

Study of the strong interaction between heavy flavour hadrons

Laura Fabbietti 18/10/2021

ALICE coll., Nature 588 (2020) 232–238

RUN 2

u, d, s - s

p–K: Phys. Rev. Lett. 124 (2020) 092301 p–p, p– Λ , Λ – Λ : PRC 99 (2019) 024001 p–p, p– Λ , Λ – Λ : arXiv:2105.05190

∧–∧: Phys. Lett. B 797 (2019) 134822

 $p-\Xi^{-}$: Phys. Rev. Lett. 123 (2019) 112002

 $p-\Xi^{-}$, $p-\Omega^{-}$: Nature 588 (2020) 232–238

 $p-\Sigma^0$: Phys. Lett. B 805 (2020) 135419

р**-ф**: arXiv:2105.05578

 $N-\Lambda$, $N-\Sigma^0$: arXiv:2104.04427

p–K: Phys. Rev. Lett. 124 (2020) 092301 p–p, p– Λ , Λ – Λ : PRC 99 (2019) 024001 p–p, p– Λ , Λ – Λ : arXiv:2105.05190

 Λ - Λ : Phys. Lett. B 797 (2019) 134822

 $p-\Xi^{-}$: Phys. Rev. Lett. 123 (2019) 112002

 $p-\Xi^{-}$, $p-\Omega^{-}$: Nature 588 (2020) 232–238

 $p-\Sigma^0$: Phys. Lett. B 805 (2020) 135419

р**-ф**: arXiv:2105.05578

 $N-\Lambda$, $N-\Sigma^0$: arXiv:2104.04427

u, d, s - s

RUN 3/4

u, d, s - c

p–K: Phys. Rev. Lett. 124 (2020) 092301

p-p, $p-\Lambda$, $\Lambda-\Lambda$: PRC 99 (2019) 024001

p-p, $p-\Lambda$, $\Lambda-\Lambda$: arXiv:2105.05190

 Λ - Λ : Phys. Lett. B 797 (2019) 134822

 $p-\Xi^{-}$: Phys. Rev. Lett. 123 (2019) 112002

 $p-\Xi^{-}$, $p-\Omega^{-}$: Nature 588 (2020) 232–238

 $p-\Sigma^0$: Phys. Lett. B 805 (2020) 135419

р**-ф**: arXiv:2105.05578

 $N-\Lambda$, $N-\Sigma^0$: arXiv:2104.04427

ALICE 3 u, d, s, c, b - c, b

p-D-correlation function

- "Simplest" system: p-D-
 - → Most of the models predict repulsive interaction
 - → Coulomb interaction included in all the models
 - → Attraction might arise from 2-pion exchange
 - Possible pentaquark Θ_c (c-ud-ud) resonance (included in the Yamaguchi model)
 - ## H1, Phys. Lett. B588:17,2004
 - → Potential calculable with lattice QCD (not yet available)

Yamaguchi et al, Phys. Rev. D84 (2011) 014032

J. Haidenbauer et al, Eur. Phys. J. A33 (2007) 107-117

J. Hofmann and M. Lutz, Nucl. Phys. A 763 (2005) 90-139

The emitting source

$$C(\overrightarrow{k}^*) = \int S(\overrightarrow{r}^*) |\psi(\overrightarrow{k}^*, \overrightarrow{r}^*)|^2 d^3r^*$$

→ Emitting source: hypersurface at kinematic freezout of final-state particles

$G(\vec{r}^*, r_{\text{core}}, m_T)$ Universal core

Different effect on different masses

The emitting source

$$C(\overrightarrow{k}^*) = \int S(\overrightarrow{r}^*) |\psi(\overrightarrow{k}^*, \overrightarrow{r}^*)|^2 d^3r^*$$

→ Emitting source: hypersurface at kinematic freezout of final-state particles

Different effect on different masses

'Tail' Due to strong resonances

Particle	Primordial fraction	Resonances <ct></ct>
Proton	33 %	1.6 fm
Lambda	34 %	4.7 fm

U. Wiedemann U. Heinz (PRC56 R610, 1997)

Data-driven modelling of the emitting source

 Source size ~1fm makes the high-multiplicity pp system suitable for the study of hadron—hadron interactions

- Fit correlation functions of p-p and p- Λ pairs
 - → Interaction precisely described
 - → Gaussian source with radius as free parameter

D- in Run 2

PDG2020, Prog. Theor. Exp. Phys. (2020) 083C01

- Excellent identification of D and D*
- Relevant sources of background
 - 1. Uncorrelated (K+ $\pi^- \pi^-$) background candidates
 - → Parametrised from the measured C(k*) computed with D- candidates in the sidebands
 - 2. D^- from D^{*-} decays (~30% of D^-)
 - → p− D*- strong interaction not known, only Coulomb considered
- All contributions to the correlation function under control
- Statistically at the limit for Run 2 but feasibility demonstrated
- ** Paper in preparation!!

