
Use of C++ code
formatting/linting tools

CMS Offline Software
Malik Shahzad MUZAFFAR

ROOT Team Meeting 26/07/2021

Intro
❖ clang-format/tidy

➢ What are these tools
➢ How to use
➢ Examples

❖ Code checks for CMSSW Offline Software
➢ CMSSW Offline Software
➢ CMSSW CI system and code formatting/linting tools

❖ clang-format/tidy for ROOT project

2

clang-format: What is it?
❖ A tool to automatically format C/C++ code but supports other languages (

JavaScript, Proto, C-Sharpe)
➢ Many predefined styles

■ LLVM, Google, Chromium, Mozilla, WebKit, Microsoft
■ Custom styles by configuring specific styles options

❖ Allows developers and code reviewers to spend less time on formatting
and reviewing code style issue

3

https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/docs/ClangFormatStyleOptions.html#

Clang-format: How to use
❖ Very simple to use, you just needed clang-format

➢ Code style can be selected via -style=’{...}’ or -style=file
command-line option

■ .clang-format yaml format file can be used to
override specific style options

● clang-format uses .clang-format from the
closest parent directory

❖ clang-format-diff.py can be used to format only
the changes (e.g git diff | clang-format-diff.py)

❖ Very fast and can run in parallel
➢ Can do inplace edit (-i command line option)

cmssw/.clang-format

4

https://www.systutorials.com/docs/linux/man/1-clang-format-diff/

clang-format: Examples

5

Clang-format: Example ...
https://github.com/cms-sw/cmssw/pull/34054/commits/aa2e97946048fbb152
9eea04a25086639cf52af4

Use //c
lang-format on/off to disable formattin

g

6

https://github.com/cms-sw/cmssw/pull/34054/commits/aa2e97946048fbb1529eea04a25086639cf52af4
https://github.com/cms-sw/cmssw/pull/34054/commits/aa2e97946048fbb1529eea04a25086639cf52af4

clang-tidy: What is it?
❖ A clang based C++ “Linter” that can identify

➢ style violations
➢ interfaces misuse
➢ bugs that can be deduced via static analysis

❖ Contains a lot of checks and can also run clang static analyzer checks
➢ Also provides easy interface for writing new checks

7

https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/checks/list.html

Clang-tidy: How to use
❖ For single file

➢ clang-tidy file.cpp -checks=-*,clang-analyzer-* -- -Imy_project/include -DMY_DEFINES

❖ For large project, it is better to use a “compile commands database”
➢ cmake version 3.5 and above already support it

■ use -DCMAKE_EXPORT_COMPILE_COMMANDS=ON to generate
compile_commands.json

❖ Checks can be enabled either via command line “-checks=-*,clang-analyzer-*” or
use .clang-tidy file
➢ clang-tidy searches the closest parent directory for this file

❖ clang-tidy-diff.py can be used to apply checks on changed code only

8

https://clang.llvm.org/extra/doxygen/clang-tidy-diff_8py_source.html

clang-tidy: How to use ..
❖ Code should not have any compilation errors
❖ It can apply the fixes inplace (-fix command-line option)
❖ It can run in parallel but be careful with fixes for header files

➢ multiple source files include same header
➢ multiple clang-tidy processes can apply the same fixes resulted in invalid code
➢ run-clang-tidy.py can be used to avoid this

■ First runs clang-tidy to export the fixes in to yaml files
■ Apply the suggested fixes

❖ Approx. takes same time as compilation

9

https://clang.llvm.org/extra/doxygen/run-clang-tidy_8py_source.html

clang-tidy: Examples
readability-container-size-empty

modernize-use-nullptr / modernize-use-override

10

clang-tidy: examples
❖ Some checks can generate invalid code e.g.

