
Martin Kwok(Fermilab)
On behalf of the CCE-PPS team
IRIS-HEP topical meeting
 04 August, 2021

Portable Parallelization Strategies - Overview and Metrics

1

08/04/21 Martin Kwok | Portable Parallelization Strategies - Overview and Metrics

What is HEP-CCE?

• HEP-CCE (Center for Computational Excellence)
- A 3-year (2020-2023) pilot project, funded by US DOE
- Formed by 4 US labs, 6 experiments,  

covering cosmic/intensity/energy frontiers
• Develop common strategies to common computational challenges for HEP community

- Specifically to efficiently run HEP software on HPCs

2

1. PPS: Portable Parallelization Strategy
2. IOS: HEP I/O and HPC storage issues
3. EG: Event Generation
4. CW: Complex Workflow on HPC

Focus of today

08/04/21 Martin Kwok | Portable Parallelization Strategies - Overview and Metrics

Parallelization: Common challenge to HEP

• Demand for processing power from HEP experiment will outgrow expected resource
increase
- “Buy more CPU” does not work
- In 2030, LHC experiments will need O(100) PFlops/s

• Parallelism is one of the key to meet growing computing power
- Lesson from the past: single-core CPU frequency has plateaued since ~2005
- Multi-core CPU flourished

3

arxiv:1604.00319

https://arxiv.org/pdf/1604.00319.pdf
https://arxiv.org/pdf/1604.00319.pdf

08/04/21 Martin Kwok | Portable Parallelization Strategies - Overview and Metrics

Parallelization: Common challenge to HEP
• Extend the parallelism:

- Offload computational intensive tasks to a custom architecture for parallel computation (an
accelerator)

- Could be a GPU or even a FPGA
• Exascale HPC systems could provide the computing power

- Taking advantage of CPU + GPU
• Mis-match between software and hardware:

- HEP software predominantly written for x86 platforms
- Offloading to another architecture is a different  

programming paradigm
• Needs more effort to use accelerator efficiently

4

Perlmutter Phase 1 @NERSC
Ranked 5 in the Top-500 list
700k+ cores, ~65 PFlops/s

HEP software

08/04/21 Martin Kwok | Portable Parallelization Strategies - Overview and Metrics

Portability: HPC landscape

• Accelerator architectures are proliferating
- Main GPU manufacturers: NVidia, Intel, AMD
- FPGA is possible but is less mature

• We need portable solutions
- Cannot afford to re-write the code for each architecture
- Aim at maintaining a single code-base for all target architectures

5

Accelerators
Intel NVIDIA AMD FPGA Other

CPU Intel Aurora WLCG (HEP)
Cori GPU
Piz Daint
Tsukuba
MareNostrum

Tsukuba

AMD WLCG (HEP)
Perlmutter

Frontier
El Capitan

IBM Summit
Sierra
MareNostrum

Arm Alps Astra

Fujitsu Fugaku

08/04/21 Martin Kwok | Portable Parallelization Strategies - Overview and Metrics

Portability: Software Support

• No universally accepted best way to write performance, portable GPU code
- Each portability solution has strength and weakness

6

The technologies are still evolving, platform support is a moving target

08/04/21 Martin Kwok | Portable Parallelization Strategies - Overview and Metrics

Strategy: The plan for PPS
• Investigate a range of software portability solutions

- Kokkos
- SYCL/ dpc++
- Alpaka
- OpenMP/OpenACC

• Experiment each solution with various HEP applications
- Covers different HEP experiments, code sizes, physics problems
- Diversity of the test application tells us different aspects of the technology

• Evaluate each solution with a set of metrics
- Capture the full porting experience (Porting, building, performance etc.)

• Make recommendations to the experiments
- Addresses different needs for different workflows

7

of lines 
 of code

Patatrack
[CMS] (Pixel tracking)

WireCell Toolkit
[DUNE] (TPC Sim.)

