ALICE 3
Detector Concept

ALICE 3 workshop
October 18-19, 2021

Jochen Klein (CERN)
Observables

• **Heavy-flavour hadrons** ($p_T \rightarrow 0$, $|\eta| < 4$)
 - vertexing (decay chain)
 - tracking (inv. mass resolution)
 - hadron ID (background suppression)

• **Dielectrons** ($p_T \sim 0.1 - 3$ GeV/c, $M_{ee} \sim 0.1 - 4$ GeV/c^2)
 - vertexing (HF background suppression)
 - tracking (inv. mass resolution)
 - electron ID

• **Photons** (100 MeV/c - 50 GeV/c, wide η range)
 - electromagnetic calorimetry

• **Quarkonia and Exotica** ($p_T \rightarrow 0$)
 - muon ID

• **Ultrasoft photons** ($p_T = 1 - 50$ MeV/c)
 - dedicated forward detector

• **Nuclei**
 - identification of $z > 1$ particles

Key requirements

• Tracking over large rapidity range
• Excellent vertexing
• Excellent particle identification
• High rate
Detector concept

• Compact all-silicon tracker with high-resolution vertex detector
• Superconducting magnet system
• Particle identification over large acceptance
• Fast readout and online processing
Detector requirements

| Component | Observables | $|\eta| < 1.75$ (barrel) | $1.75 < |\eta| < 4$ (forward) | Detectors |
|----------------|--|-----------------------|-----------------------------|---|
| Vertexing | Multi-charm baryons, dielectrons | Best possible DCA resolution, $\sigma_{DCA} \approx 10 \mu m$ at 200 MeV/c | Best possible DCA resolution, $\sigma_{DCA} \approx ??? \mu m$ at 200 MeV/c | Retractable silicon pixel tracker: $\sigma_{pos} \approx 2.5 \mu m$, $R_{in} \approx 5$ mm, $X/X_0 \approx 0.1$ % for first layer |
| Tracking | Multi-charm baryons, dielectrons | $\sigma_{p_T} / p_T \sim 1$ % | | Silicon pixel tracker: $\sigma_{pos} \approx 10 \mu m$, $R_{out} \approx 80$ cm, $X/X_0 \approx 1$ % / layer |
| Hadron ID | Multi-charm baryons | $\pi/K/p$ separation up to a few GeV/c | | Time of flight: $\sigma_{tof} \approx 20$ ps RICH: $n = 1.03$, $\sigma_\theta \approx 1.5$ mrad |
| Electron ID | Dielectrons, quarkonia, $\chi_{c1}(3872)$ | pion rejection by 1000x up to $\sim 2 - 3$ GeV/c | | Time of flight: $\sigma_{tof} \approx 20$ ps RICH: $n = 1.03$, $\sigma_\theta \approx 1.5$ mrad possibly preshower detector |
| Muon ID | Quarkonia, $\chi_{c1}(3872)$ | reconstruction of J/Ψ at rest, i.e. muons from 1.5 GeV/c | | steel absorber: $L \approx 70$ cm muon detectors |
| Electromagnetic calorimetry | Photons, jets | large acceptance | | Pb-Sci calorimeter |
| | χ_c | high-resolution segment | | PbWO$_4$ calorimeter |
| Ultrasoft photon detection | Ultra-soft photons | measurement of photons in p_T range 1 - 50 MeV/c | | Forward Conversion Tracker based on silicon pixel sensors |
Vertexing

- **Pointing resolution** \(\propto r_0 \cdot \sqrt{x/X_0} \)
 (multiple scattering regime)
 \(\Rightarrow 10 \mu m @ p_T = 200 \text{ MeV/c} \)
 - radius and material of first layer crucial
 - minimal radius given by required aperture:
 \(R \approx 5 \text{ mm at top energy}, \)
 \(R \approx 15 \text{ mm at injection energy} \)
 \(\rightarrow \text{retractable vertex detector} \)

- **3 layers within beam pipe** (in secondary vacuum)
 at radii of 5 - 25 mm
 - wafer-sized, bent Monolithic Active Pixel Sensors
 - \(\sigma_{\text{pos}} \sim 2.5 \mu m \rightarrow 10 \mu m \text{ pixel pitch} \)
 - 1% \(X_0 \) per layer

