

technische universität dortmund

LHCb status report

Vitalii Lisovskyi (TU Dortmund) on behalf of the LHCb Collaboration

icolin photo: Janina N Unterstützt von / Supported b

147th LHCC meeting – open session 01/Sep/2021

VELO

- Installed the cooling infrastructure
- ► 41/52 modules ready
- Started mounting the first production modules
- ► A tight schedule, but assembly moves well

LHCb-TDR-013

- Detector modules:
 - Outer-region modules: 933 ready, i.e. 888 nominal + spares
 - Inner-region modules: majority ready, yet below nominal needs
- Modules being mounted on staves & shipped to CERN
 - > Only 20(+5)/68 staves at CERN now
- Stave mounting infrastructure being prepared at CERN
 - Stave mounting expected to start in October
- ► A very tight schedule, strong commitment to meet it

LHCb-TDR-015

CO₂ cooling manifolds to be

SCIFI

A half of the whole detector (C-side) is now installed, connected and aligned!

Services connected and being prepared for powering

► Assembly and testing of the A-side frames in full steam

- ► Installation of connectors & services ongoing
- Installation of frames to start in November

LHCb-TDR-015

BEAM PIPE

- inside the LHCb cavern
- Pumping and leak tests successful; now under vacuum
- ► Bake-out of the beam pipe ongoing

More pictures: <u>https://cds.cern.ch/record/2777610</u>

Completion of the SciFi C-side allowed to install the final segments of the beam pipe

RICH DETECTORS

- ► RICH2: installation complete, commissioning ongoing
- ► RICH1: installed lower quartz window and the PMT enclosure
 - ► Survey and alignment of RICH1 mirrors successful, preparation for installation (Sep/Oct)

Rich2 Global Pixel Map

MUON & CALO

- > Shielding lead plugs installed in the M2 inner section, surrounding the beam pipe
 - same done last year in the inner section of the HCAL
 - Imits the background rate in the inner sections of muon stations

- ► Most of calorimeter front-end boards installed, are being connected
 - completion in September
- Calorimeter systems and services installed
 - ► Fibres, power supplies, PMT cables
 - Control units connected to the farm

Commissioning ongoing for the calorimeter & muon system

LHCb-TDR-014

LUMINOSITY AND PROTECTION SYSTEMS

PLUME (luminosity detector): support structure and cables installed; connectors in progress

RMS (Radiation Monitoring System): measurement plates installed, electronics in preparation

Measurement plates

BCM (Beam Conditions Monitor): support rails and cables installed

Diamond sensors will be here

REAL-TIME ANALYSIS (TRIGGER)

Successful Production Readiness Review for the HLT1 GPU system EB Event rate

Scope of the review:

- Is the HLT1 performance adequate on the candidate GPUs?
- Can 1 GPU per event builder server cope with the 40 MHz data rate?
- Choice of the "best" option for LHCb

purchase of the GPUs planned very soon

► HLT2 throughput evolving with lots of physics selections added

	Throughput (Evt/s)	Impact	
Reconstruction	181.9		
B2OC (76 lines)	174.6	-4.02%	
Hyperon (99 lines)	173.0	-4.90%	
B2OC+Hyperon	165.5	-8.99%	

slowdown within acceptable margins

Event filter second pass (~4000 servers)

OPERATIONS: TOWARDS RUN3

- FEST (Full Experiment System Test) campaigns

 - ► June: successful campaign
 - ► Idea: send simulated data through the parts of our data processing chain
 - Tested HLT and offline processing (sprucing) chains
 - Work on monitoring
 - OctoberFEST upcoming: plan to test the complete data processing chain
- ► Fast simulation developments: testing of the simulation based on simple parametrisations and machine learning based on simple parametrisations and machine learning (Lamarr project)
 - achievable speedup up to 1000x compared to nominal detailed simulation

Joint effort of Online, RTA, DPA, Simulation teams; one-week commissioning event

COMPUTING OPERATIONS & DATA PROCESSING

- Reprocessing of Run 2 data: 2017 done, 2018 and 2016 in preparation
 - main purpose: adding new physics channels to be studied

Generated on 2021-08-26 17:41:15 UTC

- Addressing the challenges of offline processing and analysis with massive datasets for Run 3
- Centralised skimming of data selected by inclusive triggers: "sprucing"
- Rethinking the analysis workflow:
 - Centralised analysis tuple productions
 - Exploiting recent ROOT developments
 - Efficient analysis preservation
- Preparation of Open Data release
- R&D on innovative analysis techniques, for example promoting GPUs in physics analyses

UPGRADE II (RUN 5)

- - outlines options for detector design and enabling our physics programme
- Recent test beams of detector prototypes for VELO, RICH, calorimeter and tracker Thanks to our accelerator colleagues for the excellent performance of the SPS!

