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Outline
‣ Overview of silicon pixels in ALICE


- ALICE ITS1, now dismounted

- ALICE ITS2, the large scale application of MAPS

- ALICE ITS3, the “current future” of MAPS

- ALICE 3, scaling it up by another order of magnitude


‣ Monolithic Active Pixel Sensors (MAPS)

- main achievements within ALICE R&D for ITS2

- the ALPIDE chip

- ALICE “offspring” targeting timing and radiation hardness


‣ R&D fronts (selection)

- bent + large scale sensors

- moving from 180 to 65 nm CMOS process


‣ Summary & Outlook
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Silicon Pixels in ALICE
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Silicon pixels in ALICE
1. Hybrid (innermost layer of first ITS)

‣ Since the very beginning ALICE 
uses silicon pixels


‣ Hybrid detectors in Run 1


‣ Essential ingredient for its physics 
output

- secondary vertex reconstruction


‣ Today: the first ITS is 
decommissioned and on display 
in the ALICE exhibition at P2

4Magnus Mager (CERN) | Silicon pixel sensors | ALICE 3 workshop | 19.10.2021 |



Silicon pixels in ALICE
LS2 upgrades with Monolithic Active Pixel Sensors (MAPS)
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6 layers: 
  2 hybrid silicon pixel

  2 silicon drift

  2 silicon strip

Inner-most layer: 
  radial distance: 39 mm

  material: X/X0 = 1.14%

  pitch: 50 ⨉ 425 μm²

rate capability: 1 kHz

7 layers: 
  all MAPS

  10 m2, 24k chips, 12.5⨉109 Pixels


Inner-most layer: 
  radial distance: 23 mm

  material: X/X0 = 0.35%

  pitch: 29 ⨉ 27 μm²

rate capability: 100 kHz (Pb-Pb)

LS2

Inner Tracking System

Muon Forward Tracker

new detector 

5 discs, double sided: 
  based on same technology as ITS2 

ITS2

MFT



Silicon pixels in ALICE
2. Monolithic CMOS (7 layers, LS2 upgrade, “ITS2”)

‣ By far largest detector of this kind


‣ Fully developed within the collaboration

- including the silicon

- R&D started some 10 years ago


‣ Construction involved >10 institutes
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27 cm

40 cm

147 cm

‣ 10 m2 active area


‣ 12.5⨉109 pixels


‣ Installed and under 
final commissioning



Silicon pixels in ALICE
a closer look at ITS2 and motivation for ITS3
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27 cm

40 cm

147 cm

‣ ITS2 will provide:

- pointing resolutions of 15 μm (in r  and z) at transverse momenta of 1 GeV/c

- tracking efficiencies of above 90% for particles with transverse momenta larger than 200 MeV/c

φ

‣ The Inner Barrel is ultra-light but still rather packed → further improvements seem possible

‣ Proposal: replace detector staves (tiled by several chips) by wafer-scale sensors that are bent 
around the beam pipe

ITS3



Silicon pixels in ALICE
3. Waver-scale, bent (inner 3 layers, LS3 upgrade, “ITS3”)

‣ Replacement of inner-most tracking layers


‣ Based on wafer-scale, bent silicon layers

- new detector technology, achieving an order 

of magnitude lower material budget

- main concrete drive to explore CMOS 

technologies (TJ 65 nm)


‣ R&D endorsed by LHCC in 2019 and running 
at full swing
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Silicon pixels in ALICE
4. large-scale + in vacuum (LS4 upgrade, ALICE 3)

‣ For ALICE 3, the goal is to produce an 
O(60-70 m2) silicon tracker (yellow part)


‣ It will comprise two parts

- in-vacuum tracker

- outer tracking layers


‣ Builds upon the experience and knowledge 
gained from ITS2 and ITS3

- bent sensors for inner-most layers

- optimised modules for outer layers 


‣ The scale of the undertaking requires us to go 
industrial/commercial: CMOS MAPS are ideal
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see Jochen Klein’s presentation on Monday



Silicon pixels in ALICE
key aspects for ALICE 3
‣ Low power consumption: 20-70 mW/cm2


- essential to keep material budget low (dominated by power distribution and heat removal)

- builds upon ALPIDE development (introducing low-power in-pixel front-ends)

- needs improvement to meet timing requirements O(100 ns) and higher data rates

- benefits from deeper sub-micron technologies (move from 180 nm to 65 nm, perhaps even further)


‣ Bent, wafer scale sensors

- achieve the lowest possible material budget figures (no/minimal support, good hermiticity by 

design)

- allow to be as close as possible to the beam (“non-flat” geometries)

- builds on ITS3


‣ Radiation hardness: O(1015 1 MeV/cm2 neq) NIEL

- orders of magnitude higher (at 5 mm) than ITS2 or ITS3

- builds on ITS2 offspring development (process modifications)
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This is challenging, but within reach today



Monolithic Active Pixel Sensors 
(MAPS)
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MAPS working principle (1)
in TowerJazz 180 nm CIS