![Graph showing pointing resolution vs. \(p_T \) for different layouts and ALICE 3 study](image)
Vertex Detector

- Conceptual study
 - wafer-sized, bent MAPS (leveraging on ITS3 activities)
 - rotary petals for secondary vacuum (thin walls to minimise material)
 - matching to beampipe parameters (impedance, aperture, …)
 - feed-throughs for power, cooling, data
- R&D challenges on mechanics, cooling, radiation tolerance
Relative p_T resolution $\propto \frac{\sqrt{x/X_0}}{B \cdot L}$
(limited by multiple scattering)
$\Rightarrow \sim 1\%$ up to $\eta = 4$

- integrated magnetic field crucial
- overall material budget critical

- ~11 tracking layers (barrel + disks)
 - MAPS
 - $\sigma_{\text{pos}} \sim 10 \mu m \rightarrow 50 \mu m$ pixel pitch
 - $R_{\text{out}} \approx 80$ cm and $L \approx 4$ m (→ magnetic field integral ~ 1 Tm)
 - timing resolution ~ 100 ns (→ reduce mismatch probability)
 - material $\sim 1\%\ X_0/\text{layer} \rightarrow$ overall $X/X_0 = \sim 10\%$
Outer Tracker

- MAPS on modules on water-cooled carbon-fibre cold plate
- carbon-fibre space frame for mechanical support
- **R&D challenges** on
 - powering scheme (→ material)
 - industrialisation

Total silicon surface ~60 m²
Time of Flight

- Separation power $\propto \frac{L}{\sigma_{\text{tof}}}$
 - distance and time resolution crucial
 - larger radius results in lower p_T bound

- 2 barrel + 1 forward TOF layers
 - TOF resolution $\sigma_{\text{TOF}} \approx 20$ ps
 based on silicon timing sensors
 - outer TOF at $R \approx 85$ cm
 - inner TOF at $R \approx 19$ cm
 - forward TOF at $z \approx 405$ cm
TOF detector

- **Sensor**
 - Low Gain Avalanche Diodes (LGAD)
 → established technology
 • requires separate read-out chip
 - **Monolithic timing sensors**
 → attractive solution
 • time resolution achievable with additional gain layer
 - Single Photon Avalanche Diodes (SPAD)
 → interesting in combination with photon detection for RICH

- **Front-end electronics and Time to Digital Converter (leading edge and time over threshold)**
 • needs good engineering but no substantial R&D

Total silicon surface ~45 m²
• **Extend PID reach of outer TOF to higher p_T**
 ➞ **Cherenkov**

• ensure continuous coverage from TOF
 ➞ refractive index $n = 1.03$ (barrel)
 ➞ refractive index $n = 1.006$ (forward)

• aerogel radiator + photon detection layer
Technologies and R&D

- **Silicon Photomultipliers (SiPM)**
 → established technology, commercially available
 - limited area per device
 - requires separate front-end
 - high dark count rates

- **Monolithic sensors**
 → interesting in combination with charged particle timing measurement
 - requires significant R&D

- **MCP-based solutions** (e.g. LAPPD)
 to be followed, suffer from magnetic field

Requirements

- PDE (visible light) > 40 - 50 %
- fill factor > 90 %
- time jitter < 100 ps
- total area O(50) m²
- operation in magnetic field (up to 2 T)
- radiation load < 10^{12} 1 MeV n$_{eq}$/cm²
Muon ID

- **Hadron absorber**
 - ~70 cm non-magnetic steel

- **Muon chambers**
 - search spot for muons ~0.1 x 0.1 (eta x phi) → ~5 x 5 cm² cell size
 - matching demonstrated with 2 layers, 1 layer might be enough
 - RPCs as baseline, other options can be considered
ECal

- **large acceptance ECAL**
 → sampling calorimeter (à la EMCal/DCal):
 e.g. $O(100)$ layers (1 mm Pb + 1.5 mm plastic scintillator)

- **additional high energy resolution segment** at midrapidity or forward
 → PbWO$_4$-based

