

MInternational UON Collider Collaboration

Detector R&D

Ilaria Vai on behalf of the Muon Collider Physics and Detectors working group*

3rd Muon Collider Community Meeting October 7th 2021

Muon Collider Detector

Based on CLIC detector: arXiv:1202.5940 ILCSoft: http://ilcsoft.desy.de/portal

tracking system

- 1- -

Beam-Induced-Background

C. Curatolo et al

Beam Induced Background (BIB) is mainly due to the decay of muons \rightarrow huge background contribution in the inner detectors.

+ + 12 - 12 P

Proposed detector R&Ds

Activities already on-going:

• ECAL → CRILIN

→ goal is to build a crystals calorimeter, fast, cheap, and with a granularity (both transversal and longitudinal) tuned on MC simulations for BIB subtraction

- Muon System → Fast timing MPGDs
 - \rightarrow current GRPCs are limited both in rate capability and space resolution
 - → R&D on a detector able to combine an improved time resolution with an excellent space resolution and rate capability.

Other proposed activities:

- Tracker → Resistive AC-Coupled Silicon Detectors
 - \rightarrow 4D tracking
- HCAL → MPGD-based calorimeter
 - → RadHard HCAL

The

ECAL

Ilaria Vai – 7th October 2021 3rd Muon Community Meeting

The CRILIN detector

Goal of the R&D: find solutions alternative to the W-Si sampling calorimeter

CRILIN = CRystal calorimeter with Longitudinal Information

It's a semi-homogeneous crystal calorimeter (PbF_2), where Cherenkov light is read by SiPMs. PbF_2 has

- good light yield (3 pe/MeV)
- fast signal (300 ps for muons, 50 ps for pions)
- radiation hard
- relatively cheap.

Proposal: five layers (40 mm thick $\rightarrow \sim 21.5 \text{ X}_0$), 10 x 10 mm² of cell area.

Test beams results - 1

Distribution divided in 10 MeV slices → time resolution measured as time difference between the 2 SiPM in each crystal per each slice

Test Beam @ BTF (Frascati):

Test beams results - 2

Collaboration

Test Beam @ BTF (Frascati): MIPs transversally crossing the crystals (10 MeV deposits)

I. Sarra, L. Sestini

UNIVERSITÀ

DEGLI STUDI

DI BERGAMO

Dipartimento

di Ingegneria

e Scienze Applicate

CRILIN

NFN

Test Beam @ H2 (CERN):

crystals reconstructed with tracker system

(required 1 cluster before and > 6 after)

Full analysis still on going, but preliminary results are promising.

Full simulation of the **signal** (H \rightarrow bb) and **BIB** in the detector with Crilin as ECAL barrel has been performed @1.5 TeV.

- implementation done with the DD4HEP interface to Geant4
- 5 layers of 40 mm length, 10 X 10 mm² cell area
- dodecahedra geometry.

Acquisition time window of [-250,+250] ps wrt bunch crossing applied to separate signal from BIB \rightarrow *achievable with a time resolution of about 80 ps* (window $\approx 3\sigma$).

CRILIN in the muon collider simulation - 2

UNIVERSITÀ

DEGLI STUDI

DI BERGAMO

I. Sarra, L. Sestini

Dipartimento

di Ingegneria

e Scienze Applicate

NFN

CRILIN

the semi-homogeneous

Planned activities

Image: Disparting bigging biggi

- Realization and test of a prototype made of 2 layers of PbF₂ 3x3 crystals each
- Improvements on the simulation side:
 - implement the lateral dead material around the cells
 - implement a better digitization model
 - to be repeated when a better version of the reconstruction will be available

mm.

- ----

Muon System

the in the second

Technologies for the muon system

Detector	σ_t	σ_{x}	Rate capability
RPC (HPL o Glass)	1 ns (single-gap) < 100 ps (multi-gap)	~mm	~ 1 kHz/cm ²
Standard MPGD (GEM, Micromegas)	5-10 ns	~100 µm	> 100 kHz/cm ²

R&D Goal: develop a detector able to reach good performance on all the three items \rightarrow to be used at the muon collider as

