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Energy Frontier
● Multi-modal detector
● Good reconstruction, big-data analysis

Intensity Frontier
● Big monolithic detector for imaging
● Challenging reconstruction

Cosmic Frontier
● Many low-resolution images
● Need for complex statistical inference
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Ads: “Machine Laerning” review for particle physics
now available in Particle Data Group review (new in 2021)!

https://pdg.lbl.gov/


Progress in
Neutrino Detectors

and
Computer Vision

Models

5



6State-of-the-Art >60 years ago

“Discovery”
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Era of Precision Measurement
comes with large amount of high 

resolution, detailed data... 
Needs advanced algorithms!

9
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Machine Learning in Neutrino Physics & HEP
Machine Learning and Computer Vision

Image analysis 
can be difficult...



11

Machine Learning in Neutrino Physics & HEP
Machine Learning and Computer Vision

“Deep Learning” sparked 2012
sparked the wave of modern machine learning (ML) and AI
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Higgs, 𝜽13

Gravitational
Wave

Machine Learning in Neutrino Physics & HEP
Machine Learning and Computer Vision
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Machine Learning in Neutrino Physics & HEP
Machine Learning and Computer Vision
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Machine Learning in Neutrino Physics & HEP
Machine Learning and Computer Vision
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A baby daikon radish in a 
tutu walking a dog

Machine Learning in Neutrino Physics & HEP
Machine Learning and Computer Vision
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A baby daikon radish in a 
tutu walking a dog

Machine Learning in Neutrino Physics & HEP
Machine Learning and Computer Vision
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Machine Learning in Neutrino Physics & HEP
Machine Learning and Computer Vision

Can we apply ML for image analysis?

Can we reconstruct physics features with ML?

Next: ML & simulation

Outline for the rest
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Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Image Analysis

After
1st convolution

Discriminants

After
2nd convolution

After
3rd convolution

Dog or Cat?

Convolutional Neural Network (CNN)
Learns to transform 2D image data into an 

array of useful features to address an 
image task
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π0 → γγ

νe CC

ν𝝁 CC

NOvA (2016)

X-view Y-view

First attempt: CNN image classifier 
for neutrino interaction classification

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Image Analysis

https://arxiv.org/abs/1604.01444
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First attempt: CNN image classifier 
for signal v.s. background classification

MicroBooNE (2016)

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Image Analysis

https://arxiv.org/abs/1611.05531
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View-0 View-1 View-2

νe CC

ν𝝁 CC NC 1π0 NC 1π+ 

DUNE (2020)

CNN image classification remains to date as a strong approach

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Image Analysis

https://arxiv.org/abs/2006.15052
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View-0 View-1 View-2

νe CC

ν𝝁 CC NC 1π0 NC 1π+ 

DUNE  
(2020)

… and CNN also used for an image-level regression (e.g. neutrino energy)

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Image Analysis

https://arxiv.org/abs/2006.15052
https://arxiv.org/abs/2012.06181
https://arxiv.org/abs/2006.15052


Image data recorded in non-cartesian grid

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Image Analysis



Image data recorded in non-cartesian grid
CNN with appropriate equivaliance  (rotation)
Standard CNN Spherical CNN

Figures from Aobo Li (NPML 2020)

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Image Analysis

https://indico.slac.stanford.edu/event/371/contributions/1190/attachments/534/864/NPML_talk_KamLAND.pdf
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Graph as a flexible representation suited 
for non-square-grid / multi-modal data.

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Image Analysis
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Graph as a flexible representation suited 
for non-square-grid / multi-modal data.
Graph Neural Network for neutrino ID

IceCube 
(2018)

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Image Analysis

https://arxiv.org/abs/1809.06166
https://arxiv.org/abs/1809.06166


Machine Learning for
Data Reconstruction

27
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100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

Signal v.s. Background? …. more like “Signal in Background”

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction
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Tell “where” the signal is

MicroBooNE (2016)

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction

https://arxiv.org/abs/1611.05531
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Even at the pixel-level! … then onto a “full reconstruction chain”

PRD 99 092001
arXiv:1808.07269

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://arxiv.org/abs/1808.07269
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w/ interpretable 
evidences

Pixel Feature
Extraction + Points

Input Data

p

pepi

Machine Learning for Data Reconstruction
● Goal: high level abstract information (like image classification)
● How: design the algorithm = data transformation architecture that 

extracts a hierarchy of physically meaningful features (evidences)

