

Improved Inverse Beta Decay event selection and its impact on the PROSPECT oscillation analysis

Diego Venegas Vargas

The University of Tennessee Knoxville

On behalf of the PROSPECT collaboration

December 30th – 6th ComHEP Meeting

Reactor Antineutrino Anomaly, a motivation for PROSPECT

 Short-baseline reactor experiments have reported a deficit of the measured antineutrino rate when compared to theoretical predictions

Antineutrino anomaly bump in 4-6 MeV

Observed flux deficit of about 6%

PROSPECT Detector at HFIR

Layout of the PROSPECT experiment

- 93% 235U Fuel
- 85 MW thermal power
- Compact core
- Huge flux in the few MeV range
- ~50% duty cycle for BG measurements

Schematic of the active detector volume

14 x 11 array of 6Li doped liquid scintillator for detecting reactor antineutrinos (6.7-9.2 m from compact highly enriched uranium reactor core)

Antineutrino Detection

Use of the IBD process

- PROSPECT detects antineutrinos via the Inverse Beta Decay (IBD) process
- Prompt signal (e⁺) provides a good energy estimate of incoming ν
- Localized delayed (n ⁶Li) signal

- Differences in ionization density between electronic/nuclear recoil type events result in distinct pulse shapes for each event
- Prompt and delayed signal posses unique pulse shapes (different from background events)

IBD Event Selection

IBD Topology-based cuts

- Neutron Capture Region
- Prompt PSD
- Prompt-Delayed signal distance
- Prompt-Delayed Timing
- Fiducial z cut

Veto cuts

- Muon Veto Time
- Neutron Veto Time
- Recoil Veto time

Muon tracks in the PROSPECT detector

Prompt Energy Distributions Under Different Cuts

- Sequential application of selection cuts results in a significant reduction of background events
- These selection criteria was used for most recent results

Latest PROSPECT Results

Antineutrino Spectrum

Motivation for a final PROSPECT-I Analysis

Previous results were impacted by the periodic loss of photo-multiplier tube bases throughout data

In order to improve upon previous results, two new data recovery approaches have been proposed:

Data Splitting &

Single Ended Event Reconstruction (SEER)

First Approach: Data Splitting

- Split PROSPECT-I data into distinct periods in order to recover statistics.
- Maximize number of live segments in each period

Time evolution of dead channels in the PROSPECT detector

Criteria for Calibration-Based Splitting

- Each period should start immediately after a new calibration campaign
- Each period must contain one full RxOn cycle
- All periods should have RxOff data before and after each corresponding RxOn cycle
 - Period 1 is an exception since there is no prior RxOff data available.
- Keep ratio of RxOff/RxOn data between 50%-70%.
 - Since there is no calibration campaign between periods 3 and 4, we used the ratio of RxOff/RxOn files to define these two (70%).

Criteria for Calibration-Based Splitting

	Double Ended Segment	Single Ended Segment	Blind Segments
PROSPECT Latest Results	97	47(not-used)	10
Period 1	127	24	3
Period 2	131	21	2
Period 3	123	28	3
Period 4	110	39	5
Period 5	97	47	10

Criteria for Calibration-Based Splitting

Second Approach: SEER

- The implementation of SEER into the existing analysis presents a great opportunity to improve our current results (statistics and S:B).
- Lacks energy and position reconstruction capabilities
- Provides a good handle on particle identification (great background suppression)

SEER prompt PSD reduces background by 2x

IBD Event Selection + SEER - New Cuts Needed

 The implementation of SEER into the existing analysis presents a great opportunity to improve our current results.

- Existing cuts:
 - n-Li capture
 - Prompt PSD cut
 - IBD prompt-delay distance
 - Prompt-delay timing difference
 - Fiducial volumes
- Existing Vetoes
 - Muon veto
 - n-Li capture veto
 - n-p recoil veto
 - Pileup veto

- SEER cut:
 - Prompt SEER PSD cut
- SEER veto:
 - Neutron (capture/recoil) veto

IBD Event Selection + SEER - New Cuts Needed

 The implementation of SEER into the existing analysis presents a great opportunity to improve our current results.

Cut optimization including new SEER cuts - metrics

- In order to optimize the IBD selection cuts with the new SEER analysis the following data and metrics were considered:
 - 20% of the data used for the PRD
 - Effective IBD counts

$$ext{IBD}_{ ext{Effective}} = \sum_{0.8MeV}^{7.2MeV} rac{1}{(\sigma_{ ext{IBD}}/ ext{IBD})^2}$$

- Signal to cosmogenic background ratio (S:CB)
- Signal to accidental background ratio (S:AB)

- nH peak signal to background ratio
- nC peak signal to background ratio

Summary of Results with DS and SEER

Cut/Veto Name
Muon Veto Time
Neutron Veto Time
Recoil Veto Time
SE Recoil Veto Time
IBD Neutron Capture: PSD
IBD Neutron Capture: Energy
IBD PSD
IBD SE PSD
IBD SE PSD: Energy Threshold
IBD Distance
IBD Fiducial

Improved
Unchanged
New

	IBD Effective	IBD Effective/ calendar day	Total IBD counts	Total IBD counts/ calendar day
Latest PROSPECT				
Results	15312	160	50560	529
Period 1	3124	327	6446	676
Period 2	7054	306	17321	759
Period 3	6004	261	16027	691
Period 4	4345	197	13862	622
Period 5	2796	155	10473	589
DS Total	23325	244	64130	670

 An increase of ~50% in effective statistics is expected when including SEER cuts into our IBD selection re-optimization

- Increase of ~27% in total IBD counts using DS
- Increase of ~50% in effective statistics sing DS

