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ATLAS CMS

length ~46 m ~22 m
diameter ~25m ~15m
weight ~ 7000 t ~ 12000 t
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An onion-like 3D camera
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dmera operation

Sensor Functions:

1. Photoelectric Conversion
Converts photons into electrons

2. Charge Accumulation
Collects generated charge as signal charge

3. Transfer Signal
Moves signal charge to detecting node

4. Signal Detection
Converts signal charge into electrical signal (voltage)

5. Analog to Digital Conversion
Converts voltage into digital value

Main goal of the sensors:
to convert incoming light (photons) into an electrical
signal that can be viewed, analyzed, or stored.

Abdollah Mohammadi



electron

missing
energy

Particle categorization based on detectability:
» Interact with detector materials: e, u, v,q ...
» Escape from detector: v

» Decay to either types of particles: 1, Z, H, ...
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‘Compact Muon Solenoid (CMS)

electron

missing
energy
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Solenoid
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CMS solenoid is 13m long and 6m in diameter.
Superconducting niobium-titanium coils

Carry 20 kA current

3.8 T magnetic field that is 100,000 times stronger
than the Earth’s

Stored energy of 2.66 GJ, equivalent to about half-
a-tonne of TNT
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Multiple thin layers of, for example, silicon sensors
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World's largest silicon detector
» ~ 200 m? equipped with 9.3 million microstrip sensors

» Made of silicon
» In form of Pixel (inner most) and strip (outer most)

» Radiation tolerant

» Being the inner most layer of detector, it received the highest volume of
particles and radiations

14 layers in the barrel region and 15 layers in the endcaps
124 million pixel at the size of 100 ym x 150 ym

9.6 million strip channel at the size of 10 cm x 180 um silicon
strips
» Particles barely deposit any energy in the tracker

YV V
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Calorimeters
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latin: calor = heat

Calorimetry = Energy measurement by total absorption,
usually combined with spatial reconstruction.

What is the effect of a 1 GeV particle in 1 liter water (at 20° C)?
AT=E/(c' M, 3.8:1014 K |

mrer) =

There must be more sensitive methods than measuring AT'!
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* The main principle of particle detection: Interaction with matter.

B Basic mechanism for calorimetry in paricle physics: formation of
= electromagnetic
= or hadronic showers.

E Finally, the energy is converted into ionization or excitation of the matter.

2 \

Charge Scintillation light
Cerenkov light

B Calorimetry is a “destructive” method. The energy and the particle get absorbed!

B Detector response =« E

Complementary information to p-

B Calorimetry works both for
measurement

= charged (e~ and hadrons)

= and neutral particles (n,y) =~ Only way to get direct kinematical
information for neutral particles
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When a high energy electron or photon strikes on a thick absorber
(such as Lead), a cascade of secondary electrons and photons via
Bremsstrahlung and pair production, respectively, is initiated.

Bremsstrahlung

Pair Production

The number of secondary particles is
increased

With increasing the depth<

The mean energy of particles decreased

This multiplication continues until the energy of particles fall below the
critical energy, after this Photons and Electrons start the lonization
and Excitation processes.
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Total # of particles is proportional to energy of incoming particle

Light materials (blue) produce a signal proportional

to the number of charged particles traversing
Abdollah Mohammadi




* Energy deposit in calorimeter
— “Narrow” shower shape in EM calorimeter
— Energy nearly completely deposited in EM calorimeter
* Little or no energy in had calorimeter (hadronic leakage)
* Electrons have an associated track in inner
detector

e |fthereis no track found in front of calorimeter:
photon

— But be careful, photon might have converted before
reaching the calorimeter

29
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» ECAL is constructed from crystals of lead tungstate, PbWO,
» Very dense (heavier than steel) but highly transparent !!

» Crystals have a front size of 22 mm x 22 mm and a depth of 230 mm.

» They are set in a matrix of carbon fibre to keep them optically
isolated

» "barrel" consists of 61,200 crystals formed into 36 "supermodules”,
each weighing around three tonnes and containing 1,700 crystals.

» The flat ECAL endcaps seal off the barrel at either end and are made
up of almost 15,000 further crystals

Prearmplifier
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Detection
e ~ Hadronization
hadrons @@

Fragmentation

partons @)D @ ...
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» HCAL is made of layers of dense
material (brass or steel) interleaved
with tiles of plastic scintillator

» About half of the brass used in the
endcaps of the HCAL used to be
Russian artillery shells.
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Because of it’s long lifetime, the muon is basically a stable particle for us (ct
~ 700 m)

It does not feel the strong interaction

— Therefore, they are very penetrating
It‘s @ minimum ionising particle (MIP)

— Only little energy deposit in calorimeter

However, at high energies (E>0.2 TeV) muons can sometimes behave more
like electrons!

