

EFFECTIVE POTENTIAL AND DYNAMICAL SYMMETRY BREAKING UP TO FIVE LOOPS IN A MASSLESS ABELIAN HIGGS MODEL

ANDRÉS GÓMEZ QUINTO (A. G. QUINTO),

WITH THE COLLABORATION OF 1RICARDO VEGA, 2ALYSSON FERRARI AND 3ANDRÉ LEHUM

¹Universidad del Atlántico-Colombia ²Universidade Federal do ABC-Brazil ³Universidade Federal do Pará-Brazil

ARXIV: 2111.08865

COLEMAN-WEINBERG (CW) AND MINIMAL SUBTRACTION (MS) SCHEMES

$$L = \ln\left(\frac{\sigma^2}{\mu^2}\right)$$
 for CW scheme

$$ilde{L} = \ln\!\left(xrac{\sigma^2}{ ilde{\mu}^2}
ight) ext{ for MS scheme}$$

RENORMALIZATION GROUP FUNCTIONS

$$eta_{
m CW}^{
m one\ loop} = { ildeeta}_{MS}^{
m one\ loop}$$

EFFECTIVE POTENTIAL

F. A. Chishtie, et al. PRD 83 (2011)

$$V_{
m eff(CW)}^{
m one\ loop} = { ilde V}_{
m eff(\it MS)}^{
m one\ loop}$$
 (2)

THESE RELATIONS ARE MORE COMPLICATED WHEN HIGHER LOOPS ARE CONSIDERED.

WE NEED TO USE MULTISCALE METHODS.

RENORMALIZATION GROUP EQUATION (RGE) AND DYNAMICAL SYMMETRY

$$\left[\mu\frac{\partial}{\partial\mu}+\beta_{x}\frac{\partial}{\partial x}-\gamma_{\varphi}\phi\frac{\partial}{\partial\phi}\right]\mathcal{V}_{eff}(\phi;\mu,x,\mathcal{L})=0 \qquad \left[\begin{array}{c} 3\end{array}\right] \text{ where } \begin{cases} \mathcal{V}_{\text{eff}}\left(\phi;\mu,x,\mathcal{L}\right)=\phi^{4}\mathcal{S}_{\text{eff}}\left(\mu,x,\mathcal{L}\right), & \left(\begin{array}{c} 4\end{array}\right) \\ \mathcal{L}=\ln\left[\frac{\phi^{2}}{u^{2}}\right] & \left(\begin{array}{c} 5\end{array}\right) \end{cases}$$

$$\left[-(2+2\gamma_{\phi})rac{\partial}{\partial\mathcal{L}}+eta_{x}rac{\partial}{\partial x}-4\gamma_{arphi}
ight]\!\mathcal{S}_{ ext{eff}}\left(\mu,x,\mathcal{L}
ight)=0 \quad \left[egin{array}{c} 6 \end{array}
ight]$$

$$\left[-(2+2\gamma_\phi) rac{\partial \mathcal{L}}{\partial \mathcal{L}} + eta_x rac{\partial x}{\partial x} - 4\gamma_\varphi
ight] \mathcal{S}_{ ext{eff}} \left(\mu, x, \mathcal{L}
ight) = 0 \qquad (\circ)$$
with $\mathcal{S}_{ ext{eff}} \left(x, \mathcal{L}
ight) = \mathcal{S}_{ ext{eff}}^{ ext{LL}} (x, \mathcal{L}) + \mathcal{S}_{ ext{eff}}^{ ext{NLL}} (x, \mathcal{L}) + \cdots, \qquad (
ight.)$

 $\left[-2rac{\partial}{\partial \mathcal{L}} + eta_x^{(2)}rac{\partial}{\partial x}
ight] \mathcal{S}_{eff}^{\mathrm{LL}}(x,\mathcal{L}) = 0$ A. G. Quinto, et al. NPB 907 (2016) $\left[-2rac{\partial}{\partial \mathcal{L}}+eta_x^{(2)}rac{\partial}{\partial x}
ight]\mathcal{S}_{eff}^{
m NLL}(x,\mathcal{L})+\left[eta_x^{(3)}rac{\partial}{\partial x}-4\gamma_arphi^{(2)}
ight]\mathcal{S}_{eff}^{
m LL}(x,\mathcal{L})=0 \hspace{1.5cm} \left[egin{array}{c} arphi \end{array}
ight]$

