ALICE 3 Overview

Marco van Leeuwen (Nikhef)

Context and time line

- Idea for **next-generation heavy-ion programme** at the LHC developed within ALICE in the course of 2018/19
 - Discussed at the heavy-ion town meeting (CERN, October 2018)
 - Initiative supported by European Strategy for Particle Physics Update
 - Expression of Interest submitted to the Granada meeting
- Further development of detector concept and physics studies within ALICE
 - ALICE 3 workshops in October 2020 and June 2021
- Letter of Intent prepared for submission to LHCC

ALICE 3 overview | October 18th, 2021 | jkl, MvL

Initial stages

Gluon-dominated Color Glass Condensate? Isotropisation/ hydrodynamisation

QGP fluid expansion

Equation of State Shear, bulk viscosity: η , ζ Heavy quark transport \Rightarrow approach to thermalisation Parton energy loss

Melting of quarkonia

Heavy-ion collisions

Hadronisation

Final state scattering

Chiral symmetry breaking Statistical hadronisation Quark (re-)combination

Resonance decays Laboratory for hadron physics

Initial stages

Gluon-dominated Color Glass Condensate? Isotropisation/ hydrodynamisation

QGP fluid expansion

Equation of State Shear, bulk viscosity: η , ζ Heavy quark transport \Rightarrow approach to thermalisation

Parton energy loss Melting of quarkonia

Electromagnetic radiation ($\propto T^2$)

Hadron momentum distributions, azimuthal anisotropy

Heavy-ion collisions

Hadronisation

Final state scattering

Chiral symmetry breaking Statistical hadronisation Quark (re-)combination

Resonance decays Laboratory for hadron physics

Hadron abundances 'hadrochemistry'

Heavy flavour probes of thermalisation

 $\langle r^2 \rangle = 6 D_{\rm c} t$ $\tau_{O} = (m_{O}/T) D_{s}$

 $D_{\rm s}$: heavy quark diffusion coefficient

relaxation time

Interactions — diffusion lead to thermalisation of heavy quarks

- Large **charm v₂:** close to fully thermalised?
- **beauty** farther from thermalisation: **more sensitive**
- Hadronisation from the QGP
 - Quark coalescence/recombination important at low p_T : mix light and heavy flavour flow

Goal: understand relation between thermalisation of heavy quarks and hadrochemistry

Key observables: heavy meson and **baryon** R_{AA}, **v**₂, multi-charm baryons

ALICE 3 overview | October 18th, 2021 | jkl, MvL

Pb–Pb, $s_{NN} = 5.02 \text{ TeV}$

Centrality 0-10%

|y| < 0.5

Elliptic flow Azimuthal anisotropy

Heavy quark diffusion produces azimuthal anisotropy

D meson v₂

Ч Ч	1.6		
	1.4		
	1.2		
	1.0		
	0.8		

V3					р _т (GeV/ <i>c</i>)
0.0 4×10 ⁻¹	1	2	3 4 5 6	10	20 30

 $\langle r^2 \rangle = 6 D_s t$ heavy quark diffusion \Rightarrow collisional broadening

- Azimuthal correlations between DD, BB pairs
 - Decorrelation measures momentum diffusion \Rightarrow thermalisation
 - Low p_T shows largest effects; optimise sensitivity of observables
 - Complementary to heavy flavour flow

Need large statistics, large purity for D (B) mesons, large n coverage

Heavy-quark propagation

 \hat{q} : semi-hard scattering \Rightarrow radiative energy loss

GM Innocenti 14:45 S Bass, 15:45

M Nahrgang et al, PRC 90, 024907

Hadronisation: multicharm states

- Multi-charm baryons: unique probe of hadron formation
 - Requires production of multiple charm quarks
 - Single-scattering contribution very small
- Statistical hadronisation model: very large enhancement in AA
 - How is thermalisation approached microscopically?
- Measure multiple states to test thermalisation and hadronisation
 - Dependence on flavour, hadron size, binding energy, etc

Single and double-charm baryons: Λ_c , Ξ_c , Ξ_{cc} , Ω_{cc} Multi-flavour mesons: B_c, D_s, B_{s,...} Tightly/weakly bound states J/ ψ , $\chi_{c1}(3872)$, T_{cc}^+ Large mass light flavour particles: nuclei

F Prino 16:45 D Dobrigkeit Chinellato 17:15

Need large samples, excellent pointing resolution, particle identification

Bound states

- Quarkonium states
 - Explore new states: P-wave and pseudoscalars
 - Melting temperature depends on angular momentum
 - Measurements of χ_c ; χ_b test theory (lattice QCD, open quantum system approach)
- Exotic states: $\chi_{c1}(3872), T_{cc}^+, ...$
 - Nature of states: dissociation and regeneration
 ⇒ also studied with momentum correlations

GM Innocenti 14:45 A Rothkopf 15:15

Need muon ID down to low p_T , photon ID

ALICE 3 overview | October 18th, 2021 | jkl, MvL

Electromagnetic radiation

R Rapp Tue 15:30 R Bailhache Tue 16:00

- Access to precise QGP temperature
 - First measurements in Run 3 and 4
- New measurements with ALICE 3
 - Dilepton v_2 : sensitive to early vs late times
 - Double-differential mass- p_T : access time dependence
- Perform complementary measurements with photons

