Use of C++ code

formatting/linting tools
= CMS Offline Software —_

Malik Shahzad MUZAFFAR
ROOT Team Meeting 26/07/2021

Intro

% clang-format/tidy

> What are these tools
> How to use
> Examples

% Code checks for CMSSW Offline Software

> CMSSW Offline Software

> CMSSW (Il system and code formatting/linting tools
% clang-format/tidy for ROOT project

clang-format: What is it?

% A tool to automatically format C/C++ code but supports other languages (

JavaScript, Proto, C-Sharpe)
> Many predefined styles
m LLVM, Google, Chromium, Mozilla, WebKit, Microsoft
m Custom styles by configuring specific styles options

% Allows developers and code reviewers to spend less time on formatting
and reviewing code style issue

https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/docs/ClangFormatStyleOptions.html#

Clang-format: How to use

cmssw/.clang-format

N . . Language: Cpp
% Verysimple to use, you just needed clang-format | o...onstyie: oogie
> Code style can be selected via -style="{...}' or -style=file ColumnLimit: 120

#didn't we want to change this?

command-line option
m .clang-format yaml| format file can be used to

NamespaceIndentation: All

SortIncludes: false
override specific style options IndentWidth: 2
e clang-format uses .clang-format from the Aeseashirdiierlitssts

closest parent director PenaltyBreakComment: 30
P y PenaltyExcessCharacter: 100

< clang-format-diff.py can be used to format only | augmsteropensracket: atign
the ChangeS (e.g glt dlff | Clang—format—dlff,py) AllowShortIfStatementsOnASinglelLine: false

AllowShortLoopsOnASinglelLine: false

% Veryfastand can runin parallel BinPackParameters: false
AlwaysBreakTemplateDeclarations: Yes
> Cando inplace edit (-i command line option) y "

ReflowComments: false

BinPackArguments: false

BinPackParameters: false

4
s

https://www.systutorials.com/docs/linux/man/1-clang-format-diff/

clang-format: Examples

return (i < nB ? detIdFromBarrelAlignmentIndex(i)
: 1< nB + nE ? detIdFromEndcapAlignmentIndex(i - nB)

: 1< nB + nE + nfF ? detIdFromForwardAlignmentIndex(i - nB - nE)

: detIdFromOuterAlignmentIndex(i - nB - nE - nF));

return (i < nB ? detIdFromBarrelAlignmentIndex(i)
: i< nBi+ nE ? detIdFromEndcapAlignmentIndex(i - nB)
: i< nB+ nE + nF ? detIdFromForwardAlignmentIndex(i - nB - nE)

: detIdFromOuterAlignmentIndex(i - nB - nE - nF));

std: :string sector = (calibId.hcalSubdet() == HcalBarrel)
> ("HB")
(calibId.hcalSubdet() == HcalEndcap)
2 ("HE")
(calibId.hcalSubdet() == HcalOuter)
2 ("HO™)
(calibId.hcalSubdet() == HcalForward) ? ("HF") : "";

std: :string sector = (calibId.hcalSubdet() == HcalBarrel) ? ("HB™)
(calibId.hcalSubdet() == HcalEndcap) 2EEEHES)
(calibId.hcalSubdet() == HcalOuter) 2 (“HO™)
(calibId.hcalSubdet() == HcalForward) ? ("HF")

>

Clang-format: Example....

https://github.com/cms-sw/cmssw/pull/34054/commits/aa2e97946048fbb152
9eea04a25086639cf52af4

= kPortCommandOpt, po::value<unsigned int>(), "Listen to port for new data files to openw%

- kLoopCommandOpt, “Loop events in play mode™) (

- kChainCommandOpt, @a
+ kPortCommandOpt, ‘

po: :value<unsigned int>(), ‘
- "Chain up to a given number of recently open files. Default is 1 - \a:.n")(
- kLiveCommandOpt, "Enforce playback mode if a user is not using 'éy")(
- kAutoSaveAllViews, &
- po::value<std::string>(), ‘o
- "Auto-save all views with given prefix (run_event_. ew.<auto—save—type> is appended) ™) (
- kAutoSaveType, po::value<std::string>(), "Image oF auto-saved views, png or jpg (png is default)™)(
- kAutoSaveHeight, po::value<int>()., Screens elght when auto-save-all-views is enabled™) (
- kSyncAllViews, "Synchronize all views o event")

"Listen to port for new data file & n") (kLoopCommandOpt,
‘ “"Loop events in play mode™) (kChainCommandOpt,

"Chain up to a given number of recently

“% po: :value<unsigned int>(),

\c "open files. Default is 1 - no "

se ‘ “chain™) (kLiveCommandOpt,

"Enforce playback mode if a

"user is not using

“display™) (kAutoSaveAllViews,

EEEEREEEEE

po: :value<

https://github.com/cms-sw/cmssw/pull/34054/commits/aa2e97946048fbb1529eea04a25086639cf52af4
https://github.com/cms-sw/cmssw/pull/34054/commits/aa2e97946048fbb1529eea04a25086639cf52af4

clang-tidy: What is it?

