [120 ns pulses -

Compressor

[120 ns bunch -

V(h=3) = 4 MV

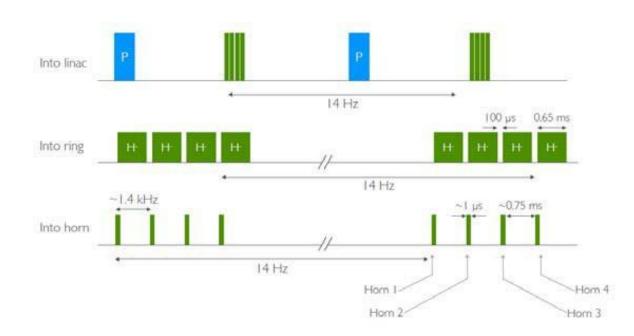

Target

[2 ns bunches

-6 times]

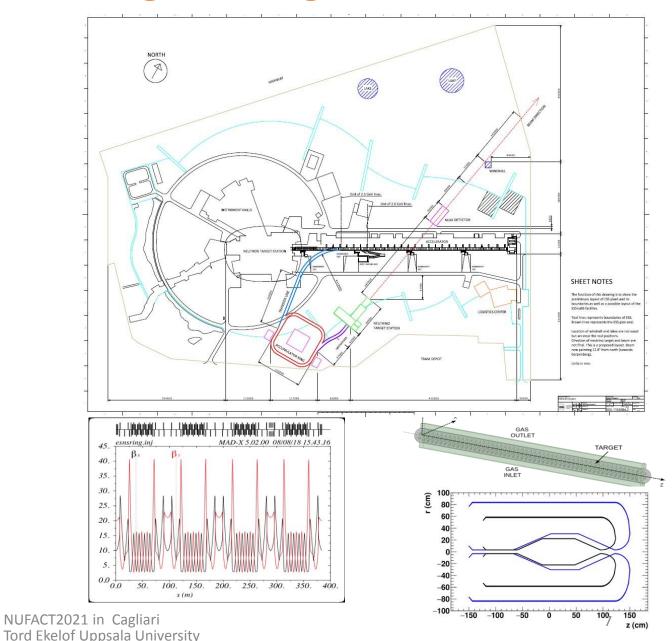
## The ESS linac

The ESS linac, currently under construction in Lund in Sweden, has as design parameters 2 GeV, 5 MW, 14 Hz and 10<sup>15</sup> protons per pulse, which are similar to those of the SPL and also of the current design parameters for the Muon Collider.




## The ESSnuSB Collaboration and the ESS linac upgrade

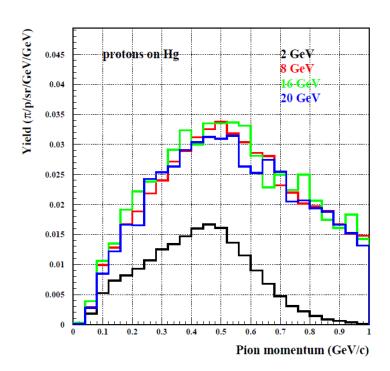
The ESSnuSB collaboration consisting of 15 laboratories in 11 European countries are since 2018 performing an EU supported Horizon 2020 Design Study of the increase of the ESS linac pulse frequency to 28 Hz by adding 14 H<sup>-</sup> pulses interlaced with the proton pulses, each H<sup>-</sup> pulse being chopped into 4 separate bunches, with the aim of using the H<sup>-</sup> bunches to generate a uniquely intense neutrino super-beam. The proton pulses will be used for neutron production through spallation as foreseen for the ESS baseline project.


