The Scattering and Neutrino Detector at the LHC

Simona Ilieva
for the SND@LHC collaboration
Sofia University St. Kliment Ohridski

6th ComHEP
30/11/2021
Outline

➢ Overview and Motivation
➢ The SND@LHC detector
➢ Physics concepts
➢ Current status
Compact experiment observing forward-going neutrinos emerging from LHC interactions

- Off-axis detector located 480m downstream of the ATLAS interaction point (IP1) in the T118 tunnel
- Experiment approved by CERN Research Board in March 2021
 https://snd-lhc.web.cern.ch/
- Collaboration of 180 members from 24 institutes in 13 countries and CERN
Motivation

- Unlocking the potential of LHC neutrinos:
 - E range is few hundred GeV to a few TeV
 - 150 fb\(^{-1}\) luminosity for the LHC Run 3 and 1-tonne detector mass located in TI18 result in 2000 high-energy neutrino interactions
 - all three neutrino flavours
 - pseudorapidity range \(7.2 < \eta < 8.6\)
- Large neutrino flux in forward direction covering a wide energy range

- High neutrino energies → relatively large neutrino interaction xsec
- Measure charmed-hadron production indirectly through \(\nu_e\) and \(\nu_\tau\) in an unexplored domain
- \(\nu_\mu\) originate mainly from charmed-hadron decays, low-energy \(\nu_\mu\) also from π and K decays
Physics goals

Neutrino physics at LHC energies

- $\sigma_{pp \rightarrow \nu X}$ in $7.2 < \eta < 8.6$ range
- ν_e as a probe of charm quark production
- Lepton universality test: ν_τ/ν_e and ν_μ/ν_e
- Measurement of the NC/CC ratio

Search for new physics

- Direct search for feebly interacting particles (FIP) through their scattering

\[\chi + p/e \rightarrow \chi + p/e \]
\[\chi + p/n \rightarrow \chi + X \]
Overview of the detector

Upstream veto plane
- Single plane of scintillating bars: tag incoming muons

Target region
- Emulsion cloud chambers: tungsten target plates interleaved with emulsion: neutrino interaction detection (vertexing)
 - Target mass 830kg
 - Scintillating fiber planes: timestamp, position measurement
 - Together: EM shower energy measurement

Muon system
- Plastic scintillator planes interchanged with iron walls: time and energy measurement

Vertex detector + ECAL sampling every $10X_0$ to $\sim40X_0$

HCAL + muon ID system sampling every λ to 8λ, (with target region $\sim10\lambda$)
SND@LHC detector in T118: installation ongoing

Front view

Side view

SciFi readout electronics

Emulsion Cloud Chamber

Iron walls (part of the muon system)
Data acquisition

➢ Two types of active sub-systems:
 ➢ Scintillator bars read out by SiPMs - veto and muon systems
 ➢ Scintillating fibers read out by SiPMs, - SciFi tracker

➢ 36 identical DAQ boards synchronized with the LHC bunch crossing clock

➢ Trigger-less: all hits are recorded
 ➢ hits with same time stamp grouped into events
 ➢ basic online signal processing for data quality monitoring

➢ Noise reduction: setting of signal threshold (3.5 ph.e.)
 ➢ online: events must produce signals in a minimum number of boards
Data reconstruction

First phase: online; using response of electronic detectors
- Identify ν interaction and FIP scattering event candidates
- Muons (spanning to the DS muon stations)
- EM showers (limited to SciFi)
- ν energy (SciFi+Muon system)

Second phase: nuclear emulsion data
- about 6 months exposure, then 6 months for scanning of films
- EM showers
- ν vertex reconstruction
- identify ν for τ
- match with candidates from electronic detectors
Key detector features

Muon Identification

- ν_μ CC interactions identified by detection of muons produced in target interactions
- Muon ID at ν vertex crucial to identify charmed hadron production, latter form background to ν_τ detection if primary muon is not identified

<table>
<thead>
<tr>
<th>% evts</th>
<th>% evts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0μ</td>
<td>31.1</td>
</tr>
<tr>
<td>1μ</td>
<td>67.6</td>
</tr>
<tr>
<td>2μ</td>
<td>1.13</td>
</tr>
<tr>
<td>3μ</td>
<td>0.1</td>
</tr>
<tr>
<td>> 3μ</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Energy measurement

- Whole detector acts as a non-homogeneous sampling calorimeter
 - combine information from the SciFi tracker of the Target region and the scintillator bars of the Muon system
 - overall fractional resolution is 22%
- Energy reconstruction technique using convolutional neural networks (CNN) is under development
Expected neutrino flux and interactions