RENORMALIZATION GROUP EQUATION (RGE) AND DYNAMICAL SYMMETRY BREAKING (DSB)

THE RENORMALIZATION GROUP FUNCTIONS ARE USUALLY CALCULATED IN THE MS ECHEME AND THEY SHOULD BE ADAPTED TO THE CW SCHEME.

$$ilde{\mathcal{L}} = \ln \left[rac{x\phi^2}{2\mu^2}
ight]$$

BOTH SCHEMES CAN BE RELATED BY A REDEFINITION OF THE MASS SCALE P,

$$\mu_{MS}^2 = f(x)\mu_{CW}^2$$

$$\left(\begin{array}{c}11\end{array}\right)$$

[13]

THE BETA FUNCTIONS IN BOTH SCHEMES

$$eta_{CW} = eta_{MS}igg(1-rac{1}{2}eta_{MS}\partial_x \ln figg)^{-1}$$
 (12)

IN FOUR SPACETIME DIMENSIONS, DIVERGENCES USUALLY START AT ONE LOOP,

$$eta_{CW} = \left(eta_{MS}^{(2)} + eta_{MS}^{(3)} + \cdots
ight) (1 + \mathcal{O}(x)) \ = eta_{MS}^{(2)} + \mathcal{O}ig(x^3ig)$$

(3

RENORMALIZATION GROUP EQUATION (RGE) AND DYNAMICAL SYMMETRY BREAKING (DSB)

IN THE MS AND CW SCHEMES, THE EFFECTIVE POTENTIAL WOULD BE CALCULATED AT ONE LOOP LEVEL IN THE FORMS

$$V_{MS}=\phi^4(ilde{A}(x)+ ilde{B}(x) ilde{\mathcal{L}})$$
 (14) $V_{CW}=\phi^4(A(x)+B(x)\mathcal{L})$ (15) From $ilde{\mathcal{L}}=\ln\left[rac{x\phi^2}{2\mu^2}
ight]$ and $\mathcal{L}=\ln\left[rac{\phi^2}{\mu^2}
ight]$ $ilde{\mathcal{L}}=\mathcal{L}+\ln\left[rac{x}{2}
ight]$ (16) $V_{MS}=\phi^4\left[\left(ilde{A}(x)+\lnrac{x}{2} ilde{B}(x)
ight)+ ilde{B}(x)\mathcal{L}
ight]$

At the two loop level, the RGE can be used to relate renormalization group functions and the effective potential in the CW and the MS scheme, but not interchangeably.

MASSLESS ABELIAN HIGGS MODEL

THE RENORMALIZED LAGRANGIAN OF THE MASSLESS AH MODEL

$$\mathcal{L}'=Z_{\phi}|D_{\mu}\phi|^2+Z_{\phi^4}\lambda ilde{\mu}^eig(|\phi|^2ig)^2+rac{Z_A}{4}F_{\mu v}^2-rac{1}{2\xi}(\partial_{\mu}A^{\mu})^2 \qquad \left(\ ^{15}
ight) = \left(\partial_{\mu}-ie ilde{\mu}^{e/2}A_{\mu}
ight) \phi$$

RENORMALIZED COUPLING CONSTANTS AS

$$lpha\equiv e^2=e_0^2 ilde{\mu}^{-e}Z_A$$
 $\lambda=\lambda_0 ilde{\mu}^{-e}Z_\phi^2Z_{\phi^4}^{-1}$ $\left(egin{array}{c} & \xi=\xi_0Z_A^{-1} \end{array}
ight)$

IN THE MS SCHEME, THE BETA AND GAMMA FUNCTIONS OF THE MODEL ARE

Bernhard Ihrig, et al. PRB 100 (2019)
$$\tilde{\beta}_{\alpha} = \tilde{\beta}_{\alpha}^{(2)} + \tilde{\beta}_{\alpha}^{(3)} + \tilde{\beta}_{\alpha}^{(4)} + \tilde{\beta}_{\alpha}^{(5)}$$

$$\tilde{\beta}_{\xi} = \tilde{\beta}_{\xi}^{(2)} + \tilde{\beta}_{\xi}^{(3)} + \tilde{\beta}_{\xi}^{(4)} + \tilde{\beta}_{\xi}^{(5)}$$