#### List of ESSnuSB Participating Institutions / Organisations

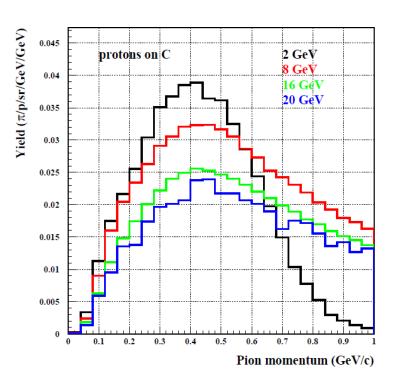
| #  | Institutions / organisations name                             | Accronym     | Country        |  |
|----|---------------------------------------------------------------|--------------|----------------|--|
| 1  | Centre National de la Recherche Scientifique                  | CNRS         | France         |  |
| 2  | University of Uppsala                                         | UU           | Sweden         |  |
| 3  | Kungliga Tekniska Hoegskolan                                  | ктн          | Sweden         |  |
| 4  | European Spallation Source Eric                               | ESS          | Sweden         |  |
| 5  | University of Cukurova                                        | CU           | Turkey         |  |
| 6  | Universidad Autonoma de Madrid                                | UAD          | Spain          |  |
| 7  | National Center for Scientific Research "Demokritos"          | DEMOKRITOS   | Greece         |  |
| 8  | Instituto Nationale di Fisica Nucleare                        | INFN         | Italy          |  |
| 9  | Ruder Boskovi Instgitute                                      | RBI          | Croatia        |  |
| 10 | Sofiiski Universitet Sveti Kliment Ohridski                   | UniSofia     | Bulgaria       |  |
| 11 | Lunds Universitet                                             | ULUND        | Sweden         |  |
| 12 | Akademia Gorniczo-Hutnicza Im. Stanislawa Staszica w Krakowie | AGH /AGH-UST | Poland         |  |
| 13 | European Organization for Nuclear Resarch                     | CERN         | Switzerland    |  |
| 14 | University of Geneva                                          | UNIGE        | Switzerland    |  |
| 15 | University of Durham                                          | UDUR         | United Kingdon |  |



## The ESSnuSB Accumulator Ring and Target Station


The EU design study includes an accumulator ring, into which the 4 chopped H- pulses shall be injected In sequence. Each of the four 1.3 µs proton bunches of 2.5x10<sup>14</sup> protons extracted in sequence from the accumulator shall be guided to one of four laterally separated granular Titanium (A=22) He-cooled targets, each surrounded by a focussing horn. The Conceptual Design Report of this 4-years Design Study is currently being finalized and will be published in January 2022.

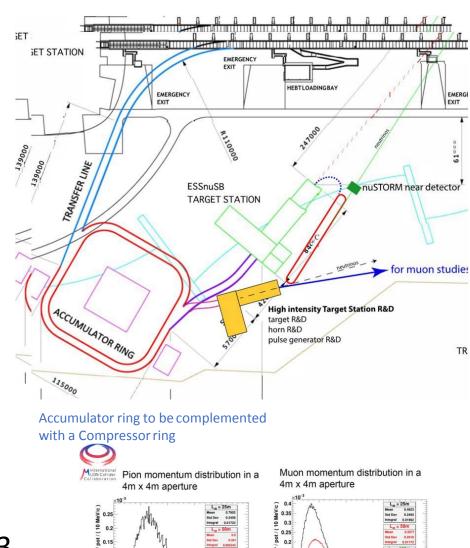



# Heavy (high A) or light (low A) target material?

Pion yield spectrum at different proton beam energies for one and the same beam power (ref. Paola Sala / CERN)

Mercury (A=80) target)




Carbon (A=13)target



## **Complementary Design Study of Muon Collider Proton-Complex Test-Facility**

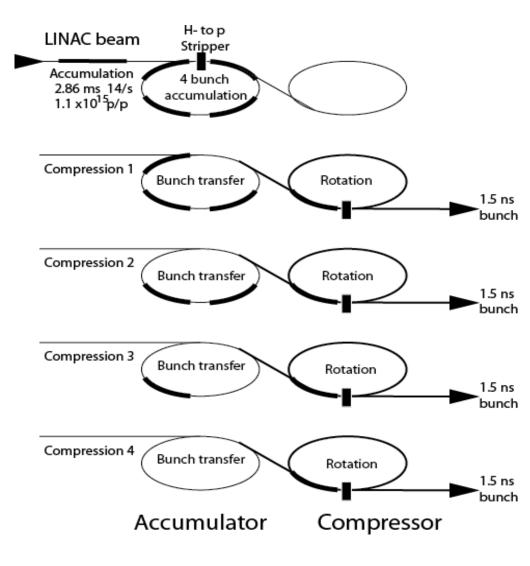
It is proposed that during the next period 2022-2025 of the Design Study, the study be enlarged in scope to include also how the already studied design of the upgrade of the ESS linac, the design of the accumulator ring and the design of the target station can be widened to encompass also the requirements of the Muon Collider.

