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Use Lund plane variables as input for machine learning methods to develop a new 
tagging methods for boosted W boson.

Jet: A set of collimated particles produced in the hadronization of a quark or gluon.

Background                                                    Signal
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What is our goal? 



Currently is used a tagger that perform cuts on 3 Jet substructure variables. 
These cuts are made according to the Jet transverse momentum (pT).
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Plots taken from: Performance of W/Z taggers using UFO jets in ATLAS
https://cds.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf Jet Tagged!!

How we identify Boosted boson now?

https://cds.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf


● Great to separate QCD and W-jets

●  Lund plane variables:

Plots taken from: Dreyer, F.A., Salam, G.P. and Soyez, G. (2018). 
The Lund jet plane. https://arxiv.org/pdf/1807.04758.pdf
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○ kT : Transverse momentum of the 
emission.
○ Δ : Emission angle
○ Z : Momentum fraction of branching

Lund plane: Is a way to represent the phase space 
of jet constituents reconstructed by reversing jet 
clustering sequence.

https://arxiv.org/pdf/1807.04758.pdf
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● Using the Lund Plane we are going inside 
the hadronization history. Every single 
emission is represented!

 
● If is used the information of each emision 

instead of using jet global variables we can 
do a better background discrimitation

More information 
used Better performance

● Lund planes is made up as a set of vertices and their 
connection edge, so this is an ideal input for Graph 
Neural Networks!

Full Lund plane
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pT > 200 GeV

○ 50 GeV < Jet mass < 100 GeV
○ | Jet eta | < 2

○ Jet truth match with W boson 
○ Number of b Hadrons = 0

NN taggers ROC curve QCD rejection vs W tagging efficiency

Five different GNN structures have been tested.
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pT > 500 GeV
Five different GNN structures have been tested.

○ 50 GeV < Jet mass < 100 GeV
○ | Jet eta | < 2

○ Jet truth match with W boson 
○ Number of b Hadrons = 0

NN taggers ROC curve QCD rejection vs W tagging efficiency



8○ 50 GeV < Jet mass < 100 GeV
○ | Jet eta | < 2

○ Jet truth match with W boson 
○ Number of b Hadrons = 0

pT > 500 GeV

NN taggers ROC curve QCD rejection vs W tagging efficiency

Five different GNN structures have been tested.



● Presented 5 GNN architectures with improved performance 
over the currently boosted W boson taggers.

Work in progress

● Optimization in the implementation of the differents models.
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Conclusions 



Thanks for your attention :) 
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BACKUP ;)
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ATLAS DETECTOR



Signal performance
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Background performance

Standard Tagger performance
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Events were generated using Monte Carlo simulations in Powheg and Pythia 8 and the 
detector is simulated using Geant4. Precisely, this is the data used:

○ Dijets: 8,277,229 total events. 
mc16_13TeV.3647[03,09].Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ[03,09]WithSW.deriv.DA
OD_JETM8.e7142_s3126_r10201_p4355

○ W prime (W boson): 3,343,338 total events.
mc16_13TeV.426347.Pythia8EvtGen_A14NNPDF23LO_WprimeWZ_flatpT.deriv.DAOD_JET
M8.e6880_s3126_r10201_p4355

Train size: 
10% of the Dataset used for training  -  90% of the Dataset used for testing. 

Cut-based tagger

○ Jet truth match with W boson 
○ |     R | < 0.75
○ Number of b Hadrons = 0

○ Jet pT > 200 GeV
○ 50 GeV < Jet mass < 100 GeV
○ | Jet eta | < 2

Datasets
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Models (GNN architectures)

● LundNet (https://arxiv.org/pdf/2012.08526.pdf)           our inspiration
● Graph Isomorphism Network (GINConv)
● Graph Attention Network (GATConv)
● Gated Graph Sequence Neural Network (GatedGraphConv)
● Principal Neighbourhood Aggregation Network (PNAConv)

All documented as GINConv, GATConv, GatedGraphConv, and PNAConv, 
respectively, at :
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
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Traditional Neural Networks require input to be of fixed length whilst Graph Neural 
Networks do not have this limitation, whether the input graph has 2 nodes or 20, 
the GNN model can handle it!

GNN architectures

https://arxiv.org/pdf/2012.08526.pdf
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers


New Selection

           Ungroomed Jet_pt > 200 GeV,
           Jet_pt >  200 GeV,
           Jet_pt < 3000 GeV,
           Jet_mass >  40 GeV,
           Jet_mass < 300 GeV,
           Jet_D2 > 0,

Signal definition        

Jet truth match with W boson 
Ungroomed Jet_mass > 50 GeV
Number of b Hadrons = 0

Signal and Background cuts:        
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Lund Plane regions

Using ln(Kt) and ln(1/    )  is easy to 
identify differents regions.
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Mass sculpting

After the selection the mass profile of 
the background signal changed! To 
avoid that we could use an 
Adversarial Neural Network!
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Declustering algorithms

● The Declustering algorithms tries to go inside the hadronization history in 
order to determine where each emission is coming from. 
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Contribuciones a NLO:

Kt algorithm

Anti-Kt algorithm

C/A algorithm