FastCaloSim
[ATLAS] (Calorimeter Sim.)

p2r
[CMS] (Tracking)

Detailed results
In Haiwang’s talk

08/04/21 Martin Kwok | Portable Parallelization Strategies - Overview and Metrics

Kokkos
• Single source C++ template library
• Aims to be descriptive, not prescriptive

- Kokkos handles the backend (relatively high-level API)
- Abstraction layer provides handle for efficient data layout for both GPU/CPU + more

• One host(CPU)+parallel (GPU/CPU) backend chosen at compile time
- Supports NVIDIA/AMD GPU
- Write once, compile for different architectures

• Active Kokkos development, and user support
- Open source

8

https://github.com/kokkos/kokkos

Kokkos Abstraction

CUDA
NVIDIA

OpenMP HIP
AMD

Parallel  
execution  
backends

CPU
pThread

Pattern: nature of work 
Execution Policy:  
How computations  
are executed
Body: Unit of work

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos

08/04/21 Martin Kwok | Portable Parallelization Strategies - Overview and Metrics

SYCL / Data Parallel C++ (DPC++)

• SYCL is a specification of single-source C++ programming model  
for heterogeneous computing
- Different compilers implements the specification
- Intel’s oneAPI and Data Parallel C++ (DPC++) supports Intel CPU, GPU, FPGA
- Parallelism based on C++17 standard

• Execute on most architectures
- Including CPU, GPU, FPGA

• Exact behavior of program depends on compiler
- Compilers are evolving rapidly

• C++ standard for heterogeneous computing  
is still evolving
- Features are growing

9

Complex ecosystem

08/04/21 Martin Kwok | Portable Parallelization Strategies - Overview and Metrics

First year of CCE-PPS

• Projects typically start with parallel CPU/ CUDA implementation
- Target a portable solution

• Could take a long time, depending the size of project
- Benchmarking/Optimize implementation

• See results from Haiwang’s slides

• Designed metric for evaluating different solutions
- Lots of useful lessons learned from hands-on experience
- Collecting results among ourselves from different projects

10

Implementation
Projects CPU CUDA SYCL Kokkos

1 FastCaloSim
2 Patatrack
3 Wirecell

Planned In progress Completed

08/04/21 Martin Kwok | Portable Parallelization Strategies - Overview and Metrics

Metrics: Evaluation

1. Ease of learning and extend of code
modification

2. Code conversion
3. Impact on existing code

• Control of main(),
• Threading/execution model

4. Impact on EDM/ data
5. Impact on existing toolchain and build

infrastructure
6. Hardware mapping

• Current and future backend support
7. Feature availability

• Reduction, concurrent kernels etc.
• Interface to commonly used math

libraries
8. Ease of debugging

11

9. Address needs of all workflows
• Scaling with # kernels / applications

10. Long-term sustainability and code
stability

11. Compilation time
12. Performance/Run time

• Compares with native
implementation (e.g. CUDA for
NVidia GPUs)

13. Interoperability
• Run different technologies in same

application?
14. Aesthetics

06/18/21 Martin Kwok | CCE-PPS Metric overview

Metric progress

12

Topics Metric  
formulation

SYCL Kokkos

1 Ease of Learning Language
2 Code conversion
3 Extent of modification to existing code
4 Extent of modifications to EDM / Data
5 Extent of modifications to build rules
6 Hardware Mapping
7 Feature Availability
8 Address needs of all workflows
9 Long term sustainability and code

stability10 Compilation time
11 Run time
12 Ease of debugging
13 Aesthetics
14 Flexibility

Needs input Some input there

Good amount of content

08/04/21 Martin Kwok | Portable Parallelization Strategies - Overview and Metrics

Summary and moving forward

• PPS stands for Portable Parallelization Strategy
- Develop a common strategy for parallelization of HEP software
- One of the key ingredients to meet the demand for  

HEP computing in the next 10 years
- Fruitful results from 1st year: See Haiwang’s talk up next

• What’s next for PPS?
- New use-case: A Common Tracking Software (ACTS)

• HEP common software, instead of experiment-specific application
- Propagate-to-R (P2R)

• Very light-weight tracking application [O(1000) lines] to speed-up exploration of technologies
- Explore new technologies

• Alpaka: Europe-backed C++ parallel programming library, similar to Kokkos
• std::par: Parallel execution policy in the new C++ standard

- Summarize experience from difference projects into metrics/recommendations
• Documentation of specific details could be useful for future decision making

13

https://github.com/alpaka-group/alpaka
https://github.com/alpaka-group/alpaka