This implies the conceptual study of, inter alia, an alternative chopping scheme for the linac, of the accumulator acceptance, rf system, timing and optics, of a design from scratch of a compressor/bunch rotation ring and of a separate target station with a target and capture system (horn or solenoid) that can stand the 2 ns long bunches of  $10^{15}$  protons, using the ESSnuSB  $2.5 \times 10^{14}$  protons/  $1.3 \, \mu s/1.25 \, MW$  target design as staring point. Design is stages possible, i.e. first making a  $10^{15}$  protons/ $1.3 \, \mu s/5 \, MW$  target design.



#### **Complementary Design Study of Muon Collider Proton Complex Test Facility**

# Proton Driver Proposals


Based on ESS adding Accumulator and Compressor Rings

From

C. Carli
'Proton Driver
considerations'
at
Muon Collider –
Preparatory Meeting,
CERN, 11<sup>th</sup> April 2019

From a presentation by C. Rubbia at XVIII Int. Workshop on Neutrino Telescopes, 18-22 March 2019

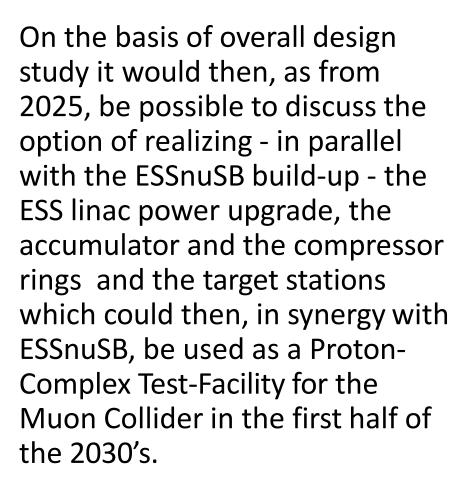
- Rings with ~35 m radius
- Accumulator ring filled with 14 Hz repetition rate
- Accumulator to compressor transfers with 4x14 Hz up to 54 ms



# Proposal for a EU Horizon Europe Design Study 2022-2025

We are planning to submit in Spring 2022 a proposal to EU Horizon Europe for a Design Study of features of the ESSnuSB design not yet studied during 2019-2021, like the civil engineering, licensing and safety required at the ESS and Far Detectors sites, preparation of the ESSnuSB R&D phase and a conceptual design study of a 0.5 GeV nuSTORM race track ring for low energy neutrino cross-section measurements with the aim to deliver an Technical Proposal in 2025.

The plan would be to include resources in the requested budget for a conceptual design study of the Muon Collider proton-complex test-facility described above.


#### HORIZON-INFRA-2022-DEV01

Developing European Research Infrastructures to maintain global leadership

Deadline: 24 March 2022

| Topics                           | Type of<br>Action    | Budgets<br>(EUR<br>million) | Expected EU contribu tion per project (EUR million) | Number of projects expecte d to be funded |
|----------------------------------|----------------------|-----------------------------|-----------------------------------------------------|-------------------------------------------|
|                                  |                      | 2022                        |                                                     |                                           |
|                                  | Nov 2021<br>Mar 2022 |                             |                                                     |                                           |
| HORIZON-INFRA-2022-<br>DEV-01-01 | RIA                  | 24.00                       | 1.00 to<br>3.00                                     | 10                                        |
| Overall indicative budget        |                      | 24.00                       |                                                     | _                                         |

# An ESSnuSB Proton Complex Test Facility for the Muon Collider





Lund, May 25th 2021

Dear Tord,

I was very pleased to hear of the progress that you have made with the ESSnuSB design study and I look forward to reading the Conceptual Design Report (CDR) in due course. The second phase of your work is very innovative and deserves to be supported. It broadens considerably the scientific scope and impact of the proposed upgrade to the ESS linear accelerator (linac). I encourage you to put the considerable energies and expertise of your collaboration into this second phase.

