Improvement of the identification of the primary particles in the EM Calorimeter ECAL LHCb

Moreno Sarria, Diego Milanés, Lorena Bucurú

November 29, 2021

Table of Contents

The Detector

The Problem

The Project

Table of Contents

The Detector

2 The Problem

The Project

ECAL Detector

Figure: The ECAL detector

https://cds.cern.ch/record/494264/files/cer-2248788.pdf

ECAL Detector

Figure: ECAL module structure

https://cds.cern.ch/record/494264/files/cer-2248788.pdf

Figure: ECAL sections modules

Table of Contents

The Detector

2 The Problem

The Project

Process of interest

For high energies, there are a processes that could be problematic:

- **1** Neutral pions (π^0) desintegrating in two photons.
- 2 Similar showers produced by photons and electrons.

ECAL Detector

The Cells of the detector are very large (even for the inner section), making it difficult to identify the primary particle.

Figure: ECAL sections modules

 $\verb|https://cds.cern.ch/record/494264/files/cer-2248788.pdf|$

ECAL Detector

Even for the inner section, the granularity is very large to differentiate the events of one photon and a π^0 desintegrating into two nearly parallel photons.

Figure: ECAL module front view

https://cds.cern.ch/record/494264/files/cer-2248788.pdf

Machine Learning Implementation

A machine learning could be a useful tool to improve the indentification of events with γ , e^- and π^0 .

Figure: SciKit Learn library for machine learning implementation in python

Table of Contents

The Detector

2 The Problem

The Project

ECAL Geometry

First, reproduce the EM calorimeter geometry. Aerogel was used for the scintillator plates.

Figure: ECAL geometry in Geant4

ECAL Inner Section Geometry

Isolate the inner section of the calorimeter to study forward events.

Figure: The geometry of the inner section of ECAL in Geant4

ECAL Inner Section Geometry (Cropped)

After some runs, particles generate a shower in a fraction of the total detector. Therefore, the detector was cropped to concentrate in a narrowed portion of it.

Figure: The geometry of the inner section of ECAL in Geant4

Figure: The geometry of the inner section of ECAL in Geant4 (zoomed)

Distribution of photon production in scintillator plates

Figure: Distribution of photons production in scintillator plates for a γ primary particle

Figure: Distribution of photons production in scintillator plates for a π^0 primary particle

Figure: Distribution of photons production in scintillator plates for a e^- primary particle

4□ > 4□ > 4□ > 4□ > 4□ > 1□

Distribution of photon production in lead plates

Figure: Distribution of photons production in lead plates for a γ primary particle

Figure: Distribution of photons production in lead plates for a π^0 primary particle

Figure: Distribution of photons production in lead plates for a e⁻ primary particle

Distribution of electrons production in scintillator plates

Figure: Distribution of electrons production in scintillator plates for a γ primary particle

Figure: Distribution of electrons production in scintillator plates for a π^0 primary particle

Figure: Distribution of electrons production in scintillator plates for a e^- primary particle

Distribution of electrons production in lead plates

production in lead plates for a π^0

primary particle

◆ロト ◆個ト ◆園ト ◆園ト ■ りへ○

production in lead plates for a e-

primary particle

production in lead plates for a γ

primary particle

Distribution of energy deposit in scintillator plates

The energy deposit and step length of the particle when it interacts with the plates is also considered.

Figure: Distribution of energy deposit of particles interaction with scintillator plates for a γ primary particle

Figure: Distribution of energy deposit of particles interaction with scintillator plates for a π^0 primary particle

Figure: Distribution of energy deposit of particles interaction with scintillator plates for a e⁻ primary particle

Distribution of step lenght in scintillator plates

The energy deposit and step lenght of the particle when it interacts with the plates is also considered.

Figure: Distribution of step lenght of particles interaction with scintillator plates for a γ primary particle

Figure: Distribution of step lenght of particles interaction with scintillator plates for a π^0 primary particle

Figure: Distribution of step lenght of particles interaction with scintillator plates for a e^- primary particle

Significative cells

Since, this is considerable information for a classifier, Kolmogorov test is used to collect cells with significative information for the events classification. The test was performed in the distributions of photons and electrons creation in each material for the three possible primaries. This was performed with the energy and the step lenght as well.

Figure: Number of produced photons in the scintillator for a γ primary particle in a significative cell.

Figure: Number of produced photons in the scintillator for a π^0 primary particle in a significative cell.

Figure: Number of produced photons in the scintillator for a eprimary particle in a significative cell.

Non significative cells

Since, this is considerable information for a classifier, Kolmogorov test is used to collect cells with significative information for the events classification. The test was performed in the distributions of photons and electrons creation in each material for the three possible primaries. This was performed with the energy and the step lenght as well.

photons in the scintillator for a γ primary particle in a non significative cell

photons in the scintillator for a π^0 primary particle in a non significative cell.

photons in the scintillator for a eprimary particle in a non significative cell.

Results of the machine learning implementation

Five types of classifiers were tested.

Classifier	Result
MultinomialNB	0.45
BernoulliNB	0.55
Perceptron	0.33
SGDClassifier	0.33
PassiveAggressiveClassifier	0.33

Thank you!

24 / 24