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Motivation

CEνNS (Coherent Elastic Neutrino Nucleus Scattering): neutrinos of
Eν < 1/Rnuc scatter off nucleus as a whole (recoil energy less than 1 keV).
Measured by COHERENT (2017), usefull to study

Anomalous neutrino magnetic moment
Massive mediators
Weinberg mixing angle
Non standard interactions at low energy.
Also important for Dark Matter searches.
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fMotivation

Detection of nuclear recoils with ER < 10 keV.
For ionization-only detectors, the visible energy Ev comes from
electronic excitations.

ERmax = 2E2
ν̄e

M ≈ 10keV in Si.

Lindhard (1963) divided the deposited energy in electronic ionization
(H) and nuclear movement (N); ER = H + N.
The ionization efficiency for nuclear recoils (quenching factor QF) is

fn = H
ER
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fMotivation

As experiments have lowered their detection thresholds well below 1 keV,
understanding the quenching at those low energies has become important.

Suppose that the visible energy Ev ≈ H.

Let Ev = fn(ER)ER be the visible energy
reconstructed from the QF.

The visible energy spectrum is shifted to
lower energies, due to the QF,

dR
dER

= dR
dEv

dEv
dER

= dR
dEv

(
fn + ER

dfn
dER

)−1
,

QF moves events below threshold.
CEνNS spectrum dR

dEv
(dotted) and dR

dER
(solid).
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fMeasurements of QF in Si
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Si QF data from 0.69 keV to 3 MeV.

Lindhard’s model (LM) is
expected to work only at high
energies > 10 keV, where
atomic binding energy (BE)
can be neglected.
For Si, LM fails below ∼ 5 keV,
where BE is relevant.
Previous attempts to include
BE had some problems.
Our goal was to construct a
mathematical consistent
extension of LM with BE.
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Measurements of QF in Ge

For Ge, Lindhard model works for high energies.
Recent measurements (Collar’21) in disagreement with other data
(COHERENT, SNL, Duke, TUNL, Jones’75).

J.I.Collar, et al, PRD 103,122003 (2021), Long Li Duke University

7 / 31



fNuclear recoil in a pure material

Suppose that the ion recoils from the interaction with an energy ER , after
recoiling with an incident particle (e.g., a neutrino).
Energy U is lost to some disruption of the atomic bonding, then
ER = E + U, then the ion moves with a kinetic energy E .
The moving ion sets off a cascade of slowing-down processes that dissipate
the energy E throughout the medium.
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Lindhard’s model (LM)

Lindhard’s theory study the fraction of ER which is given to electrons,
H, and that which is given to atomic motion, N, with ER = N + H.
Defining reduced dimensionless quantities,
εR = cZ ER , η = cZ H, ν = cZ N where cZ = 11.5/Z 7/3keV.
The cascade process produce an average ionization η̄.
This separation is written as εR = η̄ + ν̄.
The quenching factor (fn) for a nuclear recoil is then defined as the
fraction of ER which is given to electrons (u = cZ U):

fn = η̄

εR
= ε + u − ν̄

ε + u (1)

When u = 0 one recovers the usual definition.
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fBasic integral equation and
approximations

(Tn : Nuclear kinetic energy and Tei electron kinetic energy.)

∫
dσn,e︸ ︷︷ ︸

total cross section

ν̄

(
E − Tn −

∑
i

Tei

)
︸ ︷︷ ︸

A

+ ν̄ (Tn − U)︸ ︷︷ ︸
B

+ ν̄(E)︸︷︷︸
C

+
∑

i

ν̄e (Tei − Uei )︸ ︷︷ ︸
D

 = 0 (2)

Lindhard’s (five) approximations
I Neglect contribution to atomic motion

coming from electrons.
II Neglect the binding energy, U = 0. (Now

taken into account)
III Energy transferred to electrons is small

compared to that transferred to recoil ions.
IV Effects of electronic and atomic collisions

can be treated separately.
V Tn is also small compared to the energy E .
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fLindhard simplified equation

Using these approximations Lindhard deduced a simplify integral
equation,

(kε1/2)︸ ︷︷ ︸
Se

ν̄ ′(ε) =
∫ ε2

0
dt

f
(
t1/2

)
2t3/2︸ ︷︷ ︸
dσn

[ν̄(ε − t/ε) + ν̄(t/ε) − ν̄(ε)], (3)

Since binding energy was neglected, it is only valid at high energies.
On the one hand ν̄(ε → 0) → ε, but according to Eq.(3) predict
ν̄ ′(0) = 0.
Lindhard gave a parametrization for ν̄, which only works for εR ≳ 0.1

ν̄L(ε) = ε

1 + kg(ε) ,

g(ε) = 3ε0.15 + 0.7ε0.6 + ε.

