

Boosted W Tagging using Lund Jet Plane

Rafael Andrei Vinasco Soler

Supervisors: Reina Camacho Toro, Carlos Sandoval.

ATLAS What is our goal?

Use Lund plane variables as input for machine learning methods to develop a new tagging methods for boosted W boson.

Jet: A set of collimated particles produced in the hadronization of a quark or gluon.

Background Parton level π, Κ. ... 0000 Particle Jet **Energy depositions** in calorimeters

Jet Tagged!!

ATLAS How we identify Boosted boson now?

Currently is used a tagger that perform cuts on 3 Jet substructure variables. These cuts are made according to the Jet transverse momentum (pT).

Plots taken from: Performance of W/Z taggers using UFO jets in ATLAS https://cds.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf

Lund plane: Is a way to represent the phase space of jet constituents reconstructed by reversing jet clustering sequence.

Great to separate QCD and W-jets

- Lund plane variables:

 o kT : Transverse momentum of the
 - ∘ **∆** : Emission angle

emission.

• **Z** : Momentum fraction of branching

QCD jets, averaged primary Lund plane

 $\sqrt{s} = 14 \text{ TeV}, p_t > 2 \text{ TeV}$

Plots taken from: **Dreyer, F.A., Salam, G.P. and Soyez, G. (2018). The Lund jet plane**. https://arxiv.org/pdf/1807.04758.pdf

ATLAS Full Lund plane

- Using the Lund Plane we are going inside the hadronization history. Every single emission is represented!
- If is used the information of each emision instead of using jet global variables we can do a better background discrimitation

More information **Better performance** used

Lund planes is made up as a set of vertices and their connection edge, so this is an ideal input for Graph **Neural Networks!**

ATLAS pT > 200 GeV

Five different GNN structures have been tested.

Λ7identified

 N_1^{total}

~ridentified

 $\epsilon_{\rm background}$

 $\epsilon_{
m signal}$

background

background

→ "Signal efficiency"

→ "Background rejection"

ATLAS pT > 500 GeV

Jet eta | < 2

EXTENTIMENT -

Five different GNN structures have been tested.

Λ7identified

 $N_1^{
m total}$

Midentified

 $\mathbf{\Lambda}_{7}$ total

Number of b Hadrons = 0

 $\epsilon_{\rm background}$

 $\epsilon_{
m signal}$

background

background

→ "Signal efficiency"

→ "Background rejection"

ATLAS pT > 500 GeV

Five different GNN structures have been tested.

NN taggers ROC curve 1.0 0.8 0.6 0.4 ATLAS work in progress nnscore LundNet, AUC = 0.969 nnscore GINNet, AUC = 0.976 0.2 nnscore GATNet, AUC = 0.964 nnscore GGNet, AUC = 0.975 nnscore_PNANet , AUC = 0.979 0.0 3-var 0.2 0.4 0.6 0.8 0.0 1.0

50 GeV < Jet mass < 100 GeV

Jet eta | < 2

QCD rejection vs W tagging efficiency

→ "Signal efficiency"

→ "Background rejection"

\(\tau\) identified

 $N_1^{
m total}$

~ridentified

 $\mathbf{\Lambda}_{7}$ total

Number of b Hadrons = 0

 $\epsilon_{\rm background}$

 $\epsilon_{
m signal}$

background

background

Conclusions

 Presented 5 GNN architectures with improved performance over the currently boosted W boson taggers.

Work in progress

Optimization in the implementation of the differents models.

Thanks for your attention :)

BACKUP;)

ATLAS ATLAS DETECTOR

Standard Tagger performance

Signal performance

Background performance

Events were generated using Monte Carlo simulations in Powheg and Pythia 8 and the detector is simulated using Geant4. Precisely, this is the data used:

- Dijets: 8,277,229 total events.
 mc16_13TeV.3647[03,09].Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ[03,09]WithSW.deriv.DA
 OD_JETM8.e7142_s3126_r10201_p4355
- W prime (W boson): 3,343,338 total events.
 mc16_13TeV.426347.Pythia8EvtGen_A14NNPDF23LO_WprimeWZ_flatpT.deriv.DAOD_JET M8.e6880_s3126_r10201_p4355

Train size:

10% of the Dataset used for training - 90% of the Dataset used for testing.

Cut-based tagger

- Jet pT > 200 GeV
- o 50 GeV < Jet mass < 100 GeV
- | Jet eta | < 2

- Jet truth match with W boson
- $\circ |\Delta R| < 0.75$
- Number of b Hadrons = 0

Models (GNN architectures)

Traditional Neural Networks require input to be of fixed length whilst Graph Neural Networks do not have this limitation, whether the input graph has 2 nodes or 20, the GNN model can handle it!

GNN architectures

- Graph Isomorphism Network (GINConv)
- Graph Attention Network (GATConv)
- Gated Graph Sequence Neural Network (GatedGraphConv)
- Principal Neighbourhood Aggregation Network (PNAConv)

All documented as GINConv, GATConv, GatedGraphConv, and PNAConv, respectively, at :

New Selection

Signal and Background cuts:

```
Ungroomed Jet_pt > 200 GeV,

Jet_pt > 200 GeV,

Jet_pt < 3000 GeV,

Jet_mass > 40 GeV,

Jet_mass < 300 GeV,

Jet_D2 > 0,
```

Signal definition

Jet truth match with W boson Ungroomed Jet_mass > 50 GeV Number of b Hadrons = 0

Lund Plane regions

Using In(Kt) and $In(1/\Delta)$ is easy to identify differents regions.

Mass sculpting

After the selection the mass profile of the background signal changed! To avoid that we could use an Adversarial Neural Network!

Declustering algorithms

 The Declustering algorithms tries to go inside the hadronization history in order to determine where each emission is coming from.

Contribuciones a NLO:

$$\begin{split} \bar{\rho}_2^{(k_t)}(\Delta,\kappa) &\simeq -4C_F^2 \ln^2 \frac{\Delta}{\kappa} + \mathcal{O}\left(L\right) \;. \end{split}$$
 Kt algorithm
$$\bar{\rho}_2^{(\text{anti-}k_t)}(\Delta,\kappa) &\simeq +8C_F \, C_A \ln^2 \frac{\Delta}{\kappa} + \mathcal{O}\left(L\right) \;. \end{split}$$
 Anti-Kt algorithm
$$\bar{\rho}_2^{(\text{C/A})}(\Delta,\kappa) &= \bar{\rho}_1(\Delta,\kappa) \, 4\pi b_0 \ln \frac{1}{\kappa} + \mathcal{O}\left(1\right) \;. \end{split}$$
 C/A algorithm