

MeChanICs RF structure production

G. Riddone, 06/09/2010

Content

- Introduction to RF structures and components
- Fabrication steps and issues
 - Engineering design
 - Machining
 - Quality control
 - Bonding
 - RF measurements
 - Baking
- Towards CLIC structures (CLIC two-beam modules)

Accelerating structures

TD24#2 at CERN (12 GHz)

- Cu OFE UNS C10100
- Shape accuracy ± 2.5 µm
- Roughness Ra 0.025 µm
- Ø 45 to 80 mm, 30 disks
- Length 300 mm

(C.C.)

PETS (11.4 GHz, test at SLAC)

- Cu OFE UNS C10100
- Shape accuracy ± 7.5 µm
- Roughness Ra 0.1 µm
- 8 octants
- Length 300-1000 mm

RF components

Not treated in this talk.

Production phases

ENGINEERING DESIGN

Engineering design: To be studied/optimised

- Reduction of types of tooling
- Tolerances requirements: review of regions with stringent and relaxed tolerances
- Review of roughness requirements in the different regions
- Optimization of design for chosen assembly/joining methods

MACHINING AND DIMENSIONAL CONTROL

Technology

- Accelerating structures
 - Milling and turning (disks) -BASELINE
 - Milling (quadrants/halves) -ALTERNATIVE
 - Annealing steps between pre-machining and finishing

• PETS

- Milling
- Annealing steps between pre-machining and finishing

Diamond tool is required

- Dimensional stability
- Maintenance of tolerances
- Chips do not adhere to surface
- Expensive → well characterised

CERN

Machining at VDL

Page 4 of 5

New CMM (Coordinate Measuring

Machine) at CERN

	Drawing no. Description Measurand 1 2 3 4 5 6 6 7	CLRAS120020 12WDSDVG1.8T disk 007 Description Ref A //? 0.002 Outer dameer Ref B //? 0.002 0.005 A Width of cross Z =	Nominal 0.0000 80.0000 0.0000	Dimen Upper Lo 0.0020 0.0.0 0.0050 0.00 0.00 0.00 0.00 0.00	sions wer 000 70 005 00004 00 0.0005 0000 0	Prod. Nr. 1	Romark
Vite Inality	Description Description 1 2 3 4 5 6 7	Description Ref A 0.002 Outer dameer Ref B 0.002 0.003 0.005 Width of cross Z+	Nominal 0.0000 80.0000 0.0000 0.0000	Dimen: Upper Lo 0.0020 0.00 0.0050 0.000	sions wor 000 70 005 00004 00 0.0005 0000 0	0.001 Pass Fail 0.0015 N 0.0005 N 0.0005 N	Remark
Vite Inality	Measurand 1 2 3 4 5 6 7	Description Ref A (7) 0.002 Outer dameter Ref B (2) 0.002 (2) 0.005 A Width of cross 2 + Width of cross 2 -	Nominal 0.0000 80.0000 0.0000 0.0000	Dimen Upper Lo 0.0020 0.0 0.0050 0 0.00 0.00 0.00 0.00 0.00	sions wer 000 70 005 00004 00 0.0005 0000 0	0.001 Page Fal 0.0015 V 0.0005 V 0.0005 V 0.0001 V	Romark
Vit Inalig	Measurand 1 2 3 4 5 6 7	Description Ref A 2 0.002 Outer dameter Ref B 2 0.002 0.005 A Width of cross Z+ Width of cross Z-	Nominal 0.0000 80.0000 0.0000 0.0000	Upper Lo 0.0020 0.0 0.0050 0.00 0.00 0.00 0.00	000 70 105 0/0004 100 0.0005	Peas Fall 0.0015 V 0.0004 V 0.0005 V 0.0001 V	Remark
Viti Inality	1 2 3 4 5 6 7	Ref A 2 0.002 Outer dameter Ref B 0.002 0.005 A Width of cross Z+ Width of cross Z-	0.0000 80.0000 0.0000 0.0000	0.0020 0.0 0.0050 0.00 0.00	000 0.0004 005 0.0004 00 0.0005 0000 0	0.0015 V 0.0004 V 0.0005 V 0.0001 V	
With Kaling	2 3 4 5 6 7	Outer diameter Ref B	80.0000 0.0000 0.0000	0.0050	005 0.0004 00 0.0005 0000 0	0.0004 1 0.0005 1 0.0001 1	
Vite Instance	3 4 5 6 7	0.002 0.005 A Width of cross Z+ Width of cross Z-	0.0000	0.00	0000 0.0005	0.0005	
NN Instag	4 5 6 7	Width of cross Z+	0.1000	0. 0.0	0000	0.0001	
un in Cal	5 6 7	Width of cross Z+ Width of cross Z-	11				
Viti Institu	6	Width of cross Z-		0.0025		0.0002	
VDL Enabling	7	-	· - /	0.0025	25 .2514	0.0014	
VDL institut		Width of cross Y-	11.2500		25 11.2501	0.0001	
anadeng	8	Width of dra	11.2500	.0	0025 11.2501	0.0001	
Tochhologina	9	Pine 0	8.317	0.0025 -0.	0025 9.3171	-0.0004	
Group	10		1 - w	0.0020 0.0	0.0006	0.0006	
😝 Opri	11	opposed Her A // U.	0.0000	0.0050 0.0	0000 0.0036	0.0036	
	11	Paters alore mere U.0.003 A	0.0300	0.0025 -0.0	0025 0.8364	-0.0004	
X Stop	12	Dorth of money for solder foil	0.0000	0.0100 0.0	000 0.0011	0.0092	
Street and St	14	Diameter undulation	5.8478	0.0025 -0	0025 5.8469	-0.0002	
	15	0.002	0.0000	0.0020 0.0	000 0.0004	0.0004	
	17	0,003 B	0,0000	0,0030 0.0	000 0.0012	0.0012	
	9	Measurand t	1.4807	0.0025 -0.	0025 1.4801	-0.0006	
	18	Undulation - 0.005 A B	0.0000	0.0050 0.0	0000 0.0038	0.0029	
	19	Cross 0.005 A	0.0000	0.0050 0.0	0.0026	0.0015	
		6	•				0
21.00 C.00					0	-	
		12-		-		1	-
Y 31.80		0			m		9