D-p correlations in Run 3

ALI-SIMUL-498168

Model	$f_0 (I = 0)$	$f_0 (I = 1)$
Coulomb		
Haidenbauer et al. [13]		
$-g_{\sigma}^{2}/4\pi = 1$	0.14	-0.28
$-g_{\sigma}^{2}/4\pi = 2.25$	0.67	0.04
Hofmann and Lutz [14]	-0.16	-0.26
Yamaguchi et al. [16]	-4.38	-0.07
Fontoura et al. [15]	0.03	-0.25

Yamaguchi et al, Phys. Rev. D84 (2011) 014032

Attractive

J. Haidenbauer et al, Eur. Phys. J. A33 (2007) 107-117

J. Hofmann and M. Lutz, Nucl. Phys. A 763 (2005) 90-139

Repulsive

Fontura et al, Phys. Rev. C 87 (2013) 025206

In Run 3 we will test with precision the interactions among charm and non charmed hadrons

Which correlations could be of interest?

	Coupled Channels	S-wave threshold [MeV]	Width [MeV]	Mass [MeV]	State
	$\pi^+\pi^-J/\psi$	$D^{*0}\bar{D}^{0}(-0.04),$	1.19 ± 0.21	3872 ± 0.17	X(3872) [14]
Totroquarks with co2	$\left(\begin{array}{ccc} \pi^{+}\pi^{-}\pi^{0}J/\psi & J \end{array} \right)$	$D^{*+}\bar{D}^{-}(-8.11)$			
Tetraquarks with cc?	$D^*\bar{D}$	$D^*\overline{D}^*$ (-75 ± 9)	37	3942 ± 9	X(3940) [14]
	$\phi J/\psi$	$D_s \overline{D}_s^* \ (-66^{+4.9}_{-3.2})$	83 ± 21	4147 ± 4.5	X(4140) [14]
	$\phi J/\psi$	$D_s \overline{D}_s^* (-49.1_{-9.1}^{+19.1})$	56 ± 11	4273 ± 8.3	X(4274) [14]
Tetraquarks with bb?	$\pi^{\pm}\Upsilon(nS)$	${\rm B\overline{B}}^*(4\pm3.2)$	18.4 ± 2.4	10607 ± 2.0	$Z_{b}(10610) [14]$
	$\pi^{\pm}h_b(nP)$				
	$\pi^{\pm}\Upsilon(nS)$ ($B^*\bar{B}^*(+2.9)$	11.5 ± 2.2	$10652.2 \pm$	$Z_b^{\pm}(10650) [14]$
	$\pi^{\pm}h_b(nP)$			1.5	
	pJ/ψ	$\Sigma_c \bar{\mathrm{D}}(-9.7)$	$9.8 \pm 2.7^{+3.7}_{-4.5}$	$4311.9 \pm$	$P_c^+(4312) [15]$
Danta qua ele vuitla = 2				$0.7^{+6.8}_{-0.6}$	
Pentaquarks with cc?	$pJ/\psi, \Sigma_c \bar{\mathrm{D}} \Sigma_c^* \bar{\mathrm{D}} $	$\Sigma_c \bar{\mathrm{D}}^*(-21.8)$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	$4440.3 \pm$	$P_c^+(4440) [15]$
				$1.3^{+4.1}_{-4.7}$	
	$pJ/\psi, \Sigma_c \bar{\mathrm{D}} \Sigma_c^* \bar{\mathrm{D}}$	$\Sigma_c \bar{\mathrm{D}}^*(-4.8)$	$6.4 \pm 2.0^{+5.7}_{-1.9}$	$4457.3 \pm$	$P_c^+(4457) [15]$
				$0.6^{+4.1}_{-1.7}$	
Tetraquarks with cc?	$\mathrm{D}^0\mathrm{D}^0\pi^+$	$D^{*+}D^{0}(-0.273),$	0.410	3874.827	T_{cc}^{+} [16]
		$D^{*0}D^{+}(-1.523)$			

Or all molecular states?