% Aclang based C++ “Linter” that can identify
> style violations
> interfaces misuse
> bugs that can be deduced via static analysis

% Contains a lot of checks and can also run clang static analyzer checks
> Also provides easy interface for writing new checks

clang-analyzer- Clang Static Analyzer checks.

concurrency- Checks
google- Checks
1lvm- Checks
modernize- Checks

performance- Checks
portability- Checks
readability- Checks

related to concurrent programming (including threads, fibers, coroutines, etc.).

related to Google coding conventions.

related to the LLVM coding conventions.

that advocate usage of modern (currently modern means C++11) language constructs.

that target performance-related issues.

that target portability-related issues that don'[i relate to any particular coding style.
that target readability-related issues that don't relate to any particular coding style.

https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/checks/list.html

Clang-tidy: How to use

% For single file
> clang-tidy file.cpp -checks=-*,clang-analyzer-* -- -Imy_project/include -DMY_DEFINES
% For large project, it is better to use a “compile commands database”

> cmake version 3.5 and above already support it
m use -DCMAKE_EXPORT_COMPILE_COMMANDS=0ON to generate
compile_commands.json

% Checks can be enabled either via command line “-checks=-* clang-analyzer-*" or
use .clang-tidy file

> clang-tidy searches the closest parent directory for this file

% clang-tidy-diff.py can be used to apply checks on changed code only

https://clang.llvm.org/extra/doxygen/clang-tidy-diff_8py_source.html

clang-tidy: How to use..

\/
0‘0

Code should not have any compilation errors

It can apply the fixes inplace (-fix command-line option)
It can run in parallel but be careful with fixes for header files
> multiple source files include same header

> multiple clang-tidy processes can apply the same fixes resulted in invalid code
> run-clang-tidy.py can be used to avoid this

m First runs clang-tidy to export the fixes in to yaml files
m Apply the suggested fixes

< Approx. takes same time as compilation

/7
X4

\/
0‘0

https://clang.llvm.org/extra/doxygen/run-clang-tidy_8py_source.html

clang-tidy: Examples

readability-container-size-empty

+

if (instancelabel != "" && binLabel != "") instancelabel.append("#");
if (linstancelLabel.empty() && !binLabel .empty()) instancelLabel.append("#");

modernize-use-nullptr / modernize-use-override

+ + + +

FileReader(const std::vector<std::string>& fnames) : f_(@), fnames_(fnames), ifile (-1), iline_(©) {}
virtual bool readTime(int& t1, int t2[nLmes], int& t3);

virtual bool readPs(DetId& rawdetid, EcallaserAPDPNRatios::EcallaserAPDPNpair& corr);

virtual ~FileReader() {}

FileReader(const std::vector<std::string>& fnames) : f_(nullptr), fnames_(fnames), ifile (-1), iline_(©) {}
bool readTime(int& t1, int t2[nLmes], int& t3) override;

bool readPs(DetId& rawdetid, EcallaserAPDPNRatios::EcallaserAPDPNpair& corr) override;

~FileReader() override {}

10

clang-tidy: examples

% Some checks can generate invalid code e.g.

> readability-container-size-empty
- if (prefix + postfix == "") {
- if (prefix + postfix.empty()) {

> google-readability-braces-around-statements
- if (condition) return {};

sz if (condition) { return {}};

Use //NOLINT or //NOLINTNEXTLINE to ignore clang-tidy check

11

clang-format/clang-tidy
CMSSW

CMS Offline Software (CMSSW)

% CMSSW has large code base
> 3.4M C++/C, 1.3M Python, 275K Fortran lines of code
m 30K C++/Cfiles
e 16K source files
m 2400+ shared libs/plugins , 850+ executables/tests
m 450+ externals packages deps (Including 260+ python packages)

% Over 20 years of SW development and still very active
> For last 2 years

m 75+ unique contributors/month contributing to CMSSW code base
m 750+ commits/month

% 12 Release cycles (5.3, 7.1, 12.0)

13

CMSSW: Code reviews

Pull Requests/week | # of PRs # of lines +/- # files
Created 75 975K/225K 3.5K
Merged 60 75K/53K 690

% CMSSW code reviewers review large number of PRs every day
> Some automated checks are needed to filter-out the bad PRs
m Majority of changes are bogus and code reviewers should not waste time on those
e Mostly due to PR open for a wrong git branch
m Code which does not compile

% Ease the code reviewer life by automatically enforcing code rules and
styles

14

CMSSW code checks: clang-format/tidy

% Since 2017, CMS Offline software Cl-bot has been using clang-format/tidy

to enforce the CMS coding and style rules

> Really helped us improving code quality and integration process
> Saved a lot of code review time

% CMS Cl-bot automatically runs code-checks for all pull requests

opened/updated for development release cycle

> Passing code-checks is prerequisite for code review
m failing this check will not allow to start the build/tests process