PETS (CLIAP11_0037)

CLIAAS110070 VTT (FI)

D. Glaude

Shape accuracy of 50 μ m (Deviation due localisation errors) Very accurate and stable shape Fabricated by milling

G. Riddone, MeChanICs, 05.09.2010

0.025

MAX

MIN

Damped disk CLIAAS110188 (VDL)

Damped disk CLIAAS110188 (VDL)

CMM at CERN

Leitz PMM-C Infinity

Measuring range in mm: X = 1200, Y = 1000, Z = 700Volumetric length measuring error: $E = 0.3 + L / 1000 [\mu m]$ Volumetric probing error: P = 0.4 µm Resolution: 0.004 µm

Continuous Scanning Probe head LSP-S4 ANF

- probing force : 1g – 6g

-max. Styli weight : 450g -max. Styli extension : 500mm -max. Probing frequency: 6 – 8 pts/min

-max Moving speed: 80 mm/sec -max. Acceleration: 100 mm/sec²

Machining: To be studied/optimised

- Machining and annealing steps:
 - When and at which temperature (and how long)
- Unique clamping device for turning and milling
- Tool geometry and wear
- Turning vs milling regions: turning as mush as possible
- Optimization of dimensional control procedure

ASSEMBLY

Assembly of accelerating

structures

T18 structures tested at SLAC/KEK showed excellent test results

consequent validation of design, machining and <u>assembly procedure</u>

NLC/JLC fabrication technology: validated to 100 MV/m (baseline for future CERN X-band accelerating structures)

Application to CERN accelerating structures

- CERN previous assembly procedure was based on vacuum brazing at 800 °C → several changes were needed for implementing the baseline procedure
- Following the post-mortem analysis of the two CERN accelerating structures T18 and T24, contamination (C, Ca) resulted to be the main problem → cleanliness had to be seriously improved

Baseline manufacturing flow

Inspections

 Microscopic inspections before and after each relevant fabrication step

Video inspections, SEM and microscopic inspections

Microscopic inspection of disks before and after cleaning (on **witness pieces**)

Cleaning

SLAC Cleaning of Accelerator Parts

For accelerator structure parts with single diamond tuning surfaces:

- Vapor degrease in 1,1,1 trichloroethane or equivalent degreaser for 5 minutes.
- Alkaline soak clean in Enbond Q527 for 5 minutes at 180°F.
- Cold tap water rinse for 2 minutes.
- 4. Immense in 50% hydrochloric acid at room temperature for 1 minutes.
- 5 Cold tap water rinse for 1 minute
- Immense in the following solution for maximum of 5 seconds depending on the surface finish required: Phosphoric Acid, 75% 21 gallons Nitric Acid, 42° Baume 7 gallons Acetic Acid, Glacial 2 gallons Hydrochloric Acid 12.6 fluid ounces Tamperature Boom
- 7. Cold tap water rinse for minimum of 2 minutes until the film on part disappears.
- 8. Ultrasonic in DI Water for 1 minute.
- 9. Ultrasonic in new, clean alcohol for 1 minute.
- 10. Final Rinse to be done in new, clean alcohol.
- 11. Hold in clean alcohol in stainless steel containers.
- 12. Dry in a clean room using filtered N2.

For accelerator structure parts with regular machining surfaces:

 Immense in the following solution for maximum of 30-60 seconds depending on the surface finish required:

J. Wuang

SLAC cleaning procedure as a baseline

For **degreasing**

Trichloroethane → at SLAC replaced by Perchloroethylene

CERN procedure:

(Firm AVANTEC Performance Chemicals):

- TOPKLEAN MC 20A
- PROMOSOLV 71IPA

Tool for holding the disks

Cs, 05.09.2010

Diffusion bonding

22/10/09 18:40:00

Page 1 of 1

Bonding at CERN: few mbar H_2 partial pressure (difference with SLAC): we are validating bonding at 1 bar H_2 (Thales-CEA, Listenmann).