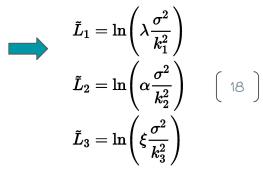
$$\tilde{\beta}_{\lambda} = \tilde{\beta}_{\lambda}^{(2)} + \tilde{\beta}_{\lambda}^{(3)} + \tilde{\beta}_{\lambda}^{(4)} + \tilde{\beta}_{\lambda}^{(5)}$$

$$\tilde{\gamma}_{\phi} = \tilde{\gamma}_{\phi}^{(1)} + \tilde{\gamma}_{\phi}^{(2)} + \tilde{\gamma}_{\phi}^{(3)} + \tilde{\gamma}_{\phi}^{(4)}$$

(17

RENORMALIZATION GROUP FUNCTION IN THE CW SCHEME

REMEMBER!
$$L=\ln\!\left(rac{\sigma^2}{\mu^2}
ight)$$
 for CW scheme $ilde{L}=\ln\!\left(xrac{\sigma^2}{\widetilde{\mu}^2}
ight)$ for MS scheme



$$k_1 = \lambda^{1/2} \mu$$
 $k_2 = \alpha^{1/2} \mu$ [19]
 $k_3 = \xi^{1/2} \mu$
RELATION BETWEEN MS
AND CW SCHEME

MS SCHEME

THE CW RG FUNCTIONS THROUGH AN ORDER BY

ORDER
$$\gamma_{\phi}^{(1)} = -3\tilde{\gamma}_{\phi}^{(1)}$$

$$\beta_{\lambda}^{(2)} = -3\tilde{\beta}_{\lambda}^{(2)}$$

$$\beta_{\alpha}^{(2)} = -3\tilde{\beta}_{\alpha}^{(2)}$$

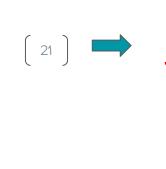
$$\beta_{\xi}^{(2)} = -3\tilde{\beta}_{\xi}^{(2)}$$
EXPECTED!

$$\beta_{\lambda}^{(3)} = -3\tilde{\beta}_{\lambda}^{(3)} + 3\tilde{\beta}_{\lambda}^{(2)} \left(\frac{\tilde{\beta}_{\lambda}^{(2)}}{2\lambda} + \frac{\tilde{\beta}_{\alpha}^{(2)}}{2\alpha} + \frac{\tilde{\beta}_{\xi}^{(2)}}{2\xi} \right)$$

$$\beta_{\alpha}^{(3)} = -3\tilde{\beta}_{\alpha}^{(3)} + 3\tilde{\beta}_{\alpha}^{(2)} \left(\frac{\tilde{\beta}_{\lambda}^{(2)}}{2\lambda} + \frac{\tilde{\beta}_{\alpha}^{(2)}}{2\alpha} + \frac{\tilde{\beta}_{\xi}^{(2)}}{2\xi} \right)$$

$$\beta_{\xi}^{(3)} = -3\tilde{\beta}_{\xi}^{(3)} + 3\tilde{\beta}_{\xi}^{(2)} \left(\frac{\tilde{\beta}_{\lambda}^{(2)}}{2\lambda} + \frac{\tilde{\beta}_{\alpha}^{(2)}}{2\alpha} + \frac{\tilde{\beta}_{\xi}^{(2)}}{2\xi} \right)$$

$$\beta_{\xi}^{(3)} = -3\tilde{\beta}_{\xi}^{(3)} + 3\tilde{\beta}_{\xi}^{(2)} \left(\frac{\tilde{\beta}_{\lambda}^{(2)}}{2\lambda} + \frac{\tilde{\beta}_{\alpha}^{(2)}}{2\alpha} + \frac{\tilde{\beta}_{\xi}^{(2)}}{2\xi} \right)$$



A. G. Quinto, et al. arXiv:2111.08865 (2021)

UP TO FOUR LOOPS

Two Loops

We consider a shift in the N-th component of
$$\phi_N = \underbrace{\phi_N^q + \sigma}_{=\frac{1}{\sqrt{2}}}(\phi_{1N} + i\phi_{2N})$$
 $V_{\rm eff}^{(0\ell)}(\sigma) = \frac{1}{4}\lambda\sigma^4$ (23)