• Standalone detector for the muon system, using σ_t , σ_x and rate capability

or

• Dedicated Timing layer, to be combined with a tracking layer

Picosec detector - 1

https://gdd.web.cern.ch/activities-picosec

→ Measured time resolution ~ 25 ps (Ne/C₂H₆/Cf₄ - 80/10/10) New MPGD composed by:

- MgF₂ Cherenkov radiator (3-4 mm)
- Photocathode (10 nm), currently of Csl
- Standard Micromegas with reduced drift gap

Interesting because, as an MPGD, we aim at combining the improved time resolution with an excellent space resolution and rate capability (improvement w.r.t. RPC).

https://gdd.web.cern.ch/activities-picosec

Plans for 2022:

- Design, built and characterize a 10x10 cm² prototype
- Begin the study on an eco-friendly gas mixture
- Test possibile new materials for the Cherenkov radiator

Perform simulations to optimize the detector config

Standalone simulations - 1

Geant4 standalone simulation (*Geant4.10.06 p02*) to study the response of the detectors to BIB @ 1.5 TeV.

Detector sensitivity to BIB simulated for:

- Double-gap Glass RPC
- Double-gap HPL RPC
- Triple-GEM
- Picosec

Neutron Sensitivity 10⁻² 10⁻³ - Triple GEM RPC 10-GRPC PicoSec 10^{-5} r count r count r 111111 10³ 10^{4} 10⁵ 10^{-1} 10 10^{2} 10^{6} Energy [MeV]

.

Muon Collider 1.5 TeV - Neutron Sensitivity

Picosec sensitivity lower than RPC one, because MPGDs have lower material budget.

 \rightarrow Picosec has lower expected hit rate than RPC (because sensitivity is lower)

 \rightarrow Expected Hit Rate for RPC already at the limits for current technology

Muon Collider 1.5 TeV - Neutron Hit Rate vs 0

Muon Collider 1.5 TeV - Photon Hit Rate vs 0

UNIVERSITÀ

DEGLI STUDI

DI BERGAMO

Dipartimento

di Ingegneria

e Scienze Applicate

NFN

Other proposed R&D - Tracking

M. Mandurrino

4D particle tracking with Resistive AC-Coupled Silicon Detectors (RSD)

http://dx.doi.org/10.1016/j.nima.2020.163479

RSD:

- Analogic readout with bipolar signals
- Benefit from the good timing performances proper of LGADs, + increased capability to track particles in space → suitable for 4D tracking
 - 100% fill-factor + analogic readout = reconstruct the hit position with a precision ~2 orders of magnitude lower than the pad pitch

Optimization for a muon collider requires:

- low material budget
- Optimized geometry to match physics requirements
- large-area detectors
- radiation-hardness studies

Other proposed R&D - HCAL

P. Verwilligen

Resistive MPGD-based calorimeter

From FLUKA simulations, HCAL may be subjected to $10^{11} - 10^{15}$ 1MeV n-equiv /cm² per year

→ Proposal: RAD-HARD calorimeter, based on absorber + MPGDs:

- High granularity at low cost
- Good energy resolution (from CALICE studies)

₽

- Usage of resistive gaseous detectors
- Possibility to exploit also timing information

Plan:

- Simulation studies with Geant4
- Test different MPGD technologies in a small-size stack with stainless steel absorbers

the in the second

The **Muon Collider** is a great opportunity for precision physics at high energy and high luminosity. However, its unique environment – in particular the presence of the BIB - requires a careful design of the most suitable detectors.

Interesting R&Ds have already started on the ECAL detector and for the muon system, others have been proposed for the tracker and HCAL.

These activities will continue in the next months, together with the definition of the requested performance by simulation.

Ilaria Vai – 7th October 2021 3rd Muon Community Meeting

- more in the second

Ilaria Vai – 7th October 2021 3rd Muon Community Meeting

International UON Collider

BIB Energy distribution - Neutrons vs θ

Distributions obtaines from MARS+Geant4+v02-05-MC selecting the particles that arrive at the muon system.

The BIB in the muon system is mainly composed by neutrons and photons.

In the inner regions the flux is almost 3 order of magnitudes higher than in the out regions.

BIB Energy distribution - Photons vs θ

At $\sqrt{s} = 1.5 TeV$:

- Neutrons: energies up to 2.5 GeV
- Photons: energies up to 200 MeV

Col

Test beams results - 1

- 10 E

Test Beam @ BTF (Frascati):