<table>
<thead>
<tr>
<th>ECal module</th>
<th>Barrel sampling</th>
<th>Endcap sampling</th>
<th>Barrel high-precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceptance</td>
<td>$\Delta \varphi = 2\pi$, $</td>
<td>\eta</td>
<td>< 1.5$</td>
</tr>
<tr>
<td>geometry</td>
<td>$R_{in} = 1.15$ m, $</td>
<td>z</td>
<td>< 2.7$ m</td>
</tr>
<tr>
<td>technology</td>
<td>sampling Pb + scint.</td>
<td>sampling Pb + scint.</td>
<td>PbWO$_4$ crystals</td>
</tr>
<tr>
<td>cell size</td>
<td>30×30 mm2</td>
<td>40×40 mm2</td>
<td>22×22 mm2</td>
</tr>
<tr>
<td>no. of channels</td>
<td>30000</td>
<td>6000</td>
<td>20000</td>
</tr>
<tr>
<td>energy range</td>
<td>$0.02 < E < 100$ GeV</td>
<td>$0.1 < E < 250$ GeV</td>
<td>$0.01 < E < 100$ GeV</td>
</tr>
</tbody>
</table>
Forward conversion tracker

- Thin tracking disks to cover $3 < \eta < 5$
 - few $\%$ of a radiation length per layer
 - position resolution < 10 μm

- Research & Development
 - Large area, thin disks
 - Minimisation of material in front of FCT
 - Operational conditions

<table>
<thead>
<tr>
<th>Layer</th>
<th>z (m)</th>
<th>r_{min} (m)</th>
<th>r_{max} (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-3.42</td>
<td>0.05</td>
<td>0.34</td>
</tr>
<tr>
<td>1</td>
<td>-3.44</td>
<td>0.05</td>
<td>0.34</td>
</tr>
<tr>
<td>2</td>
<td>-3.46</td>
<td>0.05</td>
<td>0.35</td>
</tr>
<tr>
<td>3</td>
<td>-3.48</td>
<td>0.05</td>
<td>0.35</td>
</tr>
<tr>
<td>4</td>
<td>-3.50</td>
<td>0.05</td>
<td>0.35</td>
</tr>
<tr>
<td>5</td>
<td>-3.60</td>
<td>0.05</td>
<td>0.36</td>
</tr>
<tr>
<td>6</td>
<td>-3.70</td>
<td>0.05</td>
<td>0.37</td>
</tr>
<tr>
<td>7</td>
<td>-3.80</td>
<td>0.05</td>
<td>0.38</td>
</tr>
<tr>
<td>8</td>
<td>-3.90</td>
<td>0.05</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Rates and radiation

- Design to handle available heavy-ion luminosities, with current estimates hit rates similar across collision systems.

- **First layer at 5 mm** → challenging hit rates and radiation load: ~1.5 10^{15} 1 MeV n_{eq} / cm2 per operational year (comparable to first layer in ATLAS/CMS)

- Moderate hit rates and radiation load in other layers, already at $R = 20$ cm (inner TOF) down to ~10^{12} 1 MeV n_{eq} / cm2 per operational year