Multi-task
Cascade

High-level
Output

Pixel clustering Kinematics
Inference

Electron 
Neutrino

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction
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End-to-End Reconstruction for 3D Imaging Detector

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction
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End-to-End Reconstruction for 3D Imaging Detector

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction
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End-to-End Reconstruction for 3D Imaging Detector

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction



End-to-End optimizable chain!
● ~1 week to train the full chain on a single GPU
● A task typically takes teams + months~year effort 
● Transfer-learning for multiple experiments! 35

Reference publications
Full chain (NeurIPS WS)

Public dataset
1, 2, 3, 4

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction

https://arxiv.org/abs/2102.01033
https://arxiv.org/abs/2006.01993
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Machine Learning
and Simulation

36
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Machine Learning in Neutrino Physics & HEP
Next Step: Innovative Simulator

Recent success in machine learning … much are backed by deep learning 



38

Recent success in machine learning … much are backed by deep learning 

… for which, one key success is gradient-based optimization

ML (NN) 
parameters

𝜽

Input
x

Output
F (x|𝜽)

Optimization 
target

L ( F (x|𝜽), y)

Analysis & reconstruction
using neural networks

Machine Learning in Neutrino Physics & HEP
Next Step: Innovative Simulator
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Recent success in machine learning … much are backed by deep learning 

… for which, one key success is gradient-based optimization

… which is enabled by computing hardwares & differentiable programming

Machine Learning in Neutrino Physics & HEP
Next Step: Innovative Simulator
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physics model 
parameters

𝜽

Input
x

Output
F (x|𝜽)

Optimization 
target

L ( F (x|𝜽), y)

Recent success in machine learning … much are backed by deep learning 

… for which, one key success is gradient-based optimization

… which is enabled by computing hardwares & differentiable programming

Approximated 
gradient

Exact gradient

Machine Learning in Neutrino Physics & HEP
Next Step: Innovative Simulator
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physics model 
parameters

𝜽

Input
x

Output
F (x|𝜽)

Optimization 
target

L ( F (x|𝜽), y)

Recent success in machine learning … much are backed by deep learning 

… for which, one key success is gradient-based optimization

… which is enabled by computing hardwares & differentiable programming

Approximated 
gradient

Exact gradient

Machine Learning in Neutrino Physics & HEP
Next Step: Innovative Simulator
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Reconstruction

Calibration
Detector Output

(ADC)
Reconstructed

(Calibrated dE/dX)

Detector 
physics model 

parameters … 

Physics knowledge 
(models)

“Reconstruction” as a process of inferring 
a high(er) level physics quantities from raw data.

Traditionally: experiments collect data, we infer physics from data
But: in this process, we draw likelihood using simulation (physics models)

Machine Learning in Neutrino Physics & HEP
Next Step: Innovative Simulator
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… 

Detector Simulation

Reconstruction

Calibration
Detector Output

(ADC)
Reconstructed

(dE/dX)

Detector 
physics model 

parameters

Simulation Input
(true dE/dX)

“Simulation” takes in target 
physics information and convolve 

effects associated with the 
measurements (i.e. nuisance)

… 

Physics knowledge 
(models)

Machine Learning in Neutrino Physics & HEP
Next Step: Innovative Simulator
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… 

Detector Simulation

Reconstruction

Calibration
Detector Output

(ADC)
Reconstructed

(dE/dX)

Detector 
physics model 

parameters

Simulation Input
(true dE/dX) Innovative Simulator 

Develop techniques that can 
infer the physics from data

(Simulation-based Inference)

… 

Physics knowledge 
(models)

Machine Learning in Neutrino Physics & HEP
Next Step: Innovative Simulator
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E.g. Differentiable Simulator
● Exploit model derivatives to enable new inference techniques

○ Surrogate (neural network) model to approximate gradients
○ Exact gradient using differentiable programming (ML) frameworks

● Applications: physics inference, design optimization, decision control, etc.

