Cluster study in a single ALPIDE chip

Jan Schöngarth
Allpix2 set up

- A single ALPIDE Chip in the origin
- particle source at $z=-500\mu m$
- 10,000 Events, one particle per event
- beam direction $(0,0,1)$
- particles used: electron, positron, photon
- TTree output from CaloOutputWriter module
Cluster size comparison, e^- and e^+

- one simulation with 10,000 Events for each particle and energy
- electrons and positrons produce a similar cluster size distribution
Cluster size comparison, e^- and e^+

- bigger clusters at around 100keV
- to do: create a mean cluster size plot
Cluster size comparison, photon

• only at low energies photons produce clusters
Cluster size comparison, photon

- only at low energies photons produce clusters
- peak around 5keV
Cluster size comparison

- at 1keV there are no clusters from electrons
- at low energies most clusters are from photons
Cluster size comparison

- at higher energies electrons and positrons create similar distributions
Particle interaction with matter

- Ionization peak possibly at 100keV in Silicon?
- Photoelectric Effect peak possibly at 5keV in Silicon?
Algorithm idea

- Pixel coordinates as a Matrix

\[C_1 = \begin{pmatrix} 511 & 512 & 512 \\ 256 & 256 & 257 \end{pmatrix} \]
Algorithm idea

• Pixel coordinates as a Matrix

\[C_1 = \begin{pmatrix} 511 & 512 & 512 \\ 256 & 256 & 257 \end{pmatrix} \]

• substract the minimum x, maximum y from each x, y

• \(\min_x = 511, \ \max_y = 257 \)

\[C_2 = \begin{pmatrix} 0 & 1 & 1 \\ -1 & -1 & 0 \end{pmatrix} \]
Algorithm idea

• $C_2 = \begin{pmatrix} 0 & 1 & 1 \\ -1 & -1 & 0 \end{pmatrix}$

• take absolute values

$\Rightarrow C_2' = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$
Algorithm idea

• $C'_2 = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

• use the columns of C_2 as indices for Shape Matrix

• $S = \begin{pmatrix} S_{00} & \cdots & S_{0n} \\ \vdots & \ddots & \vdots \\ S_{n0} & \cdots & S_{nn} \end{pmatrix} = 0$

• $n = n_{Pixel}$
Algorithm idea

\[C_2' = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \]

\[S = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]
Algorithm idea

• $C_2' = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 0 \end{pmatrix}$

$S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}$
Algorithm idea

• $C_2' = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$

➢ $S = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
Algorithm idea

\[C_2' = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \]

\[S = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]
Shape identification

• use `std::vector<vector<int>>` of size `clustersize × clustersize`
• compare shape vector to a list of vectors
• return integer which represents bin number of the shape
Problems

• Events with disconnected pixel hit locations
• Events with 5 or more pixel hits
Shape distribution, electron 1MeV

3 pixel

vertical/horizontal line shapes
Shape distribution, Electron 1MeV

3 pixel

Events with disconnected pixel hits
Shape distribution, Electron 1MeV