<table>
<thead>
<tr>
<th></th>
<th>pp</th>
<th>Ar-Ar</th>
<th>Kr-Kr</th>
<th>Xe-Xe</th>
<th>Pb-Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{AA} (cm2 s$^{-1}$)</td>
<td>3.0 10^{32}</td>
<td>3.2 10^{29}</td>
<td>8.5 10^{28}</td>
<td>3.3 10^{28}</td>
<td>1.2 10^{28}</td>
</tr>
<tr>
<td>$\langle L_{AA} \rangle$ (cm2 s$^{-1}$)</td>
<td>3.0 10^{32}</td>
<td>2.0 10^{29}</td>
<td>5.0 10^{28}</td>
<td>1.6 10^{28}</td>
<td>3.3 10^{27}</td>
</tr>
<tr>
<td>R_{hit} (cm2 s$^{-1}$)</td>
<td>9.4 10^{7}</td>
<td>6.9 10^{7}</td>
<td>5.3 10^{7}</td>
<td>4.6 10^{7}</td>
<td>3.5 10^{7}</td>
</tr>
<tr>
<td>NIEL (1 MeV n_{eq} / cm2 / month)</td>
<td>1.8 10^{14}</td>
<td>8.6 10^{13}</td>
<td>6.0 10^{13}</td>
<td>4.1 10^{13}</td>
<td>1.9 10^{13}</td>
</tr>
<tr>
<td>TID (Rad / m)</td>
<td>5.8 10^{6}</td>
<td>2.8 10^{6}</td>
<td>1.9 10^{6}</td>
<td>1.3 10^{6}</td>
<td>6.1 10^{5}</td>
</tr>
<tr>
<td></td>
<td>$R = 0.5$ cm</td>
<td>R_{hit} (cm2 s$^{-1}$)</td>
<td>5.9 10^{4}</td>
<td>4.3 10^{4}</td>
<td>3.3 10^{4}</td>
</tr>
<tr>
<td></td>
<td>NIEL (1 MeV n_{eq} / cm2 / month)</td>
<td>1.1 10^{11}</td>
<td>5.4 10^{10}</td>
<td>3.7 10^{10}</td>
<td>2.6 10^{10}</td>
</tr>
<tr>
<td></td>
<td>TID (Rad / m)</td>
<td>3.6 10^{3}</td>
<td>1.7 10^{3}</td>
<td>1.2 10^{3}</td>
<td>8.2 10^{2}</td>
</tr>
<tr>
<td></td>
<td>$R = 20$ cm</td>
<td>R_{hit} (cm2 s$^{-1}$)</td>
<td>2.4 10^{3}</td>
<td>1.7 10^{3}</td>
<td>1.3 10^{3}</td>
</tr>
<tr>
<td></td>
<td>NIEL (1 MeV n_{eq} / cm2 / month)</td>
<td>4.5 10^{9}</td>
<td>2.1 10^{9}</td>
<td>1.5 10^{9}</td>
<td>1.0 10^{9}</td>
</tr>
<tr>
<td></td>
<td>TID (Rad / m)</td>
<td>1.4 10^{2}</td>
<td>6.9 10^{1}</td>
<td>4.8 10^{1}</td>
<td>3.3 10^{1}</td>
</tr>
</tbody>
</table>
Integration

- Cryostat of 7 m length, free bore radius 1.5 m, magnetic field configuration to be optimised
- Installation of ALICE 3 around nominal IP2
 - L3 magnet can remain, ALICE 3 to be installed inside
 - pp luminosities of a few $10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ feasible without additional shielding
Summary

• Detector concept developed to meet the requirements for the ALICE 3 physics programme

• Based on established technologies with R&D activities required in several areas

• Detector design to be optimised based on physics needs and technological progress

ALICE 3 is taking shape!
Backup
Preshower detector

- Identify electrons through measurement of preshower with high granularity
 - 1000x pion rejection

- Consider stack of Pb absorbers and MAPS (here ALPIDE)
 - 3 - 4 sensor layers required for good performance

- Further studies needed on
 - required granularity
 - optimisation of geometry
Data processing

• Computing time
 • extrapolation from GPU-based ITS tracking with highest Run 3 occupancy: scaled by acceptance, no. of layers, projected GPU performance (3x)

• Memory
 • flexible (no drift time, bucketing can be optimised for computing)

• Storage
 • check storage of AODs or raw data

<table>
<thead>
<tr>
<th></th>
<th>pp</th>
<th>O-O</th>
<th>Ar-Ar</th>
<th>Ca-Ca</th>
<th>Kr-Kr</th>
<th>Xe-Xe</th>
<th>Pb-Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of GPUs</td>
<td>942</td>
<td>851</td>
<td>695</td>
<td>625</td>
<td>530</td>
<td>455</td>
<td>356</td>
</tr>
<tr>
<td>Raw data (GB/s)</td>
<td>361</td>
<td>237</td>
<td>267</td>
<td>240</td>
<td>203</td>
<td>174</td>
<td>136</td>
</tr>
<tr>
<td>Compressed data rate (GB/s)</td>
<td>64</td>
<td>58</td>
<td>47</td>
<td>42</td>
<td>36</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>Compressed raw data (PB / month)</td>
<td>90</td>
<td>50</td>
<td>43</td>
<td>39</td>
<td>30</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>AOD size (PB / month)</td>
<td>181</td>
<td>96</td>
<td>82</td>
<td>75</td>
<td>56</td>
<td>39</td>
<td>18</td>
</tr>
</tbody>
</table>