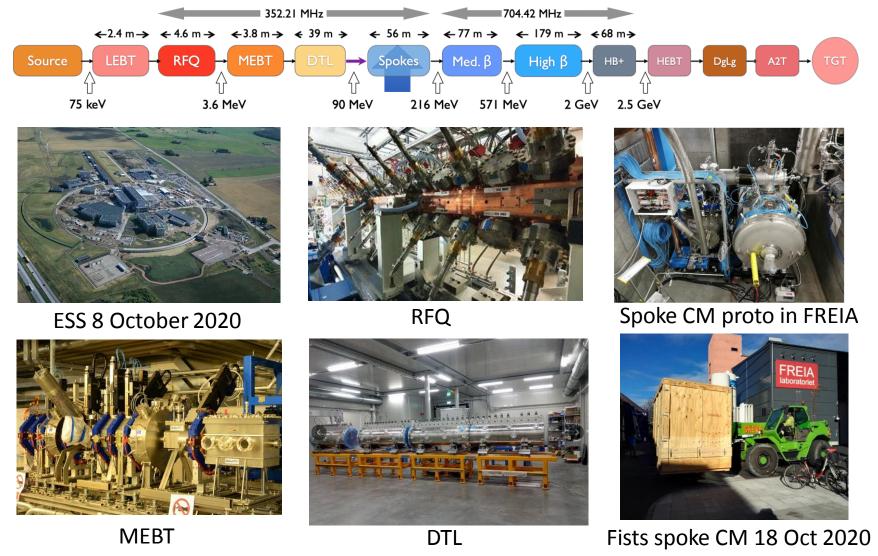
On behalf of the ESS organisation I would like to reiterate our continued strong support for the neutrino and muon physics opportunities presented by the ESSnuSB initiative as previously communicated by John Womersley in 2017.

Please keep me posted on the outcome of the upcoming TIARA meeting and your further progress.

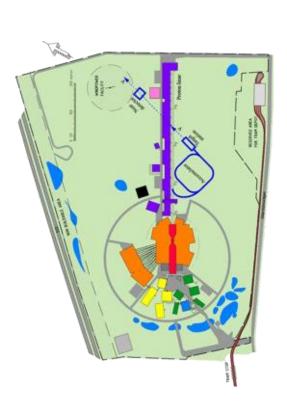
With best regards

Kevin Jones Acting Director General This letter was sent with Cc to Helmut Schober, ESS DG as from 1 Nov 2021, and Mats Lindroos, Leader of the ESS Linac Division.

## **Conclusions I**


- The Proton Complex is one of the critical parts of the Muon Collider project
- A study of a Muon Collider Proton Complex based on the use a CERN 4 MW Super Proton Linac (SPL) was made in 2013
- The 5 MW ESS proton, now under construction, is similar in several respects to the SPL design that was made
- Since 2018 is carried out an EU supported Design Study of a uniquely intense neutrino-beam complex based on the ESS linac, which will result in January 2022 in a Conceptual Design Report

## **Conclusions II**


- It is proposed to enlarge in 2022-2025 the scope of the ESSnuSB design of the linac and the accumulator and to make a design of a compressor/buncher ring generating 2 ns bunches of order 10<sup>14</sup>-10<sup>15</sup> protons and of a target and focusing horn that can stand such bunches, with the aim to fit the requirements of a Muon Collider Proton Complex
- -A Conceptual Design Report of this complementary design study would be ready by 2025 and could serve as a basis for the discussion of the realization of an ESS based Muon Collider Proto-Complex Test-Facility to be operational in the first half of the 2030's.
- The ESS Proton Complex could also possibly come to serve as the first stage of a facility to test muon cooling at full intensity until CERN has taken the decision to build an SPL for a 3, 10 or 14 TeV Energy Muon Collider, allowing such tests to be made at CERN and, in an maybe even longer perspective, as the proton complex of a 125 GeV Muon Collider Higgs Factory at ESS that you will hear about from Carlo Rubbia in his talk following now.

# A few back up slides

## The ESS linac components being assembled and tested



# **ESSvSB** schedule a 2<sup>nd</sup> generation neutrino Super Beam





2018:

**ESSvSB** 

Design

H2020)

**2021**: End of ESSvSB Design Study, beginning of CDR and preliminary costing Study (EU-

2025-2026: Preconstructi 2022-2024: on Phase, Preparatory International Phase, TDR Agreement



Construction of the facility and detectors, including commissioning

2035-:

taking

Data





Nucl. Phys. B 885 (2014) 127

2012:

inception of

the project

IN SCIENCE AND TECHNOLOGY

2016-2019:

beginning of

EuroNuNet

**COST** 

Action