SPONTANEOUS SYMMETRY BREAKING AND THE CORRESPONDING

GENERATION OF MASS AS

$$egin{align} m_{\phi_{1N}}^2 &= rac{3}{2} \lambda \sigma^2 \ m_{\phi_{2N}}^2 &= rac{1}{2} \lambda \sigma^2 - \xi m_A^2 \ m_A^2 &= rac{1}{2} e^2 \sigma^2 \ \end{array}$$

24

$$A(\lambda, \alpha, \xi) = A^{(1)} = \frac{1}{4}\lambda \qquad \left(26 \right)$$

FIXED BY THE CW CONDITION

WE SHALL USE THE ANSATZ

$$V_{
m eff}(\sigma_{cl}) = \sigma^4 \underbrace{S_{
m eff}(\sigma,\lambda,lpha,\xi,L)}_{=A(\lambda,lpha,\xi)} igl(ext{25} igr) \ = A(\lambda,lpha,\xi) + B(\lambda,lpha,\xi)L + C(\lambda,lpha,\xi)L^2 + D(\lambda,lpha,\xi)L^3 + \cdots$$

THE RGE FOR OUR MODEL IS

$$[2(-1+\gamma_\phi)\partial_L+eta_\lambda\partial_\lambda+eta_lpha\partial_lpha+eta_\xi\partial_\xi+4\gamma_\phi]S_{
m eff}(\sigma;\lambda,lpha,\xi,L)=0$$

27

A. G. Quinto - angoquinto@gmail.com

(7

SEPARATING THE RESULTING EXPRESSION BY ORDERS OF L, WE OBTAIN A SERIES OF EQUATIONS,

 $+b_{24}\alpha^5+b_{25}\alpha^4\xi+b_{26}\alpha\lambda^4+b_{27}\lambda^5+b_{28}\alpha^5\xi\lambda^{-1}+b_{29}\alpha^6\lambda^{-1}+b_{30}\alpha^7\lambda^{-2}+b_{31}\alpha^8\lambda^{-3}.$

$$2(-1+\gamma_{\phi})B(\lambda,\alpha,\xi) + \beta_{\lambda}\partial_{\lambda}A(\lambda,\alpha,\xi) + 4\gamma_{\phi}A(\lambda,\alpha,\xi) = 0$$

$$2(-1+\gamma_{\phi})C(\lambda,\alpha,\xi) + \{\beta_{\lambda}\partial_{\lambda} + \beta_{\alpha}\partial_{\alpha} + \beta_{\xi}\partial_{\xi} + 4\gamma_{\phi}\}B(\lambda,\alpha,\xi) = 0$$

$$2(-1+\gamma_{\phi})D(\lambda,\alpha,\xi) + \{\beta_{\lambda}\partial_{\lambda} + \beta_{\alpha}\partial_{\alpha} + \beta_{\xi}\partial_{\xi} + 4\gamma_{\phi}\}C(\lambda,\alpha,\xi) = 0$$

$$(28)$$

EXPANDED FORM

$$\begin{array}{c}
-2\left(B^{(1)} + B^{(2)} + B^{(3)} + \ldots\right) + 2\left(\gamma_{\phi}^{(1)} + \gamma_{\phi}^{(2)} + \ldots\right)\left(B^{(1)} + B^{(2)} + B^{(3)} + \ldots\right) \\
+ \left(\beta_{\lambda}^{(2)} + \beta_{\lambda}^{(3)} + \ldots\right)\partial_{\lambda}A^{(1)} + 4\left(\gamma_{\phi}^{(1)} + \gamma_{\phi}^{(2)} + \ldots\right)A^{(1)} = 0
\end{array}$$