➢ readability-container-size-empty

➢ google-readability-braces-around-statements

Use //NOLINT or //NOLINTNEXTLINE to ignore clang-tidy check

11

clang-format/clang-tidy
CMSSW

12

CMS Offline Software (CMSSW)
❖ CMSSW has large code base

➢ 3.4M C++/C, 1.3M Python, 275K Fortran lines of code
■ 30K C++/C files

● 16K source files
■ 2400+ shared libs/plugins , 850+ executables/tests
■ 450+ externals packages deps (Including 260+ python packages)

❖ Over 20 years of SW development and still very active
➢ For last 2 years

■ 75+ unique contributors/month contributing to CMSSW code base
■ 750+ commits/month

❖ 12 Release cycles (5.3, 7.1, ….. 12.0)

13

CMSSW: Code reviews

❖ CMSSW code reviewers review large number of PRs every day
➢ Some automated checks are needed to filter-out the bad PRs

■ Majority of changes are bogus and code reviewers should not waste time on those
● Mostly due to PR open for a wrong git branch

■ Code which does not compile
❖ Ease the code reviewer life by automatically enforcing code rules and

styles

Pull Requests/week # of PRs # of lines +/- # files

Created 75 975K/225K 3.5K

Merged 60 75K/53K 690

14

CMSSW code checks: clang-format/tidy
❖ Since 2017, CMS Offline software CI-bot has been using clang-format/tidy

to enforce the CMS coding and style rules
➢ Really helped us improving code quality and integration process
➢ Saved a lot of code review time

❖ CMS CI-bot automatically runs code-checks for all pull requests
opened/updated for development release cycle
➢ Passing code-checks is prerequisite for code review

■ failing this check will not allow to start the build/tests process

15

CMSSW code-checks: CI-bot
Co

m
m

it
 s

ta
tu

se
s/

la
be

ls
 s

et
 b

y
CI

-b
ot

16

CMSSW Code-checks: CI-bot results

CI-b
ot u

se
s P

R co
m

m
ents

to
 re

port
th

e deta
ils

 of

co
de-ch

eck
s

17

CMSSW Code-checks: CI-bot results

Code-checks also look for
❖ Git repository size increase
❖ Files added/deleted

➢ To avoid binary files in git history
❖ Files with same name but with different

capitalization
❖ Files touched by other already opened PRs

18

CMSSW Code-checks: What we have done
❖ Selected the clang-tidy checks and clang-format style to enable

➢ Started a campaign to run clang-tidy and format for full CMSSW
■ Done via an automated Jenkins job
■ PRs with max 200 files/PR

● Separate commits for clang-tidy and format fixes
■ Skipped files touched by already opened PRs

● To avoid possible merge conflicts

❖ Enabled CI code-checks for all newly opened or updated PRs
➢ CI code-checks runs only on files touched by PR
➢ clang-tidy/format runs for full file contents instead of changes only
➢ Clang-tidy does not run for newly added headers which are not included in any source file

19

https://github.com/cms-sw/cmssw/blob/master/.clang-tidy
https://github.com/cms-sw/cmssw/blob/master/.clang-format

CMSSW Build Rules: PR code check
❖ CMSSW uses SCRAM as a build system (MAKE based rules)

➢ To run clang-tidy: scram build -j $(nproc) code-checks
■ Generates compile commands DB
■ Run clang-tidy for files touched by PR and export the fixes
■ Process the exported fixes and remove changes for files not touched by PR

● Changes for included headers
■ Apply the fixes

➢ To run clang-format: scram build -j $(nproc) code-format
➢ To run on all checked out files: code-[checks|format]-all

20

ROOT: clang-tidy/format integration
❖ As ROOT uses CMAKE so it should not be hard to integrate these tool

➢ It might take more time to setup CI to run these tool properly

❖ clang-format is straight forward. Create valid .clang-format
➢ You can run clang-format directly on your source files
➢ CMAKE rules can help running in it parallel

❖ clang-tidy should also be easy enough to setup. All you need is to
➢ Create a valid .clang-tidy file
➢ generate compile commands DB, process it and remove any files for which you do not

want to run clang-tidy and run run-clang-tidy.py
cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON ..
#cleanup compile_commands.json if needed
run-clang-tidy.py -header-filter='.*' -fix

21

Things to remember for automatic CI jobs
❖ User can execute arbitrary code if build rules and code exist in same

repository
➢ Using execute_process()/command() CMAKE commands
➢ In CMSSW we do not have this issue as BuildRules are in different repository.

❖ clang-format can run for all PR as long one does not use the build system
❖ clang-tidy can also run automatically with some workarounds

➢ Use compile_commands.json from release area
➢ For newly added sources, use the compile command of other files in same directory

❖ Do not run clang-tidy on full code base
➢ Only run it on changed files
➢ Revert clang-tidy fixes for header files which are not touched by PR

22