First principles elec. stopping power.
Se = kε1/2, k = 0.133Z 2/3/A1/2(≈ .15).
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fApproximation to LM with binding energy.

In order to compute a solution for ν̄ that includes the binding energy, we
do the following

i Neglect atomic motions caused by electrons, because they are
negligible at low energies ν̄e = 0.

ii Energy transferred to ionized electrons is small compared to that
transferred to recoiling ions .

iii Effects of electronic and atomic collisions can be treated separately.
iv Tn is also small compared to the energy E.
v Expand the terms in Eq. 2 up to second order in ΣiTei/(E − Tn) .

The first four are the same approximation used by Lindhard.
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Simplified integral equation with binding
energy

In a previous work on the subject it was not noticeda the necessity to
change the lower limit of integration in order to be consistent with the
term ν̄(t/ε − u). We take this into account and, consequently, so Eq.2
becomes:

−1
2kε3/2ν̄′′(ε) +kε1/2︸ ︷︷ ︸

Se

ν̄′(ε) =
∫ ε2

εu
dt

f
(
t1/2)

2t3/2︸ ︷︷ ︸
dσn

[ν̄(ε− t/ε)+ ν̄(t/ε− u )− ν̄(ε)]

(4)
This equation can be solved numerically from ε ⩾ u. It predicts a

threshold energy εthreshold
R = 2u.

The equation admits a solution featuring a ”kink” at ε = u (discontinuous
1st derivative). We assume that the binding energy is a constant u = u0

aPhysRevD 91 083509 (2015)
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Numerical solution

To solve the Eq.(4), the following parametrization is required

ν̄u(ε) =
{

ε + u0 ε < u0
ε + u0 − λ(ε) ε ≥ u0

(5)

where λ has to be a continuous function, but must have a discontinuity in
its first derivative at ε = u0.

limζ→0 λ′(u + ζ) = α1, limζ→0 λ′′(u + ζ) = α2
limζ→0 λ′(u − ζ) = 0, limζ→0 λ′′(u − ζ) = 0 (6)

with α1 ̸= 0 and α2 ̸= 0. Where can be determined by a shooting method.
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First Result for Si (PRD 101, 102001 (2020)).

Measurements of the QF in Si (points with error bars) compared to the Lindhard
model (dot-dashed line), the fitted ansatz, and the numerical solution with U =
0.15 keV and k = 0.161.
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fStraggling

Straggling Ω2 = ⟨δE − ⟨δE ⟩⟩2, is an inherent feature of stopping.
In dimensionless units1: dΩ2

dρ ≡ W = C2

πa2
∫ E

0 T 2
n σ(Tn)dTn.

Straggling appears when approximation (III) is relaxed up to second
order in (ΣiTei).
Assuming a general electronic stopping power Se(ε), the
integro-differential equation can be written,

−1
2εSe(ε)

(
1 + W (ε)

Se(ε)ε

)
ν̄ ′′(ε) + Se(ε)ν̄ ′(ε) =

∫ ε2

εu
dt

f
(
t1/2

)
2t3/2 [ν̄(ε − t/ε) + ν̄(t/ε − u) − ν̄(ε)],

(7)

Goes beyond than using the ratio ξ(ε) = Se(ε)/Sn(ε) as a measure
of the energy dissipation, consider by Lindhard and Bezrukov.

