

BIB simulations

- Full simulation of muon trajectory, decay, and transport of decay products
 - Including hadron production by leptons and photons, and muon pair production by photons
- Machine layout directly from optics files through the LineBuilder interface → flexibility to adapt to new optics
- First guess for shielding elements (nozzles) from MAP design at 1.5 TeV
- Optimization foreseen at higher energies
- Provide list of particles and their properties at the interface betw machine and detector hall, to be transported in the detector
- Provide radiation maps in the detector

1.5 TeV

N.V. Mokhov and S.I. Striganov, Physics Procedia 37 (2012),2015.

Starting point and crosscheck vs. MAP reference

For BIB: detector replaced by perfectly absorbing material (BlackBody)

More details

- Only one muon beam
- Injected at 200m from IP
- Beam σ and divergence from optics
- Decay length biased (i.e. artificially reduced) to increase statistics
- Solenoidal (detector) magnetic field in the beam pipe

Calorimeters:

- no detailed layering, average composition and density
- Shape simplified from polyhedron to cylinder
- Magnet + Yoke:
- Average composition and density
- Uniform B field (3.57 T)

Ecal (W-Si)

Hcal (Steel-scint)

Color scale: 10^{16} / cm² / year

Normalization: 2 × 10¹² muons/bunch 200 days/year 100 kHz bunch crossing

 \approx few 10¹⁵ /cm² /y

400

-300

1.5 TeV: 1MeV neutron equivalent

1.5 TeV: Total Ionizing Dose

Color scale: Grad /year --(1 Gy= 100 rad, 1Grad=10MGy)

Normalization: 2 × 10¹² muons/bunch 200 days/year 100 kHz bunch crossing

 $\approx 10^{-3} - 10^{-2}$ Grad/y

400

1.5 TeV: TID and 1MeVn Radial distributions

- TeV full ring geometry is ready and running
- Lattice and optics from <u>Y. Alexahin et al 2018 JINST 13 P11002</u> (thanks to the MAP collaboration and to M. Biagini)

	Q1	Q2	Q3	Q4	Q 5	Q 6
aperture (mm)	90	110	130	150	150	150
G (T/m)	267	218	-154	-133	129	-128
B (T)	0	0	2	2	2	2
length (m)	1.6	1.85	1.8	1.96	2.3	2.85

Figure 3. Quadruplet FF quadrupole apertures and 5σ beam envelopes for $E_{c.o.m.} = 3$ TeV and $\beta^* = 5$ mm. Defocusing magnets with 2T dipole component are shown in cyan. Beam parameters are given in the summary table of section 5.

- Initial implementation of nozzles: same as 1.5 TeV case, to be optimized
- Very preliminary results:

3TeV from where and when (preliminary)

Position of muon decay for all BIB particles excluding secondary muons, and its cumulative distribution: At 3 TeV, decays as far as ~40m from IP still contribute, vs ~20m at 1.5TeV Distributions for muons available soon

Time distributions of BIB particles: similar to 1.5 TeV

Summary and perspectives

- A flexible full simulation chain has been implemented and validated against previous results at 1.5 TeV
- It can provide not only BIB but also radiation maps
- Preliminary implementation and results for the 3 TeV option
- To be optimized!!! Through iterative process involving detector and machine experts

MInternational UON Collider Collaboration

Thank you for your attention

bd "Muon collider interaction region design" Y. I. Alexahin (2011)

bd <u>"A study of muon collider background rejection criteria in silicon vertex and tracker detectors</u>" V. Di Benedetto (2018)

With/without nozzle

and the second s