Left: surrogate 
model for magnet 
optimization

Right: differentiable 
matrix element 
calculation  (MadJax)

Machine Learning in Neutrino Physics & HEP
Next Step: Innovative Simulator

https://proceedings.neurips.cc//paper/2020/file/a878dbebc902328b41dbf02aa87abb58-Paper.pdf
https://proceedings.neurips.cc//paper/2020/file/a878dbebc902328b41dbf02aa87abb58-Paper.pdf
https://proceedings.neurips.cc//paper/2020/file/a878dbebc902328b41dbf02aa87abb58-Paper.pdf
https://indico.cern.ch/event/855454/contributions/4606435/attachments/2355533/4019809/MadJaxACAT.pdf
https://indico.cern.ch/event/855454/contributions/4606435/attachments/2355533/4019809/MadJaxACAT.pdf
https://indico.cern.ch/event/855454/contributions/4606435/attachments/2355533/4019809/MadJaxACAT.pdf
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Simulator-based Inference being explored across HEP frontiers
● Automation of detector model parameter inference (“calibration”)
● Detector design optimization for future experiments (DUNE/Hyper-K)
● Surrogate for event generator studies (100M - 1B event re-weighting)
● Exploitation of fully-differentiable analysis chain (sim+reco)

Machine Learning in Neutrino Physics & HEP
Next Step: Innovative Simulator



… wrapping up …

47



Final remarks
● Machine learning is spreading across applications

● Applications in neutrino physics used Computer Vision 
models for analysis and reconstruction 

● Active research in physics inference methods and innovative 
simulation tools, HEP cross-frontier effort 

● ML is interdisciplinary: please see the new PDG review for a wider 
scope of applications for other frontiers! 48

Machine Learning in Neutrino Physics & HEP
Closing

https://pdg.lbl.gov/2021/reviews/contents_sports.html
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Nu2020 Satellite (indico link) + Main Workshop (indico link)

Satellite targeted young folks for short technical talks, the main workshop 
invited collaborations for a summary. 20+40 = 60 talks all recorded :)

Interest? go check out 
slides and recorded talks!

... + start conversation to 
collaborate on ML 
application  development 
with neutrino physicists :)

Planning to hold 
another in 2022!

Machine Learning in Neutrino Physics & HEP
Closing

https://indico.slac.stanford.edu/event/377/
https://indico.slac.stanford.edu/event/371/
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Machine Learning in Neutrino Physics & HEP
Closing

Questions?
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Machine Learning in Neutrino Physics & HEP
Closing

Back-ups
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

νμ

Liquid Argone TPC
~mm/pixel spatial resolution

~MeV level sensitivity

MicroBooNE
~87 ton (school bus)
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Shape difference is a 
major distinction for 
“shower” particles
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Many, local kinks  
caused by Multiple Coulomb 
Scattering process can be 
used for momentum 
estimation
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Small branches on muon-like 
trajectories are knocked-off 
electrons, useful key for the 
direction
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Stopping 
particle

e- vs. γ
using dE/dX

Energy deposition 
patterns (dE/dX) 
vary with particle mass 
& momentum, useful 
for analysis 
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers 

100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

Nope :) In this detector, <1% beam neutrino interacts
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers (3D ones)

DUNE-ND: on average ~dozen neutrino interactions per event
Detector: pixelated LArTPC for 3D imaging for high overlaps



Machine Learning and
Computer Vision

59
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Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!

How to write an algorithm to 
identify a cat?

… very hard task ...
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1.  Write an algorithm based on physics principles
Development Workflow for non-ML reconstruction

algorithm

collection of 
certain shapesA cat  =

(or, a neutrino)

Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!

Images courtesy of Fei Fei Li’s TED talk
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algorithm

collection of 
certain shapesA cat  =

(or, a neutrino)

1.  Write an algorithm based on physics principles
2.  Run on simulation and data samples
3.  Observe failure cases, implement fixes/heuristics
4.  Iterate over 2 & 3 till a satisfactory level is achieved
5.  Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Partial cat
(escaping the detector) Stretching cat (Nuclear Physics)

Development Workflow for non-ML reconstruction

Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!

Images courtesy of Fei Fei Li’s TED talk



Development Workflow for non-ML reconstruction

63

1.  Write an algorithm based on physics principles
2.  Run on simulation and data samples
3.  Observe failure cases, implement fixes/heuristics
4.  Iterate over 2 & 3 till a satisfactory level is achieved
5.  Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

“Machine learning”
● Model instead of explicit programming
● Automatization of steps 2-4
● Multi-task optimization possible (step 5)

Next: what kind of ML algorithms?

Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!



