Faddeev-Jackiw quantization of Proca's Electrodynamics on the null-plane

German Enrique Ramos Zambrano - Eduardo Rojas
B. M. Pimentel

Departamento de Física - Universidad de Nariño IFT - UNESP

The effective gauge invariance Lagrangian density which describe the Proca field is defined by:

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\frac{1}{2} M^{2}\left[A_{\mu}+\frac{1}{e} \partial_{\mu} \theta\right]^{2} \tag{1}
\end{equation*}
$$

where $F_{\mu \nu} \equiv \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$. The Lagrangian above is invariant by the following transformations,

$$
\begin{equation*}
A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} \Lambda(x) \quad, \quad \theta(x) \rightarrow \theta(x)-e \Lambda(x) \tag{2}
\end{equation*}
$$

From (1) it is easy to write the first-order Lagrangian by introducing the momentum π^{μ} and p_{θ} with respect to the fields A_{μ} and θ, respectively,
$\pi^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{+} A_{\mu}\right)}=F^{\mu+} \quad, \quad p_{\theta}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{+} \theta\right)}=\frac{M^{2}}{e}\left[A_{-}+\frac{1}{e} \partial_{-} \theta\right]$.
from where, the starting Lagrangian density is written in first order as follow:

$$
\begin{equation*}
\mathcal{L}^{(0)}=\pi^{-} \partial_{+} A_{-}+\pi^{a} \partial_{+} A_{a}+p_{\theta} \partial_{+} \theta-\mathcal{H}^{(0)} \tag{4}
\end{equation*}
$$

where the zero iterated symplectic potential has the following form:

$$
\begin{align*}
\mathcal{H}^{(0)}= & \frac{1}{2} \pi^{-} \pi^{-}+\pi^{-} \partial_{-} A_{+}+\pi^{a} \partial_{a} A_{+}+\frac{1}{4} F_{a b} F_{a b}-e A_{+} p_{\theta} \\
& -\frac{1}{2} M^{2}\left(A_{a}+\frac{1}{e} \partial_{a} \theta\right)\left(A_{a}+\frac{1}{e} \partial_{a} \theta\right) . \tag{5}
\end{align*}
$$

The initial set of symplectic variables is given by the set $\xi_{k}^{(0)}=\left(A_{-}, A_{a}, \theta, \pi^{-}, \pi^{a}, p_{\theta}, A_{+}\right)$. We have from (4) the canonical momenta,

$$
\begin{align*}
K_{A_{-}}^{(0)} & =\pi^{-}, \quad K_{A_{a}}^{(0)}=\pi^{a}, \quad K_{\theta}^{(0)}=p_{\theta} \tag{6}\\
K_{\pi^{-}}^{(0)} & =0, \quad K_{\pi^{a}}^{(0)}=0, \quad K_{p_{\theta}}^{(0)}=0, \quad K_{A_{+}}^{(0)}=0
\end{align*}
$$

The zero iterated symplectic two-form matrix is defined by,

$$
\begin{equation*}
M_{A B}^{(0)}(\mathbf{x}, \mathbf{y})=\frac{\delta K_{B}^{(0)}(\mathbf{y})}{\delta \xi_{A}^{(0)}(\mathbf{x})}-\frac{\delta K_{A}^{(0)}(\mathbf{x})}{\delta \xi_{B}^{(0)}(\mathbf{y})} \tag{7}
\end{equation*}
$$

with the components

$$
M_{A B}^{(0)}(\mathbf{x}, \mathbf{y})=\left(\begin{array}{ccccccc}
0 & 0 & 0 & -1 & 0 & 0 & 0 \tag{8}\\
0 & 0 & 0 & 0 & -\delta_{b}^{a} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \delta_{b}^{a} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \delta^{3}(\mathbf{x}-\mathbf{y})
$$

The symplectic matrix is singular and it has a zero mode

$$
\tilde{v}^{1(0)}(\mathbf{x})=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & v(\mathbf{x}) \tag{9}
\end{array}\right),
$$

where $v(\mathbf{x})$ is an arbitrary function. From this nontrivial zero-mode, we have the following constraint,

$$
\begin{aligned}
\Omega_{1}^{(0)} & =\int d^{3} x v(\mathbf{x}) \frac{\delta}{\delta \xi_{A_{+}}(\mathbf{x})} \int d^{3} y \mathcal{H}^{(0)}(y) \\
& =-\int d^{3} x v(\mathbf{x})\left[\partial_{-}^{x} \pi^{-}(x)+\partial_{a}^{x} \pi^{a}(x)+e p_{\theta}(x)\right] \\
& =0 .
\end{aligned}
$$

The constraint is evaluated form (10) to be,

$$
\begin{equation*}
\Omega_{1}^{(0)}=\partial_{-}^{x} \pi^{-}(x)+\partial_{a}^{x} \pi^{a}(x)+e p_{\theta}(x)=0 . \tag{11}
\end{equation*}
$$