Summary of Results with DS and SEER

Cut/Veto Name
Muon Veto Time
Neutron Veto Time
Recoil Veto Time
SE Recoil Veto Time
IBD Neutron Capture: PSD
IBD Neutron Capture: Energy
IBD PSD
IBD SE PSD
IBD SE PSD: Energy Threshold
IBD Distance
IBD Fiducial

Improved
Unchanged
New

	IBD Effective	IBD Effective/ calendar day	Total IBD counts	Total IBD counts/ calendar day
Latest PROSPECT				
Results	15312	160	50560	529
Period 1	3124	327	6446	676
Period 2	7054	306	17321	759
Period 3	6004	261	16027	691
Period 4	4345	197	13862	622
Period 5	2796	155	10473	589
DS Total	23325	244	64130	670

 An increase of ~50% in effective expected when including SEER cuts selection re-optimization

Stay tuned for DS+SEER Analysis!

f ~27% in total IBD counts using DS

~50% in effective statistics sing DS

Next Phase of Prospect

- Retains successful elements of PROSPECT-I: segmented ⁶Li-doped liquid scintillator with minimal shielding, located 7-9m from HEU core of HFIR
- Moves PMTs out of liquid scintillator volume
- Uses external calibration system instead of calibration tubes inside active volume
- Increases signal collection capacity with 25% longer segments, 20% increased ⁶Li fraction, longer data-taking period

June 2021 Collaboration Meeting

Back Up Slides

Single Ended Event Reconstruction

Position and energy reconstruction

- SEER lacks the ability to reconstruct position because of no counter part pulse comparison (1 PMT available).
- Energy reconstruction depends on position, therefore not applicable as IBD selection cut.

Particle Identification (PID)

- PSD capability with single PMT readout is applicable for PID
- SEER PSD lacks the ability to distinguish
 n-Li capture from n-p recoil events.
- More active segments from SEER+DEER allow for better IBD selection and bkg rejection.

More Results from PROSPECT

Joint Spectrum Analyses

Boosted Dark Matter Search

PhysRevD 104 (2021) 012009

PROSPECT.

Sterile Neutrino Oscillation

Relative Spectrum Measurement

relative measurement of L/E and spectral shape distortions

$$P_{\rm dis} = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 ({\rm eV}^2) \frac{L({\rm m})}{E_\nu({\rm MeV})} \right)$$

Simulations

unoscillated spectrum

oscillated spectrum

Sterile Neutrino Oscillation: Global Picture

Reactor Antineutrino Anomaly

- What is the nature of the bump?
 - Is it an incorrect modeling of the fission products?
 - Are all of them responsible or only one?
 - A. Hayes, J. Friar, G. Garvey, D. Ibeling, G. Jungman, T. Kawano, and R. Mills, Phys. Rev. D 92, 033015 (2015).
 - Y. Gebre, B. Littlejohn, and P. Surukuchi, Phys. Rev. D 97, 013003 (2018).
- Total absorption spectrometry has been used in order to investigate both the flux deficit and the bump.
 - M. Wolińska-Cichocka, K.Rykaczewski, A.Fijałkowska, M.Karny, R.Grzywacz, C.Gross, J. Johnson, B. Rasco, E. Zganjar, Nuclear Data Sheets 120 (2013) 22, ISSN 0090-3752, URL (http://www.sciencedirect.com/science/article/pii/S0090375214004487)

PSD Parameter

- Q_{Tail} = integrated charge from 40 ns to 120 ns after the leadingedge half-height
- Q_{Full} = integrated charge 12 ns before to 120 ns after of the leading-edge half-height
- $PSD = \frac{Q_{Tail}}{Q_{Full}}$

Cut optimization including new SEER cuts - example

Neutron Veto Time [μs]:

- IBD candidates are rejected if their delayed capture times are within μs of another n-6Li candidate

Cut optimization including new SEER cuts - example

Neutron Veto Time [μs]:

- IBD candidates are rejected if their delayed capture times are within μs of another n-6Li candidate

- ➤ Introduction of new SEER cuts into our optimization results in a ~30% increase in effective statistics
- Other metrics exhibit similar improvement

Cut optimization including new SEER cuts - example

Neutron Veto Time [μs]:

- IBD candidates are rejected if their delayed capture times are within μs of another n-6Li candidate

CALIBRATION BASED	PERIOD_1	PERIOD_2	PERIOD_3	PERIOD_4	PERIOD_5	Total
Good_files	580	925	965	922	649	4041
Missing_files	0	0	C	1	0	1
RxOn livetime (days)	8.11461	19.1629	19.5476	18.7133	14.8146	80.35301
RxOn runtime (days)	9.54015	22.8299	23.2049	22.2884	17.789	95.65235
RxOff livetime (days)	12.8744	13.8421	14.9884	14.2507	8.17725	64.13285
RxOff runtime (days)	14.5798	15.706	16.9799	16.1203	9.24865	72.63465
IBD Candidates (Rxon)	11080	31423	30854	31028	24806	129191
IBD Candidates (Rxoff)	4206	4443	5303	5932	3675	23559
Accidental Candidates (Rxon) (per day)	2179.47	' 8486.87	8462.03	9888.75	8082.41	37099.53
Accidental Candidates (Rxoff) (per day)	314.197	388.197	423.721	391.233	225.741	1743.089
Correlated Candidates (Rxon)	8900.53	22936.1	22392	21139.2	16723.6	92091.43
Correlated Candidates (Rxoff)	3891.8	4054.8	4879.28	5540.77	3449.26	21815.91
Cosmogenic Background	2453.59	5614.89	6365.12	7277.71	6250.56	27961.87
Total IBD Signal	6446.94	17321.2	16026.9	13861.5	10473	64129.54
eff_IBD	3124.3	7054.18	6004.9	4345.04	2796.13	23324.55