Machine Learning & Computer Vision in Neutrino Physics
My Research

64

Machine Learning for Data Reconstruction
● Goal: high level abstract information (like image classification)
● How: design the algorithm = data transformation architecture that 

extracts a hierarchy of physically meaningful features

Particle ClusteringPixel ClusteringPixel FeatureInput

The Rest: describe the chain for 3D



Encoder Decoder

Residual
connections

input

conv

conv-s2-finc

tconv-s2-fde

softmax

Concatenation

conv-fdec

Architecture: U-Net + Residual Connections

Image credit: Laura Domine @ Stanford

Number of strided 
convolutions, convolution 
layers, residual connections, 
differ in impementations

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

65
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“Applying CNN” is simple, but is it scalable for us?

CNN applies 
dense matrix 
operations

In photographs, 
all pixels are 
meaningful

grey pixels = dolphins, 
blue pixels = water, etc...

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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“Applying CNN” is simple, but is it scalable for us?
LArTPC data is generally sparse, but locally dense

CNN applies 
dense matrix 
operations

In photographs, 
all pixels are 
meaningful

Figures/Texts: courtesy of 
Laura Domine @ Stanford

<1% of pixels 
are non-zero in 
LArTPC data

Zero pixels are 
meaningless!

grey pixels = dolphins, 
blue pixels = water, etc...

Empty pixels = no energy

Figure credit: Laura Domine @ Stanford

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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“Applying CNN” is simple, but is it scalable for us?
LArTPC data is generally sparse, but locally dense

CNN applies 
dense matrix 
operations

In photographs, 
all pixels are 
meaningful

Figures/Texts: courtesy of 
Laura Domine @ Stanford

<1% of pixels 
are non-zero in 
LArTPC data

Zero pixels are 
meaningless!

○ Scalability for larger detectors
■ Computation cost increases linearly with the volume
■ But the number of non-zero pixels does not

Figure credit: Laura Domine @ Stanford

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

Sparse Submanifold Convolutions
Only acts on an active input pixels 
+ can limit output activations for 
only the same pixels.
● 1st implementation by FAIR
● 2nd implementation by Stanford VL

○ … also supported in NVIDIA now

https://github.com/facebookresearch/SparseConvNet
https://github.com/NVIDIA/MinkowskiEngine
https://github.com/NVIDIA/MinkowskiEngine
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Sparse U-ResNet fits more data in GPU + good scalability

@batch size 88
sparse uses 
93x less memory
 than dense and 
computation is
3x faster

Can handle easily the 
whole ICARUS detector 
which is x6 larger than 
MicroBooNE.

DUNE-FD is piece of 
cake (larger volume but 
less non-zero pixels)

Work credit: Laura Domine (Stanford)
and  Ran Itay (SLAC)

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility



ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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Type Proton Mu/Pi Shower Delta Michel

Acc. 0.99 0.98 0.99 0.97 0.96

Mu/pi
Proton
EM Shower
Delta Rays
MichelPhysRevD.102.012005 presented @ ACAT 2019

● Memory reduction ~ 1/360
● Compute time ~ 1/30
● Handles large future detectors 

Sparse Sub-manifold
Convolutional NN
●  Public LArTPC simulation

○ Particle tracking (Geant4) + diffusion, no 
noise, true  energy 

●  Five type segmentation

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.102.012005&v=f3bb7570
https://indico.cern.ch/event/708041/contributions/3269747/attachments/1812175/2960103/ACAT_2019_Laura_Domine.pdf
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ML-based Neutrino Data Reconstruction Chain
Stage 1-a: input & output

Stage 1-a Input Stage 1-a Output



ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

See arxiv:2006.14745

Point Proposal
Network (PPN)

… extension of U-ResNet 
with 3 CNN blocks

Work credit: Laura Domine (Stanford)
and  Patrick Tsang (SLAC)

73

https://arxiv.org/abs/2006.14745


ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

PPN1 generates an 
attention mask at the 
lowest resolution

See arxiv:2006.14745 74

https://arxiv.org/abs/2006.14745


ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

See arxiv:2006.14745

PPN2 generates an 
attention mask at the 
intermediate resolution

75

https://arxiv.org/abs/2006.14745


ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

See arxiv:2006.14745

PPN makes the final 
prediction (point type + 
coordinate regression) 

76

https://arxiv.org/abs/2006.14745


ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

96.8% of predicted points within 3 voxels of a true point
● 68% of true points found within the radius of 0.12 cm 
● Traditional (nominal) reconstruction method finds 90% of predicted points within 

17 voxels, and 68% of true points found within the radius of 0.74cm

See arxiv:2006.14745

77

https://arxiv.org/abs/2006.14745
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ML-based Neutrino Data Reconstruction Chain
Stage 1: input & output