Correlation functions and bound states

- → Correlation functions can be used to study the existence of bound states
- → Interplay between system size and scattering length can lead to a size-dependent modification of the correlation function in presence of a bound state

$$x = qR \quad y = \frac{R}{a_0} \qquad C(q) = 1 + \frac{1}{x^2 + y^2} \left[\frac{1}{2} - \frac{2y}{\sqrt{\pi}} \int_0^{2x} dt \frac{e^{t^2 - 4x^2}}{x} - \frac{(1 - e^{-4x^2})}{2} \right]$$

R= source size q= invariant relative momentum a_0 = scattering length

- → A single measurement at fixed R does not suffice
- → A systematic measurements of different sizes is necessary :
 - pp (R = 1 fm), p-Pb(R = 1.5 fm), Pb-Pb (R = 2.6 fm)

Y. Kamiya et al. arXiv:2108.09644v1

Correlation functions and bound states

- Correlation functions can be used to study the existence of bound states
- → Interplay between system size and scattering length can lead to a size-dependent modification of the correlation function in presence of a bound state

$$x = qR \quad y = \frac{R}{a_0} \qquad C(q) = 1 + \frac{1}{x^2 + y^2} \left[\frac{1}{2} - \frac{2y}{\sqrt{\pi}} \int_0^{2x} dt \frac{e^{t^2 - 4x^2}}{x} - \frac{(1 - e^{-4x^2})}{2} \right]$$

R= source size q= invariant relative momentum a_0 = scattering length

- → A single measurement at fixed R does not suffice
- → A systematic measurements of different sizes is necessary :
 - pp (R = 1 fm), p-Pb(R = 1.5 fm), Pb-Pb (R = 2-6 fm)

Y. Kamiya et al. arXiv:2108.09644v1

The T_{cc}^+ example

- Recent measurement of a tetraquark candidate by LHCb
 - → Just below D^0D^{*+} and D^+D^{*0} thresholds → candidate to be a molecular state

E. S. Swanson, Phys. Rept. 429 (2006) 243-305

- Its nature can be assessed via the measurement of DD* correlations
 - → In case of a bound state (T_{cc} +) the correlation function is expected to change from smaller to larger than unity for different source sizes

- Scan from pp to AA collisions needed
- → ALICE3 is the ideal
 detector for acceptance
 and purity for the heavy
 flavour signal

ALICE 3 projections for the D*+D0

- Projection according to 6 years of data taking
- Enough sensitivity to verify/exclude formation of bound state
- Although scan over wide range of source size needed
 - → Necessity to perform measurement from pp to Pb—Pb

Reminder:

A comprehensive measurement of the correlations among proton, hyperons and kaons is necessary to pin down the source properties

Summary of the strong interaction studies between heavy flavour hadrons

- Femtoscopy at the LHC has been established as a solid technique to study the residual strong interaction among hadrons
- Run 2: the (almost) complete set of interaction u,d,s-s has been measured!
- Run 3: all the interactions among u,d,s -c,s will be accessed with high precision
- ALICE3: c-c, b-b correlations will be measured in different colliding system to test residual strong interaction and study molecular state
- ALICE3 unique detector for its large geometrical acceptance and vertexing resolution for charm and beauty hadron and strange weak decays

BACKUP

D⁰D*+ correlation function in Pythia

$$C(\vec{k}^*) = \mathcal{N} \frac{N_{\text{same}}^{\text{pairs}}(k^*)}{N_{\text{mixed}}^{\text{pairs}}(k^*)}$$

- 500M Pythia8 (CR mode2) events simulated
- NB: D⁰ from D*+ decays are excluded because would probe D*+ D*+
 interaction instead

Flat at unity also for low $k^* \rightarrow D^0$ and D^{*+} cannot come from same jet

Calibrating the p-D- source

- Source size not necessarily the same for charm hadrons (depends on hadronisation)
 - Study performed with PYTHIA8.3 indicates that the source might be 25% lower than the p-p source for the corresponding $\langle m_T \rangle$
 - → Added as systematic uncertainty

D⁰D*+ correlation function in Pythia

$$C(\overrightarrow{k}^*) = \mathcal{N} \frac{N_{\text{same}}^{\text{pairs}}(k^*)}{N_{\text{mixed}}^{\text{pairs}}(k^*)}$$

Rising trend because charm and anti-charm quarks mostly come from same hard scattering