LHCb-TDR-023 (new!)

> Draft of the Upgrade II Framework Technical Design Report handed to LHCC this week

our target: ~50 fb⁻¹ per year

PHYSICS OUTPUT

► Legacy measurements with the complete Run 2 (+ Run 1) LHCb dataset

LHCb physics publications

LHCb physics publications per year

14

PHYSICS HIGHLIGHTS

► <u>Papers submitted since the last LHCC</u>

- [PAPER-2021-009] Observation of the mass difference between neutral charm-meson eigenstates
 [PAPER-2021-019] Search for the doubly charmed baryon Ξ⁺_{cc} in Ξ⁺_cπ⁺π⁻ final state
- [PAPER-2021-012] Observation of excited Ω_c^0 baryons in Ω_b^- decays
- [PAPER-2021-013] Study of coherent J/ψ production in lead-lead collisions at $\sqrt{s_{NN}} = 5$ TeV
- [PAPER-2021-010] Measurement of prompt charged-particle production in pp collisions at $\sqrt{s} = 13$ TeV • [PAPER-2021-023] Updated search for B_c^+ decays to two charm mesons
- [PAPER-2021-016] Observation of a $\Lambda_b \overline{\Lambda_b}$ production asymmetry in proton-proton collisions at $\sqrt{s} = 7, 8$ TeV
- [PAPER-2021-022] Angular analysis of the rare decay $B_s^0 \rightarrow \phi \mu^+ \mu^-$
- [PAPER-2021-018] Evidence for a new structure in the $J/\psi p$ and $J/\psi \bar{p}$ systems in $B_s^0 \rightarrow J/\psi p \bar{p}$ decays
- [PAPER-2020-043] Study of J/ψ photo-production in lead-lead peripheral collisions at $\sqrt{s_{NN}} = 5$ TeV
- [PAPER-2021-017] Search for the radiative $\Xi_b^- \to \Xi^- \gamma$ decay
- [PAPER-2021-008] Measurement of the $B_s^0 \to \mu^+\mu^-$ decay properties and search for the $B^0 \to \mu^+\mu^-$ and $B_s^0 \to \mu^+\mu^-\gamma$ decays • [PAPER-2021-030] Measurement of the photon polarization in $\Lambda_b^0 \to \Lambda\gamma$ decays
- [PAPER-2021-007] Analysis of neutral B-meson decays into two muons
- [PAPER-2021-015] Measurement of the nuclear modification factor and prompt charged particle production in pPb and pp collisions at $\sqrt{s_{NN}} = 5$ TeV

► <u>Preliminary since the last LHCC</u>

- [PAPER-2021-020] Measurement of J/ψ production cross-section in pp collisions at $\sqrt{s} = 5$ TeV
- [PAPER-2021-021] Measurement of the lifetimes of promptly produced Ω_c^0 and Ξ_c^0 baryons
- [PAPER-2021-024] Measurement of the W boson mass
- [PAPER-2021-025] Observation of two new excited Ξ_b^0 states decaying to $\Lambda_b^0 K^- \pi^+$
- [PAPER-2021-026] Measurement of chic1(3872) production in proton-proton collisions at $\sqrt{s} = 8$ and 13 TeV
- [PAPER-2021-027] Observation of the suppressed $\Lambda_b^0 \to D^0 p K^-$ decay with $D^0 \to K^+ \pi^-$ and measurement if its CP asymmetry
- [PAPER-2021-028] Search for exotic massive long-lived particles decaying semileptonically
- [PAPER-2021-029] Study of Z bosons produced in association with charm in the forward region
- [PAPER-2021-031] Observation of an exotic narrow doubly charmed tetraquark
- [PAPER-2021-032] Study of the doubly charmed tetraquark T_{cc}^+
- [PAPER-2021-033] Simultaneous determination of CKM angle γ and charm mixing parameters

DOUBLY-CHARM SPECTROSCOPY

► Now: Observation of a narrow peak in $m(D^0D^0\pi^+)$ at the threshold > manifestly exotic state: $cc\bar{u}d$; expected isospin 0 and $J^P = 1^+$

Full Run1+Run2 dataset

[PAPER-2021-031]

Mass measurement: relativistic Breit-Wigner lineshape gives $\delta m \equiv m_{T_{cc}^+} - (m_{D^{*+}} + m_{D^0}) = -273 \pm 61(\text{stat}) \pm 5(\text{syst})^{+11}_{-14}(J^P) \,\text{keV/c}^2;$ mass ~3874.8 MeV/c²

 T_{cc}^+ **PROPERTIES**

- consistent with some of theoretical predictions
- ► width $\Gamma_{BW} = 410 \pm 165(\text{stat}) \pm 43(\text{syst})^{+18}_{-38}(J^P) \text{ keV}$ the smallest BW width of any known exotic state
- ► A more physical lineshape model explored as well, in upcoming [PAPER-2021-032]
 - > A plethora of other studies: pole position, multiplicity dependence, characteristic size, etc: stay tuned for our papers!
- ► This result likely implies existence of a weakly-decaying *bbūd* state (a tetraquark flying some mm before decay?)