Stage 1 Input Stage 1 Output



ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering
Simple approach: path-finding between PPN points
● MST to find the “shortest” path between PPN points to cluster pixels
● Works well! BUT it depends on PPN performance directly + not learnable

Work credit 
Francois Drielsma (SLAC) 79



ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Image credit: arXiv 1708.02551

Learnable approach: clustering in the embedding space
● Use CNN to learn a transformation function from the 3D voxels to the embedding 

space where clustering can be performed in a simple manner

80

https://arxiv.org/pdf/1708.02551.pdf


ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering

Scalable Particle 
Instance Clustering 
using Embedding

(SPICE)
● Embedding decoder learns 

transformation

● Seediness decoder 
identifies the centroids

● During training, loss is 
conditioned so that the 
points that belong to the 
same cluster follow a 
normal distributionSee arxiv:2007.03083 81

https://arxiv.org/abs/2007.03083


ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering

See arxiv:2007.03083Work credit: 
Dae Heun Koh (Stanford)

82

https://arxiv.org/abs/2007.03083


ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering

See arxiv:2007.03083Work credit: 
Dae Heun Koh (Stanford)

83

https://arxiv.org/abs/2007.03083


Pixels clustered into trajectory 
fragments using SPICE

ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering

See arxiv:2007.03083 84

https://arxiv.org/abs/2007.03083
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ML-based Neutrino Data Reconstruction Chain
Stage 2-a: input & output

Stage 2-a Input Stage 2-a Output



ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering
Identifying 1 shower ... which consists of many fragments

86



ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering
Identifying 1 shower ... which consists of many fragments
● Interpret each fragment as a graph node + edges connect nodes in the same cluster

87



ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering
Identifying 1 shower ... which consists of many fragments
● Interpret each fragment as a graph node + edges connect nodes in the same cluster
● Cast the problem to a classification of node (e.g. particle type) and edge (clustering)

88



ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

89

https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

Node features:
● Centroid, Covariance matrix, PCA
● Start point, direction (PPN)

90

https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

Node features:
● Centroid, Covariance matrix, PCA
● Start point, direction (PPN)

Input graph:
● Connect every node with every other node 

(complete graph)

91

https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

Node features:
● Centroid, Covariance matrix, PCA
● Start point, direction (PPN)

Input graph:
● Connect every node with every other node 

(complete graph)

Edge features:
● Displacement vector
● Closest points of approach

92

https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Graph-NN for Particle 
Aggregation (GrapPA)
Message passing (MP):

● Meta layer (arxiv:1806.01261)
● Essentially two 3-layer MLPs (BatchNorm 

+ LeakyReLU) for edge feature update and 
node feature update

● 3 times MP (=Edge+Node feature update)

Target:
● Prediction of adjacency matrix 

representing valid edges (=true partition)
● Apply cross-entropy loss

For more studies, see our paper
93

https://arxiv.org/abs/2007.01335
https://arxiv.org/pdf/1806.01261.pdf
https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Target Label Edge Prediction

work credit:
Francois D (SLAC), Qing L. (USTC),
Brad N (stat, U. Chicago), Alexander Z. (CalTech), 

94

https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Clustering using GrapPA
● Mean purity and efficiency > 99%
● Sufficient for moving to the next 

stage (particle analysis)

Edge Prediction

95

https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Start ID using GrapPA
● Important to identify the “primary 

fragment” (=shower start)
● >99% classification accuracy 

Node prediction

96

https://arxiv.org/abs/2007.01335
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ML-based Neutrino Data Reconstruction Chain
Stage 2: input & output

Stage 2 Input Stage 2 Output



ML-based Neutrino Data Reconstruction Chain
Stage 3: Interaction Clustering

Identifying Each Interaction?
This task can be casted to the same task 
already solved using GrapPA! 

● Interaction = a group of particles that 
shared the same origin (i.e. neutrino 
interaction)

● Edge classification to identify an 
interaction

● Node classification for particle type 
ID

98



ML-based Neutrino Data Reconstruction Chain
Stage 3: Interaction Clustering

Target Group Predicted Interaction

99



ML-based Neutrino Data Reconstruction Chain
Stage 3: Interaction Clustering

Predicted Interaction

Promising result to address 
DUNE-ND reconstruction challenge 
(~20 neutrino pile-up) 100
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ML-based Neutrino Data Reconstruction Chain
Stage 3: input & output

Stage 3 Input Stage 3 Output



ML-based Neutrino Data Reconstruction Chain
Wrapping up...