1C = 11.5/Z 7/3[ 1
keV ]
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fHigh energy effects (> 10 keV) for Se(ε)
§ Bohr Stripping

Electrons can be lost according to
momentum transferred.
The effective number of electrons
obeys Z † ≈ Ze−v/Z2/3v0 .
Se ∝ Z †, this leads to damping.

| Se vs data

§ Z oscillations
When the ion charge changes,
the transport cross section
changes.
Phase shift appear to maintain
the neutrality of the electron
Fermi gas.

| Z oscillation for Si.
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Low energy effects for Se

§ Electronic stopping power
Coulomb repulsion effects, produces
a damping in Se at low energies.
Using different inter-atomic
potentials and models (12 curves);
Tilinin,Kishinevsky and Arista.

| Se/
√

ε for Tilinin model computed with
four different inter-atomic potentials

§ Binding energy
Frenkel pair creation energy.
Atomic binding with T.F theory.

| Variable binding energy
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fResults (Si)

Fit to all data except ANTONELLA and Gerbier. Band corresponds to twelve
possible models. Fit deteriorates significantly if included.
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fResults (Ge) with Collar recent data
For Ge (Z = 32) we have to include a geometrical factor, mentioned
by Tilinin and only significant for high Z (Z > 20).

Germanium QF model with straggling, geometrical factor, low and high energy
effects.
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Conclusions

1 We have improved our study of the basic integro-differential equation
describing the energy given to atomic motion by nuclear recoils in
pure crystals, based on Lindhard’s theory.

2 Considering a variable binding energy and detail modeling of
electronic stopping, we compute the QF in Si over nearly five orders
of magnitude (ER ∼ 50 eV to 3 MeV).

3 The model describes all the silicon data well, except for ANTONELLA
and Gerbier, which introduce some tension. The model shows
potential to explain recent Ge measurements

4 A Si based experiment with a threshold of Eth ≈ 4 eVee requires
knowledge of the QF down to ER ≈ 100 eV. Needed for next
generation CEνNS experiments, e.g. skipper CCD’s.

5 Much work can be done from here, e.g directional quenching factor,
straggling for ν̄, higher moments study, etc.
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Thanks
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Backup
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QF Measurements in Silicon

A series of experiments contrasted Lindhard model in different materials,
using neutron beams produced in accelerators they measured QF for
energies above 20 keV.

After 1965 other low energy measurements were made using mono
energetic neutron beams from 3H(p, n)3He reaction and a Si detector.

Other technique implemented in 1990 (Gerbier) consist in using a broad
spectrum neutron beam and, using nuclear resonance properties of Si and
neutrons to make measurements.
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Semi-hard sphere model

The lower integration limit in Eq. (4) can be motivated, for example,
considering collisions between semi-hard spheres.

Lindhard used hard spheres in the collisions, so the minimum scattering
angle was zero (tmin = 0). Semi-hard sphere model can take in to account
the binding energy, and give tmin = εu,

V (r) =


0 for r ∈ [R, ∞]
−u for r ∈ [R0, R]
∞ for r ∈ [0, R0]

(8)
Where R0 ∝ a0/Z and R ≈ 2a0 (R ≫ R0). In order to estimate the t value
we use as an approximation the classical formula for the scattering angle.
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Numerical solution

We first notice that the QF depends only of k and u.

Shooting method
We have the boundary condition
(BC) ν̄′′(ε → ∞) → 0.
Now, since the R.H.S of Eq. 4 is
zero at ε = u and lower, we impose
that the L.H.S to be zero at this
point, this gives the relation

α1 = 1 +
1
2

u0α2

So we give an initial try of α2 to hit
the BC, we shoot in this way until
the BC is satisfy.
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when shooting ends ν̄ ′′(ε → ∞) → 0
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Fits to data

To find U and k we make a fit over a coarse grid shown here. And find a
solution that describes the available data using a χ2 to determine the
optimal value. We do this for Si and Ge.
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Noble gases

Xe Light and Charge yields The Ligh Yield and Charge Yield
in noble gases are proportional
to fn.
We can compute the total
quanta (Ne + Nex ) (Ne :
electrons and Next : excitons).
Using the Thomas-Imela box
model its possible to obtain the
Charge and Light Yields.
Its also possible to add Penning
effect directly.
The binding energy obtained is
compatible with the bindings for
Xe atomic shells.

aPhys. Rev. A36, 614, 1987
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Lindhard Parametrization
Lindhard’s parametrization solve aproximatle the simplify integral
equation, just well at high energies (ε > 1).

ν̄l(ϵ) = ϵ
1+kg(ϵ)

g(ϵ) = 3ϵ0.15 + 0.7ϵ0.6 + ϵ
(9)

The parametrization doesn’t solve the Equation at low energies.
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QF with all data
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