Need excellent electron ID (hadron rejection), low-mass detector (conversion bkg), excellent pointing resolution (HF decay bkg) Photon detection: conversions + ECAL

T vs energy

Chiral symmetry restoration

Spectral function at T = 160 MeV

- Unique window on chiral symmetry restoration at high T: ρ -a₁ mixing

Dilepton mass distribution

Chiral symmetry breaking generates hadron masses — fundamental aspect of QCD

• Requires large precision dilepton measurement at mass 0.8-1.2 GeV/c²

R Rapp Tue 15:30 R Bailhache Tue 16:00

Physics motivation (cont'd)

- Charm meson (and baryon) interaction potentials
 - Bound states: meson molecules, pentaguarks
- pp, p-Pb at high multiplicity: approach to QGP density
- **Search for new hadronic states**
 - Charm nuclei, anti-nuclei
- **Ultra-soft photons**
 - Test Low's theorem
 - Soft photons from stopping
- **BSM physics**
 - Axion-Like Particles in UPC
 - Dark photons, long lived particles, ...

A Kalweit Tue 13:00 L Fabbietti 17:45 K Reygers Tue 15:30

ALICE 3 overview | October 18th, 2021 | jkl, MvL

Correlation function

lons at the LHC

- High luminosity key for rare probes, e.g. multi-charm baryons
- Explore use of smaller nuclei to increase luminosity
 - Ongoing discussions with machine groups
- Current assumptions for physics projections:

	levelling	limited by machine				
	pp	Ar-Ar	Kr-Kr	Xe-Xe	Pb-Pb	
⟨L _{AA} ⟩ (cm ⁻² s ⁻¹)	3.0 · 1032	2.0·10 ²⁹	5.0·10 ²⁸	1.6·10 ²⁸	3.3·10 ²⁷	
⟨L _{NN} ⟩ (cm-² s-1)	3.0 · 1032	3.3·10 ³²	3.0·10 ³²	2.6 · 1032	1.4 · 10 ³²	
Laa (nb-1 / month)	510·10 ³	340	84	26	5.6	
£nn (pb-1 / month)	505	550	510	434	242	
Run 3 + 4 12 pb -1 Db Db	~10x AA luminosity (3 fb ⁻¹ per year)		~5x total AA lumir (depending or	nosity w.r.t. Run 3 + 4 collision system)		
200 pb ⁻¹ pp	Physi Experir	b: ects				

ALICE 3 overview | October 18th, 2021 | jkl, MvL

Detector concept

- Compact all-silicon tracker with high-resolution vertex detector
- Superconducting magnet system
- Particle Identification over large acceptance
- Fast read-out and online processing

J Klein 18:05 M Mager Tue 17:30 A Rivetti Tue 18:00

Tracking and vertexing

- 11 tracking layers in 2T solenoid+dipole field:
 - ~1% momentum resolution over full η range
 - Large efficiency down to low p_{T}
- Unique pointing resolution: ~10 μ m at 200 MeV/c, ~2 μ m at high p_{T}
 - First tracking layer at 5 mm from beam; retractable
 - Crucial for heavy flavour correlation studies, multi-charmed baryons, dilepton background

ALICE 3 overview | October 18th, 2021 | jkl, MvL

Impact parameter resolution

Particle identification

- Clean hadron identification up to O(10 GeV/c), e.g. ~8 GeV/c for π/K Larger p_T reach than current ALICE setup (TOF)
- Important for high purity electrons, heavy flavour decays

ALICE 3 overview | October 18th, 2021 | jkl, MvL

Muon identifier and ECAL

- Muon identifier
 - $L \approx 70$ cm steel absorber
 - Muons p > 1.3 GeV, J/ ψ down to $p_T = 0$
- Electromagnetic calorimeter
 - Decay photons from χ_c , χ_b
 - High-resolution PbWO₄ ECAL (partial acceptance)

- Complemented with sampling calorimeter for larger acceptance (e.g. γ -jet γ -HF measurements)
- Forward conversion tracker
 - Ultra-soft photon detection

Acc \times Eff $\times \mu$ PID for pions

Physics performance simulations

- **Detector response evaluated with**
 - Fast Analytical Tool: parametrised response based on detector description
 - Full simulation of tracking (O² framework with ALICE 3 geometry)
- Physics performance
 - Fast simulation parametrised response (DelphesO2)
 - Full covariance matrix for barrel tracking
 - Gaussian response for TOF + RICH
 - Hybrid simulations
 - Full simulation for weak strangeness decays + fast simulation for background

Workshop agenda

- Monday:
 - Heavy flavour programme
 - Detector concept
- Tuesday:
 - LHC run 3 and 4, RHIC programme
 - Electromagnetic probes
 - Detector R&D

Backup

ALI-SIMUL-489593

ALICE 3 overview | October 18th, 2021 | jkl, MvL

Impact parameter resolution with retractable layer

^LI-SIMUL-491785 Impact parameter resolution $< 10 \mu m$ for $p_T > 0.2 \text{ GeV}$

Performance simulations for multi-charm ongoing (heavy flavor WG)