15

CMSSW code-checks: Cl-bot

o Some checks haven't completed yet
1 pending check

> s cms/34617/code-checks Pending — code-checks requested

g _ &

g cmsbuild added |

g cms/34617/code-checks Pending — Running

Commit statuses/labels set by
Cl-bot

® s bot/34617/jenkins Pending — Waiting for authorized user to issue the test command.
v s bot/34617/ack — Comment by cmsbuild at 2021-07-25 21:09:36 UTC processed.
4 s cms/34617/code-checks — Check details

16

CMSSW Code-checks: Cl-bot results

cmsbuild commented on Jun 18

P . 3 cmsbuild added — and removed | code-checks-pending o

Logs: https://cmssdt.cern.ch/SDT/code-checks/cms-sw-PR-34169/23395 Q}‘

& &
N A
&P
b . i 3 . Q é’
code-checks 3cmsbulld added Q[N T R acs P and removed code-checks-pending (_’Q 06
FE o
Logs: https://cmssdt.cern.ch/SDT/code-checks/cms-sw-PR-34494/23966 o&, Oé' Cl'
PR
e This PR adds an extra 60KB to repository [OERN <
O

Code check has found code style and quality issues which could be resolved by applying foﬁ'bwing patch(s)

e code-format:
https://cmssdt.cern.ch/SDT/code-checks/cms-sw-PR-34494/23966/code-format.patch
e.g. curl https://cmssdt.cern.ch/SDT/code-checks/cms-sw-PR-34494/23966/code-format.patch | patch -p1
You can also run scram build code-format to apply code format directly

CMSSW Code-checks: Cl-bot results

+code-checks

Logs: https://cmssdt.cern.ch/SDT/code-checks/cms-sw-PR-34111/23303

e This PR adds an extra 56KB to repository Code-checks also look for
% Git repository size increase
e Found files with invalid states: S Files added/deleted
o DetectorDescription/DDCMS/src/DDParsingContext.cc: > To aVOid binary ﬁles in g't hiStOfy
= Added: 1dcicis % Files with same name but with different
» Modified: aga4dae capitalization
= Deleted: b7e681b % Files touched by other already opened PRs

e There are other open Pull requests which might conflict with changes you have proposed:

o File DetectorDescription/DDCMS/interface/DDParsingContext.h modified in PR(s): § § [DD4hep] start on geometry XML
payload producer #33548

o File DetectorDescription/DDCMS/interface/DDXMLTags.h modified in PR(s): § § [DD4hep] start on geometry XML payload
producer #33548

o File DetectorDescription/DDCMS/plugins/dd4hep/DDDefinitions20bjects.cc modified in PR(s): § § [DD4hep] start on
geometry XML payload producer #33548
18
s

CMSSW Code-checks: What we have done

% Selected the clang-tidy checks and clang-format style to enable

> Started a campaign to run clang-tidy and format for full CMSSW
m Done via an automated Jenkins job
m PRs with max 200 files/PR
e Separate commits for clang-tidy and format fixes
m Skipped files touched by already opened PRs
e To avoid possible merge conflicts

% Enabled ClI code-checks for all newly opened or updated PRs

> (Il code-checks runs only on files touched by PR
> clang-tidy/format runs for full file contents instead of changes only
> (Clang-tidy does not run for newly added headers which are not included in any source file

19

https://github.com/cms-sw/cmssw/blob/master/.clang-tidy
https://github.com/cms-sw/cmssw/blob/master/.clang-format

CMSSW Build Rules: PR code check

% CMSSW uses SCRAM as a build system (MAKE based rules)

> To run clang-tidy: scram build -j $(nproc) code-checks
m Generates compile commands DB
m Run clang-tidy for files touched by PR and export the fixes
m Process the exported fixes and remove changes for files not touched by PR

e Changes for included headers

m Apply the fixes

> To run clang-format: scram build -j $(nproc) code-format

> Torun on all checked out files: code-[checks | format]-all

20

ROOT: clang-tidy/format integration

As ROOT uses CMAKE so it should not be hard to integrate these tool
> It might take more time to setup Cl to run these tool properly

clang-format is straight forward. Create valid .clang-format

> You can run clang-format directly on your source files

> CMAKE rules can help running in it parallel

clang-tidy should also be easy enough to setup. All you need is to

> (Create avalid .clang-tidy file

> generate compile commands DB, process it and remove any files for which you do not
want to run clang-tidy and run run-clang-tidy.py

cmake -DCMAKE EXPORT COMPILE COMMANDS=ON ..
#cleanup compile commands.json if needed
run-clang-tidy.py -header-filter='.*' -fix

21

Things to remember for automatic Cl jobs

User can execute arbitrary code if build rules and code exist in same

repository
> Using execute_process()/command() CMAKE commands
> In CMSSW we do not have this issue as BuildRules are in different repository.

clang-format can run for all PR as long one does not use the build system

clang-tidy can also run automatically with some workarounds

> Use compile_commands.json from release area
> For newly added sources, use the compile command of other files in same directory

Do not run clang-tidy on full code base

> Only run it on changed files
> Revert clang-tidy fixes for header files which are not touched by PR

22