More details in our <u>CERN-LHC seminar</u> on 14th September.

BEAUTY BARYON SPECTROSCOPY

> A lot of interest in the spectrum of (excited) Ξ_b baryons:

2012, <u>CMS</u>: $\Xi_b(5945)^0$ 2014, <u>LHCb</u>: $\Xi'_{b}(5935)^{-}$ and $\Xi_{b}(5955)^{-}$ 2018, <u>LHCb</u>: $\Xi_b(6227)^-$ 2020, <u>LHCb</u>: $\Xi_b(6227)^0$ 2021, <u>CMS</u>: $\Xi_b(6100)^-$

- > Now, search for 1D states: predicted[†] to decay to $\Sigma_{h}^{(*)}K$ †1803.00364; 1910.03318
- ► Inspect the $\Lambda_b^0 K^- \pi^+$ spectrum:

Two new states observed. matching expectations of 1D states.

[PAPER-2021-025]

 $\Xi_b^0 = (usb)$ $\Xi_{b}^{-} = (dsb)$

 $m_{\Xi_b(6327)^0} = 6327.28^{+0.23}_{-0.21} \pm 0.08 \pm 0.24 \,\mathrm{MeV},$ $m_{\Xi_{b}(6333)^{0}} = 6332.69^{+0.17}_{-0.18} \pm 0.03 \pm 0.22 \,\mathrm{MeV},$ $\Gamma_{\Xi_{h}(6327)^{0}} < 2.20 \ (2.56) \text{ MeV at } 90\% \ (95\%) \text{ CL},$ $\Gamma_{\Xi_b(6333)^0} < 1.55 (1.85) \text{ MeV} at 90\% (95\%) \text{ CL},$

RM RARYON I IFF

► PDG'2018: $\tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$; $\tau(\Omega_c^0) = 69 \pm 12$ fs (fixed-target data)

(USC)

(udc)

- decays of beauty baryons PRL 121 (2018) 092003; PRD 100 (2019) 032001
 - $\tau(\Omega_c^0)$ four times larger than the world average

\blacktriangleright Now: we measure the lifetimes of Ω_c^0 and Ξ_c^0 with prompt production

- larger signal, but higher backgrounds
- ► relative measurement: $\Xi_c^0, \Omega_c^0 \to pK^-K^-\pi^+$ vs $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$

Average of LHCb results:

 $\tau(\Omega_c^0) = 274.5 \pm 12.4 \,\mathrm{fs}$ $\tau(\Xi_c^0) = 152.0 \pm 2.0 \,\mathrm{fs}$

(dsc)

(SSC)

[PAPER-2021-021]

► LHCb, 2018-2019: measurement of lifetimes of charm baryons produced in semileptonic

► Lifetimes of Ω_c^0 and Ξ_c^0 changed significantly, new hierarchy: $\tau(\Xi_c^+) > \tau(\Omega_c^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0)$;

RARE $b \rightarrow s\ell^+\ell^-$ DECAYS

Run1+Run2 dataset

Angular analysis performed with untagged B_{c}^{0}

Results compatible with SM, but some deviation in F_I : same as in $B \to K^* \mu^+ \mu^-$?

RARE $b \rightarrow s\ell^+\ell^-$ DECAYS

- \blacktriangleright Interpretation of recent LHCb results in terms of the Wilson coefficient C_9 (vector coupling in the EFT)
- > The three recent LHCb angular analyses **consistently** favour a negative shift in $\Delta Re(C_9) \equiv Re(C_9) - Re(C_9^{SM}):$

These and other results will be discussed at the LHC Flavour Anomaly workshop on 20 October.