WE CAN FIND

$$B^{(2)} = \frac{3}{8} \left(6\alpha^2 + 2\alpha\lambda + (N+4)\lambda^2 \right).$$

$$B^{(3)} = b_1\alpha\lambda\xi + b_2\alpha^3 + b_3\alpha^2\lambda + b_4\alpha\lambda^2 + b_5\lambda^3 + b_6\alpha^4\lambda^{-1}$$

$$B^{(4)} = b_7\alpha^3\xi + b_8\alpha^4 + b_9\alpha\lambda^2\xi + b_{10}\alpha^3\lambda + b_{11}\alpha^2\lambda\xi + b_{12}\alpha^2\lambda^2 + b_{13}\alpha\lambda^3 + b_{14}\lambda^4 + b_{15}\alpha^5\lambda^{-1} + b_{16}\alpha^6\lambda^{-2}$$

$$B^{(5)} = b_{17}\lambda^3\alpha\xi + b_{18}\lambda^3\alpha^2 + b_{19}\lambda^2\alpha^3 + b_{20}\lambda^2\alpha^2\xi + b_{21}\lambda\alpha^2\xi^2 + b_{22}\lambda\alpha^4 + b_{23}\lambda\alpha^3\xi$$

$$A. G. Quinto, et al. arXiv:2111.08865 (2021)$$

THE EFFECTIVE POTENTIAL UP TO FIVE LOOPS WHICH WAS CALCULATED USING THE RENORMALIZATION GROUP

EQUATION

$$V_{ ext{eff},R}^{(5\ell)}(\sigma) = \sigma^4 \Bigg[A^{(1)} + \sum_{n=2}^5 B^{(n)} L + \sum_{n=3}^5 C^{(n)} L^2 + \sum_{n=4}^5 D^{(n)} L^3 +
ho \Bigg]$$

31

THE CONSTANT O IS FIXED USING THE CW NORMALIZATION CONDITION,

$$\left.rac{d^4}{d\sigma^4}V_{{
m eff},R}(\sigma)
ight|_{\sigma=\mu}=rac{4!}{4}\lambda$$

32

The effective potential has a minimum at $\sigma = \rho$ means imposing that

$$\left.rac{d}{d\sigma}V_{\mathrm{eff},R}(\sigma)
ight|_{\sigma=\mu}=0$$

33

WHICH CAN BE USED TO DETERMINE THE VALUE OF λ AS A FUNCTION OF FREE PARAMETERS α , ξ AND N.

WE LOOK FOR REAL AND POSITIVE VALUES FOR λ , AND CORRESPOND TO A MINIMUM OF THE POTENTIAL. I.E.,

$$\left. rac{d^2}{d\sigma^2} V_{{
m eff},R}(\sigma)
ight|_{\sigma=\mu} > 0$$

34

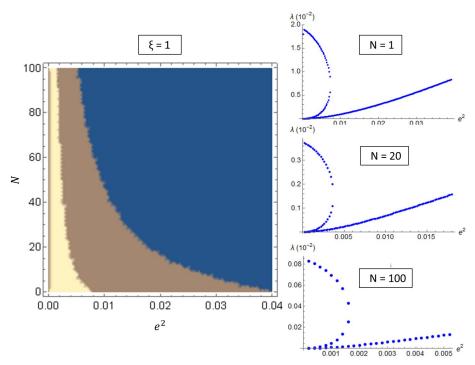


Figure 1. In the left hand side we show a region plot corresponding to the result of scanning for DSB for different values of the free parameters e^2 and N, with $\xi=1$. In our model we find three regions: in the yellow region we have three possible solutions for λ , in the brown one we have only one solution and in the blue region we do not have solution for λ , meaning DSB is not operational. In the right hand side, we show a set of plots explicitly showing the behavior of the solutions for λ as a function of the e^2 parameter, for specific values of N = 1, 20, 100 and $\xi=1$.

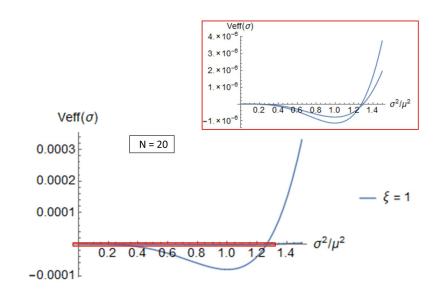


Figure 2. This graph of Veff (σ) vs. σ^2 / μ^2 shows the potential minimum for the gauge parameter, ξ = 1. The effective potential was evaluated using e^2 = 0.001, N = 20 and the values of λ . The red rectangle in the bottom-left graph is shown in a different scale in the top-right one.

$$\lambda_1 = 0.003553, \lambda_2 = 0.00003590, \lambda_3 = 0.00001210$$

THANKS FOR YOUR ATTENTION