End-to-End optimizable chain!
● ~1 week to train the full chain on a single V100 GPU
● A task typically takes teams + months~year effort 
● Transfer-learning for multiple experiments! 102



Inter-experimental collaborative work
● Open simulation sample

○ Open real data? Soon! (3D proto-type R&D @ SLAC)

● Open software development
○ Fast, distributed IO, optimized for sparse data

● Custom HDF5 format for sparse data for fast IO
● Custom API for data distribution using MPI

○ Using Horovod, good scaling @ ~100 GPUs test 
setup (with InfiniBand interconnect) 

Custom development among hobby-coders from 
SLAC/ANL/FNAL, lead by Corey Adams @ ANL 

Work credit:
Corey Adams (ANL)
Marco del Tutto (FNAL)

ML-based Neutrino Data Reconstruction Chain
Wrapping up...
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https://osf.io/vruzp/
https://github.com/DeepLearnPhysics/larcv3


Summary
● Neutrino detector trend: hi-res. particle imaging
● Analysis trend: computer vision algorithms

○ Benefit the hi-resolution image = lots of heuristics (in non-ML)
○ ML-based approach has shown strong promise 

● ML-based data reconstruction approach
○ especially for “busy” detectors … my research :)
○ Working on implementing inductive-bias/causality (“physics”)

● Other active areas: data/sim domain discrepancy adaptation
○ minimize the discrepancy, identify the source, quantify uncertainty

ML-based Neutrino Data Reconstruction Chain
Wrapping up...
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Backup Slides

2D=>3D
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Machine Learning & Computer Vision in Neutrino Physics
Bonus: isochronous ghost point removal

10
6

ICARUS Detector
Reconstructed 3D points

work credit:
Laura Domine
Patrick Tsang



Machine Learning & Computer Vision in Neutrino Physics
Bonus: isochronous ghost point removal

10
7

Network output
“Ghost points” 

removed



Machine Learning & Computer Vision in Neutrino Physics
Bonus: isochronous ghost point removal

10
8

Truth (label)
“Ghost points”

removed



Backup Slides

SPICE
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ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Mask R-CNN … a popular solution, many applications in science/industries

○ Object (=instance) detection + instance pixel masking in a bounding box
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𝜇 𝜇
Occlusion issue

The overlap rate of 
particles is very high 

especially for our signal 
(neutrinos) with an event 

vertex.

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Mask R-CNN … a popular solution, many applications in science/industries

○ Object (=instance) detection + instance pixel masking in a bounding box
○ Issue: instance distinction is affected by BB position/size
○ Another family: Single-Shot-Detection (SSD) based (not covered here)
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𝜇 𝜇

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Mask R-CNN … a popular solution, many applications in science/industries

○ Object (=instance) detection + instance pixel masking in a bounding box
○ Issue: instance distinction is affected by BB position/size
○ Another family: Single-Shot-Detection (SSD) based (not covered here)

Cherry-picked case where 
overlap is minimal



ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Three component loss: pull together points that belong to the 

same cluster, keep distance between clusters, and regularization

Equation credit: Dae Hyun K. @ Stanford Image credit: arXiv 1708.02551
113

https://arxiv.org/pdf/1708.02551.pdf
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ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Three component loss: pull together points that belong to the 

same cluster, keep distance between clusters, and regularization

Input: 3D pixel energy depositions Output: 3D pixel clusters
(DBScan in hyperspace)
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Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID
Separate electron/positron energy depositions from other types at raw waveform level. 
Helps the downstream clustering algorithms (data/sim comp. @ arxiv:1808.07269)

PRD 99 092001
arXiv:1808.07269

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://arxiv.org/abs/1808.07269


Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID

Encoder Decoder

Residual
connections

input

conv

conv-s2-finc

tconv-s2-fde

softmax

Concatenation

conv-fdec

Architecture: U-Net + Residual Connections

Image credit: Laura Domine @ Stanford

Number of strided 
convolutions, convolution 
layers, residual connections, 
differ in impementations
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Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation
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Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation

Localized features at the 
pixel-level are useful to 
inspect correlation of 

data features & 
algorithm responses
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Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation

Localized features at the 
pixel-level are useful to 
inspect correlation of 

data features & 
algorithm responses
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