TY TRIANGLE MEETS CHARM

- the first time!
- \blacktriangleright Charm mixing parameters enter the $B \rightarrow Dh$ interference amplitudes (sensitive to $\gamma!$) useful to consider correlations to improve precision
- ► More than 20 LHCb publications (151 observables) used in this combination; updated inputs on hadronic parameters, strong phases in D decays, etc.
- This results in a world's most precise value:

$$\gamma = (65.4^{+3.8}_{-4.2})^{\circ}$$

Excellent agreement with the global fits: UTFit (2021): $\gamma = 66.1 \pm 2.1$ *CKMFitter* (2019): $\gamma = 65.6^{+0.9}_{-2.7}$

> As an input to this combination: we updated the measurement of charm mixing parameters

> Simultaneous combination of LHCb results in UT angle γ and D^0 mixing parameters – for Combination of Run1+2 results (some are still Run1)

CHARM-MESON EIGENSTATES

- ► Study $D^0 \to K_S \pi^+ \pi^-$; D^0 can oscillate to \overline{D}^0 which decays to same final state
- ► D^0 mixing: mass eigenstates $D_{1,2} \equiv pD^0 \pm q\overline{D}^0$ differ from flavour eigenstates
 - ► Described by dimensionless parameters $x \equiv (m_{D_1} m_{D_2})/\Gamma$ and $y \equiv (\Gamma_{D_1} \Gamma_{D_2})/(2\Gamma)$

- Bin-flip method:
- > Split Dalitz plot in regions of "equal" strong phase ► Fit to decay time in each bin

Mass difference of the D0 mass eigenstates: $x = (3.98^{+0.56}_{-0.54}) \times 10^{-3} \rightarrow m_{D_1} - m_{D_2} = 6.4 \,\mu \text{eV}$

First observation of a non-zero mass difference (x)!

Plug this in our global combination:

$$x = \left(0.400^{+0.052}_{-0.053}\right)\%$$

value of x dominated by our latest result

$$y = (0.630^{+0.0}_{-0.0})$$

value of y twice more precise than the world average

W MASS

See the <u>CERN seminar</u> by Mika Vesterinen for the details

- $\succ m_W$ is an important parameter of the Standard Model, sensitive to BSM contributions
 - ► Challenging experimentally: $W \rightarrow \mu \nu_{\mu}$ leaves one track
- due to partly orthogonal PDF uncertainties (compared to low-rapidity)
- ► Fit to the q/p_T of the muon from $W \to \mu \nu_{\mu}$, simultaneously with angle ϕ^* in $Z \to \mu \mu$
 - Requires a very precise control of systematic effects: notably, detector alignment

A full-Run2 LHCb measurement will benefit from theory

[PAPER-2021-024]

> Measured at LHCb for the first time: high-rapidity measurement brings complementarity

proof-of-principle measurement

reliminary	m_w :	= 8	$80364 \pm 23_{stat} =$	$\pm 10_{exp}$	$\pm 17_{tl}$	neory
μμ ackgrounds			 Total uncertainty Stat. uncertainty 	LHCb I	Preliminary	1
_			ALEPH			-
			DELPHI			
-			L3			
			OPAL		—	
uncertainty			CDF			
-			D0			
╇╸╪╶╪╴╌┿╴┽╴╴╴╴ ╡╌╪╴╇╶╪╶╪╶╪╶╪╶╴╸╸╪ ╋╴ ╞			ATLAS	-		
	5		LHCb 2016 run	F		
*	5		Electroweak Fit	⊢●	- i	
y development.		802	100 80150 80200 80250	80300 8035	50 80400 % m	80450 8 v _W [Me'

CHARMING Z BOSONS

- Measure events where Z boson is produced together with a c-quark jet
 - First such measurement in the forward region!
- Enhancement found at high rapidities
 - Can be explained by presence of a high-x charm component inside the proton - 'intrinsic charm'
 - > A global PDF analysis is needed for a complete interpretation.

LHCb is truly a general-purpose detector, providing measurements in the forward region and complementing the other LHC experiments.

- Collecting harvest from our flavourful Run 1 + Run 2 datasets
 - Precision on the UT angle γ improved from ~ 20° to $\sim 4^{\circ}$ during the years of LHCb operation
 - \blacktriangleright The γ is now known more precisely than α
 - Important contributions to hadron spectroscopy
 - \blacktriangleright High- p_T physics in forward region
- LHCb Upgrade I is in its crucial phase
 - Multiple systems installed & in commissioning
 - ► For the others, schedule is tight but we put all possible effort to meet it
- > Mapping the future of particle physics with our planned Upgrade II

W-boson mass

0.01

SciFi installation

0.03

0.02

BACKUP

VTRX STATUS

- VTRX: transceiver to the optical systems (common between LHC experiments)
- - ► Solution: bake-out
- will finish in time
 - to replace)

Issue: at high temperatures, glue emits gas which condensates and prevents transmission

> LHCb: bake-out in progress, done for some subdetectors, replacement in progress and

Exception: SciFi and RICH2 where VTRX are under active cooling (and sometimes hard)