The constraint (11) is introduced in the Lagrangian density, thus, the first iterated Lagrangian density is written as,

$$
\begin{equation*}
\mathcal{L}^{(1)}=\pi^{-} \partial_{+} A_{-}+\pi^{a} \partial_{+} A_{a}+p_{\theta} \partial_{+} \theta+\Omega_{3}^{(0)} \dot{\beta}-\mathcal{H}^{(1)} \tag{12}
\end{equation*}
$$

where the first iterated symplectic potential is

$$
\begin{align*}
\mathcal{H}^{(1)}= & \mathcal{H}_{\Omega_{1}^{(0)}=0}^{(0)}=\frac{1}{2} \pi^{-} \pi^{-}+\frac{1}{4} F_{a b} F_{a b} \tag{13}\\
& -\frac{1}{2} M^{2}\left(A_{a}+\frac{1}{e} \partial_{a} \theta\right)\left(A_{a}+\frac{1}{e} \partial_{a} \theta\right) .
\end{align*}
$$

We enlarged the space defined by $\xi_{k}^{(1)}=\left(A_{-}, A_{a}, \theta, \pi^{-}, \pi^{a}, p_{\theta}, \beta\right)$.

The first iterated symplectic matrix is written as,
$M_{A B}^{(1)}(\mathbf{x}, \mathbf{y})=\left(\begin{array}{ccccccc}0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\delta_{b}^{a} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & -\partial_{-}^{x} \\ 0 & \delta_{b}^{a} & 0 & 0 & 0 & 0 & -\partial_{a}^{x} \\ 0 & 0 & 1 & 0 & 0 & 0 & e \\ 0 & 0 & 0 & -\partial_{-}^{x} & -\partial_{b}^{x} & -e & 0\end{array}\right) \delta^{3}(\mathbf{x}-\mathbf{y})$
The modified symplectic matrix is again singular. The new constraint is identically zero.

In order to obtain a regular symplectic matrix a gauge fixing term must be added. We choose the null-plane gauge $\Theta=A_{-}(x)=0$. We obtain the second iterative Lagrangian, i.e.:

$$
\begin{equation*}
\mathcal{L}^{(2)}=\pi^{-} \partial_{+} A_{-}+\pi^{a} \partial_{+} A_{a}+p_{\theta} \partial_{+} \theta+\Omega_{3}^{(0)} \dot{\beta}+\Theta \dot{\eta}-\mathcal{H}^{(2)} \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{H}^{(2)}= & \mathcal{H}_{\Omega_{i 1}^{(0)}, \Theta=0}^{(1)}=\frac{1}{2} \pi^{-} \pi^{-}+\frac{1}{4} F_{a b} F_{a b} \\
& -\frac{1}{2} M^{2}\left(A_{a}+\frac{1}{e} \partial_{a} \theta\right)\left(A_{a}+\frac{1}{e} \partial_{a} \theta\right) . \tag{16}
\end{align*}
$$

The new set of symplectic variable is:
$\xi_{k}^{(2)}=\left(A_{-}, A_{a}, \theta, \pi^{-}, \pi^{a}, p_{\theta}, \beta, \eta\right)$ and from (15) we determine the second-iterated symplectic two-form matrix,

$$
\begin{equation*}
M_{A B}^{(2)}(\mathbf{x}, \mathbf{y})=\frac{\delta K_{B}^{(2)}(\mathbf{y})}{\delta \xi_{A}^{(2)}(\mathbf{x})}-\frac{\delta K_{A}^{(2)}(\mathbf{x})}{\delta \xi_{B}^{(2)}(\mathbf{y})} \tag{17}
\end{equation*}
$$

Since this matrix is not singular, we finally have the inverse matrix after a laborious calculation. From this relations and

$$
\begin{equation*}
\left\{\xi^{(2) A}(\mathbf{x}), \xi^{(2) B}(\mathbf{y})\right\}=\left[M_{A B}^{(2)}(\mathbf{x}, \mathbf{y})\right]^{-1} \tag{18}
\end{equation*}
$$

we immediately identify the generalized brackets as follow:

$$
\begin{aligned}
\left\{A_{a}(x), \pi^{-}(y)\right\} & =-\frac{\partial_{a}^{x}}{\partial_{-}^{x}} \delta^{3}(\mathbf{x}-\mathbf{y}) \\
\left\{A_{a}(x), \pi^{b}(y)\right\} & =\delta_{b}^{a} \delta^{3}(\mathbf{x}-\mathbf{y}) \\
\left\{\theta(x), \pi^{-}(y)\right\} & =\frac{e}{\partial_{-}^{x}} \delta^{3}(\mathbf{x}-\mathbf{y}) \\
\left\{\theta(x), p_{\theta}(y)\right\} & =\delta^{3}(\mathbf{x}-\mathbf{y})
\end{aligned}
$$

- The results give us the Dirac brackets of the theory.
- The structure of these constraints is very simple.
- The potential symplectic obtained at the final stage of iterations is exactly the Hamiltonian.