G. Riddone, MeChanlCs, 05.09.2010

22/10/09 08:20:00 28/10/2009 11:01:13

Diagramme2

Accelerating structure TD24 after diffusion bonding under H₂

Assembly

At SLAC

Assembly made on V-blocks Verification of the assembly (before and after bonding) with a new measurement column: straightness and tilt

Under Argon 13 l/min in a glove box

ERN

RF check and tuning

J. Shi

Vacuum baking

CERN furnace → several mechanical adaptations were needed

1st baking: TD24 for CLEX, two-beam test stand

Clean room

Accelerating structures fabrication procedure comparison

	SLAC/KEK	Fermilab	CERN old	CERN new (SLAC/KEK based)
Diamond machining	۷	V	V	۷
Etch	V	V	V	V
1000 °C pre-fire		🗸 (Ar)		
~ 1000 °C diffusion bonding	V			۷
~ 1000 °C brazing	۷			
~ 800 °C brazing		√ (Ar, Au/Cu)	√ (Vacuum, Ag/Cu)	V
Vacuum baking	V	V		V
Tank/sealed	SEALED	SEALED	SEALED	TANK/SEALED

CERN procedure still needs to be optmised

Accelerating structures: alternative program

Origins translation: X 16 μm and Z -8 μm Shape accuracy is respected \pm 2.5 μm

Fabrication of PETS at 11.4 GHz with damping material

Damping material Bar length ~ 300 mm Shape tolerance within specification: \pm 7.5 μ m Minitank with bars inside PETS for feasibility demonstration Coupler - successfully tested at SLAC

Fabrication of TBL PETS

<u>Prototype made by CIEMAT</u> using conventional UHV best practice for cleaning and handling Coupler is brazed, no heat treatment for PETS itself

The **<u>CERN production</u>** will be assembled in a clean room, The coupler will be vacuum brazed at CERN

Production capability

PRODUCTION CYCLE (ac. structures)				PRODUCTION CYCLE (PETS @ 11.4 GHz)		
Manufacturing	Assembly (bonding)	Tuning	Baking	Manufacturing	Assembly (EB welding)	<mark>RF meas.</mark> Baking
10 wks	4 wks	2 wks	3 wks	10 wks	6 wks	1 wk
						1 wk
Total: 19 wks (about 5 months)				Total: 18 wks (about 4.5 mon	ths)	

3 laboratories:

- ac. structures → SLAC/KEK and CERN
- PETS -> CERN
- 6 qualified vendors for ac. structures: 3 (CERN), 2 (KEK), 1 (SLAC)
- 3 qualified vendors for PETS

For each structure, at least two units per lab. are manufactured (almost in parallel)

For KEK/SLAC made structure, the assembly/baking is made at SLAC

- e.g. baking of two structures in parallel

At present, potential capability up to 20. structures per year

Other structures

Important involvement of other laboratories to exchange experience and to increase the market

→ <u>900-mm</u> long structures for PSI (X-FEL) and Elettra

(Sincrotone Trieste) with wakefield monitors

Assembly To be studied/optimised

- Baseline procedure:
 - sequence of different steps to improve quality (e.g welding of flanges as one the last operations is dangerous)
 - Review of thermal cycles: T vs time
 - Minimization of thermal cycles
- Review of alignment procedure
- Cost effective assembly procedure

Hydrogen brazing

Extensive program launched to improve our understanding on the influence of different thermal cycles on the copper surface

TOWARDS CLIC STRUCTURES

Towards CLIC structures

• CDR

- Accelerating structure with all features: damping material, wakefield monitor and technical systems; under eng. design (first structure at the end of 2010). Assembly test with a prototype structure are scheduled in the coming weeks.
- PETS with on-off system: under design.
 On-off system to be tested in Q1, 2011
- Cost estimate is needed for CDR: dedicated studies with three companies/institutes

Towards CLIC structures

- From CDR to TDR
 - Main linac prototype modules (3 by end of 2012) will be built to validate the technical systems in an integrated approach.

- These modules will contain accelerating structures and PETS with all required features
- Industrialization and mass production
 developmenthinccollaboration with companies

- Fabrication of X-band micro-precision RF structure is very challenging and it involves several steps, technologies and quality controls
- NLC/JLC fabrication technology validated for CLIC accelerating structures to 100 MV/m
 - → CERN implementing NLC/JLC procedures, but optimization is needed
- Production capability in Europe has to increase: at present only few firms qualified and the final product is not always within tolerances → involvement of other laboratories to exchange experience and expertise is mandatory
- Fabrication procedures are to be developed and cost-performance ratio improved
- CLIC structures with all features under design: first unit ready by end of this year
- Main linac prototype modules for CLEX will include CLIC several structures: 2011-2013
- Industrialization, mass production and cost study under way