‣ MAPS (Monolithic Active Pixel 
Sensors) house on the same chip:


- the sensitive volume, a high-resistive 
epitaxial layer


- the analog front-end (amplifier, 
discriminator)


- the readout electronics


‣ All of this fits into a device of 50 μm 
thickness 
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MAPS working principle (2)
in TowerJazz 180 nm CIS

‣ The well structure isolates 
electronics from sensing volume


‣ Possibility to put complex logic over 
the active matrix


‣ Full benefit from high integration 
density offered by deep sub micron 
technologies


‣ Drift and diffusion volumes are 
“engineerable”


- allows to optimise charge sharing 
(for position resolution, timing or 
radiation hardness)
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MAPS working principle (3)
example: ALPIDE pixel

‣ Front-end:  
(9 transistors, full-custom)

- continuously active

- shaping time: < 10 μs

- power consumption: 40 nW


‣ Multiple-event memory: 3 stages 
(62 transistors, full-custom)


‣ Configuration: pulsing & masking registers 
(31 transistors, full-custom) 

‣ Testing: analogue and digital test pulse circuitry 
(17 transistors, full-custom)


‣ Readout: priority encoder, asynchronous, hit-
driven
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O(200) transistors / pixel



MAPS R&D within ALICE for ITS2
time line (simplified)
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• study of technology 
• detection diode geometry  
• starting materials 
• radiation hardness
• digital front-end 
• priority-encoder readout

• full-scale sensor 
• simplified interface

• chip-chip communication interface 
• module integration 
• low-speed serial link

• multiple-hit memory, final interfaces 
• last optimisation of pixel 
• high-speed serial link (jitters)

• final chip



MAPS R&D within ALICE for ITS2
scope of R&D effort

‣ Many (>10) participating 
institutes 
→ biggest team within ITS 
project


‣ Several test beam facilities 
(including newly established 
ones)


‣ A lot of expertise within the 
collaboration has been 
generated


‣ This pays off now for 
ITS3/65 nm
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Status report: Bari
● Test on the pALPIDEfs

– Set up:

● Bari lab is ready

– Software:

● The pALPIDEfs software (Ubuntu 14.04 LTS and Mac)

Test system 

3 

source scan test

WP5 meeing@CERN | 09 Dec, 2014 | J. PARK 2

A  Large Ion Collider Experiment INHA University

✦ Test set-up for the source scan is done. 

✦ We tested source scan and have got the two data files by source scan. 

• file name : RawHit_date_time.dat, Sourcescan_date_time.dat 

✦ Need the macro for the source scan analysis.
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Status report: Bari
● Test on the pALPIDEfs

– Set up:

● Bari lab is ready

– Software:

● The pALPIDEfs software (Ubuntu 14.04 LTS and Mac)
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Introduction

• Beam time: December 1-4th.

• Participants:KyungEon Choi, Jongsik
Eum, Jiyoung Kim, Bong-Hwi Lim
(Pusan), Jonghan (Inha), Narong,
Prapong and Kritsada (Thai).

• 60 MeV e�

• 6 layers of pALPIDEfs (originally 7 layers)
+ 1 layer of Explorer-1

• pALPIDEfs DAQ firmware version:
047DEB1Cbis

• External scintillator trigger.

2/4 KyungEon Choi� , Jongsik Eum, Jiyoung Kim, Bong-Hwi Lim Short status report on ongoing test beam of pALPIDEfs (+ Explorer-1) at Pohang

Setups
Epilog

Thanks

Such a detailed and diversified characterisation would not be
possible without you!

Magnus Mager (CERN) ITS WP5 – sensor characterisation Pusan, 15–16/12/2014 25 / 25
16Magnus Mager (CERN) | Silicon pixel sensors | ALICE 3 workshop | 19.10.2021 |



ALPIDE - the MAPS for ITS2
the current state of the art

1024 x 512 pixels 
30 x 15 mm 
50 or 100 μm thick 
≫ 99% efficient 
fake hit rate: < 10-8/pixel/event – difficult to estimate due to radiation background 
consumption: ~100 mA @ 1.8V
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ALPIDE – mass production
results from 70,000 chips

‣ We are now in the position to quote performance figures 
and failure modes on large numbers


‣ This is an excellent starting point for scaling up

- to larger chips

- to higher volume
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ALPIDE – integrated onto ITS2
on-detector performance figures 

‣ Extremely low noise figures

- known from bench tests

- but now also observed in-situ on 

detector


‣ This is a real game changer in the 
application of CMOS sensors

- it is orders of magnitude lower 

than previous generations of 
MAPS have achieved


- essentially, a noise-free operation 
is now in reach
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ALPIDE – integrated onto ITS2
on-detector performance figures 
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leaded 
solder