— At high energies radiative losses begin to dominate and muons can
undergo bremsstrahlung

Muons are identified as a track in the muon chambers and in the inner
tracking detectors

Both measurements are combined for the best track results
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» Most amazing feature of the
CMS detector?
» Taking data at 40 MHz rate

» Can NOT afford keeping all of

them

» Data from each crossing is held

in buffers. At L1 a decision is
made with 1 us using FPGAs.

» L1 reduces the rate at to 50
KHz

» HLT reduces the rate to just 1
KHz

» Data are then stored on tape
for future analysis

Detectors

Digitizers

Front end pipelines

Readout buffers

Switching networks

Processor farm
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'Data taken in the last decade

To see some rare processes, we need lots of datal

CMS Integrated Luminosity Delivered, pp

Data included from 2010-03-30 11:22 to 2018-10-26 08:23 UTC
200 . ‘ ‘

200
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'From RAW Data to Data Analysis

Reconstruction
Alignment
Calibration
Filtering
Validation
Skimming

+ A huge effort on Simulation
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13.1 fb' (13 TeV, 2016)
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LHC was built to be a discovery machine,
rather than only a re-discovery machine!
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Mellbokurne
Rolf Heuer:
'We have it!"

4" of July 2012 — new Higgs-like particle discovery
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The first two discovery channels (H—ZZ)

CMS Preliminary Vs=7TeV,L=5.05f";/s=8TeV,L=5.261fb"
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We have found the Higgs boson®© and SM seems complete...

... but SM is not capable of addressing all
of our questions®

i.e. Hierarchy problem, dark matter candidate,
matter-antimatter asymmetry, ...

We need NEW Physics to answer our questions!
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Heavy Gauge Bosons

Leptoquarks

Exited fermions

Contact Interactions

Extra Dimensions

Dark Matter

Heavy Gauge Bosons

Leptoquarks

Excited
Fermions

Contact
Interactions

Extra Dimensions

Dark Matter

Other

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

SSM Z'(t1)

SSM Z'(qq)

LFV Z', BR(eu) = 10%

SSM W'(£v)

SSM W'(qq)

SSM W'(Tv)

LRSM Wg(£NR), My, = 0.5My,
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of CMS EXO results
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"Luminosity projection in HL-LHC

e Peak luminosity =Integrated luminosity
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Year

» The current analyzed data is just a few % of the total data planned to be

collected by the entire life of the LHC (particularly, during high luminosity
phase)

» Collecting 300 fb™ per year imposes several challenges to the experiments

50 Abdollah Mohammadi



‘Challenges with more data!

» Collecting a large amount of data per year imposes several challenges to
the experiments

» The two main challenges are higher Pileup and Radiation

CMS Experiment at the LHC, CERN

\ ' Data recorded; 2016-Oct-14 00:56:16,738952 GMT

Run./ Event /1.5:283171./ 142530805 /. 254\,
N\

~ N

SR

real-life event from a high PU run in 2016 S 7

Js=13TeV PU =100 C a . ‘
Huge number of collisions Example of plastic scintillator
pre-bunch crossing (pileup) damaged by radiation

» Existing detectors are not capable of handling such conditions, thus we
need a solution
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» Upgrade of various components of the CMS detector has planed in several
phases

» Phase | is almost accomplished and Phase Il activities are ongoing

» The main goal of phase 1 HCAL upgrade of front-end electronics was the
replacement of the HybridPhotoDiode with SiliconPhotoMultiplier

» SiPMs operate at much lower voltage, they have higher gain, lower noise,
and offer a better signal to noise ratio

i\

LA i u::!'ll'l.’ll:!m!ﬁg!!m!"l

HPD Array (18 channel) SiPM Array (48 channel)
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'Phase Il upgrade: Forward calorimeter

> The High Granularity Calorimeter >
(HGCal) will become the new
Calorimeter Endcap

» Fine granularity enhances the particle
flow reconstruction and ID/pileup
mitigation

» More granular means adding more
readout channels:

» Low resolution = high resolution image

> Better separating signal from noise.

» Radiation hard technology is used
based on a mix of silicon and scintillator
detector
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Thin layer between tracker and calorimeters
MIP sensitivity with time resolution of 30-50 ps
Hermetic coverage for |n|<2.9

ENDCAPS
Surface ~15m?
~ 4000k

~ 7x10“nm/cm"

urrace
Number of channels

Radiation leve

Sensors: Low gain avalanche diodes
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