ALICE offspring
process modification for better timing and radiation hardness
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More details: 
NIM A871 (2017) 90-96

https://doi.org/10.1016/j.nima.2017.07.046

Developed and 
prototyped within 
ALPIDE R&D

Foundry standard process Modified process CERN/Tower

Fully depleted epitaxial layer 
Charge collection time < 1 ns 
Operational up to 1015 1 MeV neq/cm2

Partially depleted epitaxial layer 
Charge collection time < 30 ns 
Operational up to 1014 1 MeV neq/cm2

Excellent co-operation with foundry!
Now being further pursued with MALTA, CLICpix, FastPix, …

Now, it is an important asset for ALICE 3

https://doi.org/10.1016/j.nima.2017.07.046


R&D fronts (selection)
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R&D (1): bending silicon
approaching the ideal cylindrical detector
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50 μm-thick ALPIDE

R = 18 mm jig

tension wire
foil



R&D (1): bending silicon
approaching the ideal cylindrical detector
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R&D (1): bending silicon
approaching the ideal cylindrical detector
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ALICE ITS3

Test beam results (1)
1st paper: arxiv:2105.13000 
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Clearly proving that bent MAPS are working!

https://arxiv.org/abs/2105.13000


Test beam results (2)
μITS3
‣ μITS3, i.e. 6 ALPIDEs at ITS3 radii


- two complete setups based on “gold” quality 
ALPIDE chips


- one has a Cu target in the center: expect to see 
120 GeV proton/pion–Cu collisions


‣ Several days of continuous data taking

- detailed analysis ongoing

27Magnus Mager (CERN) | Silicon pixel sensors | ALICE 3 workshop | 19.10.2021 |

DUT

schematic view

First “real” experiment, allows to study tracking/reconstruction 
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DUT

schematic view

First “real” experiment, allows to study tracking/reconstruction 

[few hand-drawn track lines to guide the eye]

– work in progres –

Example event



R&D (2): 65 nm 
‣ First submission in TowerJazz 65nm


- scoped within CERN EP R&D WP1.2

- significant drive from ITS3

- + important contributions from outside (not 

ALICE) groups


‣ Contained several test chips

- radiation test structures

- pixel test structures

- pixel matrices

- analog building blocks (band gaps, LVDS 

drivers, etc)
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~12 mm

~1
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65 nm 
first prototypes

‣ The first (and still small) 
prototypes have just arrived


‣ Intensive test campaign has 
started at several institutes
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Transistor test structures
measuring radiation hardness
‣ Compatible with existing test system based on probe card


‣ Tests have already started

- no apparent showstoppers so far

- detailed analysis ongoing and in discussion with foundry
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Very encouraging results, clears first milestone of 65 nm verification



Digital Pixel Test structure (DPTS)
measuring pixel performances

‣ Most “aggressive” chip in MLR1


‣ 32 ⨉ 32 pixels, 15 μm pitch

- sizeable prototype, allows for “easy” test 

beam integration


‣ Asynchronous digital readout with ToT 
information


‣ Allows to verify:

- sensor performance

- front-end performance

- basic digital building blocks

- SEU cross-sections of registers
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32x32 pixels

1.5 mm



3 ALPIDE3 ALPIDE 2 DPTS

scintilator
scintilator

scintilator 
with 1mm hole

XY-stage

XY-stage

XY-stageFirst beam test
Telescope with DPTS

‣ Setup at DESY (Sep 2021)


‣ As we speak, another setup is 
running at the PS


‣ More beams at SPS and DESY 
planned for this year
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3 ALPIDE 
(ref)

3 ALPIDE 
(ref)

2 DPTS 
(DUT)

1 PMT 
(trg)

1 PMT 
(trg)

1 PMT 
(anti)

setup at DESY

5.4 GeV/c 
electrons

5.4 GeV/c 

electrons



DPTS detection efficiency

‣ Beam spot and trigger tuned to 
illuminate a small area

33

first few % of total statistics analysed
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DPTS detection efficiency
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‣ The area matches precisely the 
DPTS

‣ 166/166 tracks in region of interest
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DPTS detection efficiency

‣ Beam spot and trigger tuned to 
illuminate a small area

‣ Looking at tracks without hit in the 
DPTS, a clear 100% shadow is seen

‣ The area matches precisely the 
DPTS

‣ 166/166 tracks in region of interest
- similar for second chip (162/162)
- and even for both in coincidence 

(83/83)
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33
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Excellent sensor and front-end performance already from first 65 nm prototype

Efficiency with (162+166)/(162+166) tracks: 

 

(95% confidence, Clopper-Pearson)

100+0
−1 %



Summary and outlook

‣ ITS3 and the ALICE 3 tracker are the two concrete undertakings that are and will 
advance MAPS technology

- similar situation as ITS2, which marked a quantum step


‣ ALICE is at the forefront, introducing new technologies in HEP right now:

- 65 nm MAPS

- bent vertex detectors


‣ ALICE 3 pushes this limits further

- another order of magnitude higher in volume

- higher demands in rates and radiation hardness

- further commercialisation of components


‣ Exciting times and excellent future prospects
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!ank you!