Number of neutrinos in the SND@LHC acceptance

<table>
<thead>
<tr>
<th>Flavour</th>
<th>Neutrinos in acceptance (E) [GeV]</th>
<th>Yield</th>
<th>CC neutrino interactions (E) [GeV]</th>
<th>Yield</th>
<th>NC neutrino interactions (E) [GeV]</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ</td>
<td>145</td>
<td>2.1×10^{12}</td>
<td>450</td>
<td>730</td>
<td>480</td>
<td>220</td>
</tr>
<tr>
<td>$\bar{\nu}_\mu$</td>
<td>145</td>
<td>1.8×10^{12}</td>
<td>485</td>
<td>290</td>
<td>480</td>
<td>110</td>
</tr>
<tr>
<td>ν_τ</td>
<td>395</td>
<td>2.6×10^{11}</td>
<td>760</td>
<td>235</td>
<td>720</td>
<td>70</td>
</tr>
<tr>
<td>$\bar{\nu}_\tau$</td>
<td>405</td>
<td>2.8×10^{11}</td>
<td>680</td>
<td>120</td>
<td>720</td>
<td>44</td>
</tr>
<tr>
<td>ν_e</td>
<td>415</td>
<td>1.5×10^{10}</td>
<td>740</td>
<td>14</td>
<td>740</td>
<td>4</td>
</tr>
<tr>
<td>$\bar{\nu}_e$</td>
<td>380</td>
<td>1.7×10^{10}</td>
<td>740</td>
<td>6</td>
<td>740</td>
<td>2</td>
</tr>
<tr>
<td>TOT</td>
<td>4.5×10^{12}</td>
<td>1395</td>
<td></td>
<td>450</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Neutrino production in LHC pp collisions performed with **DPMJET3** embedded in **FLUKA**
- Tau neutrino production with **PYTHIA8**
- Particle propagation towards detector with the **FLUKA** model of LHC
- Neutrino interactions inside the detector simulated using **GENIE**
Physics performance: neutrino physics

Charmed-hadron production in pp collisions

Simulation predicts that 90% $\nu_e + \bar{\nu}_e$ come from the decay of charmed hadrons

- Measurement of $\sigma_{pp \rightarrow \nu e X}$

 Reconstructed energy spectrum of ν_e and $\bar{\nu}_e$ in the SND@LHC acceptance

- Derivation of the charmed-hadron yield from the ν_e flux

 based on angular correlation between ν_e and parent charmed hadron

Simulation predicts that 90% $\nu_e + \bar{\nu}_e$ come from the decay of charmed hadrons

7.2 < η_{hadron} < 8.6
Physics performance: neutrino physics

Charmed-hadron production in pp collisions: QCD measurements

The dominant partonic process for associated charm production at the LHC is gluon-gluon scattering. Charmed-hadron production in pp collisions:

\[\frac{d\sigma}{d\eta}(13 \text{ TeV}) \]

Extraction of gluon PDF in very small x-region relevant for Future Circular Colliders

Constrain PDF with data:

\[R = \frac{d\sigma/d\eta(13 \text{ TeV})}{d\sigma/d\eta_{\text{ref}}(7 \text{ TeV})} \]

4 < \eta_{\text{ref}} < 4.5

Correlation between \(x_1 \) and \(x_2 \) momentum fractions for events in the SND@LHC acceptance

Reduction of the scale uncertainty

S. Ilieva

6th ComHEP - 2021
Physics performance: neutrino physics

Lepton flavour universality test
Identification of three neutrino flavours in the SND@LHC detector

Energy spectrum of ν_e and $\bar{\nu}_e$ in the SND@LHC acceptance

- ν_τ in SND@LHC acceptance originate from D_s meson decays
- Sensitive to ν - nucleon cross section ratio for ν_τ and ν_e

$$R_{13} = \frac{N_{\nu_e + \bar{\nu}_e}}{N_{\nu_\tau + \bar{\nu}_\tau}} = \frac{\sum_i \tilde{f}_c \tilde{B}(c_i \rightarrow \nu_e X)}{\tilde{f}_{D_s} \tilde{B}(D_s \rightarrow \tau \nu_\tau)},$$

- The measurement of the ν_e / ν_μ ratio can be used as a test of the LFU for $E > 600$ GeV

$$R_{12} = \frac{N_{\nu_e + \bar{\nu}_e}}{N_{\nu_\mu + \bar{\nu}_\mu}} = \frac{1}{1 + \omega_{\pi/K}}, \quad \omega_{\pi/K} \text{ is the } \nu_\mu \text{ contamination from } \pi/K$$

NC/CC ratio
Lepton flavour identification in the SND@LHC detector

- If differential ν and anti-ν energy spectra are equal, NC/CC ratio (P) is

$$P = \frac{\sum_i \sigma_{NC}^\nu + \sigma_{NC}^{\bar{\nu}}}{\sum_i \sigma_{CC}^\nu + \sigma_{CC}^{\bar{\nu}}}$$

- Compare measured P with the SM expectation
- NC/CC ratio used as an internal consistency check

S. Ilieva
Detector commissioning and tests

➢ Successful tests of the SciFi tracker/ECAL using cosmic ray muons (Aug 2021): first test of DAQ and event building, MC parameter tuning

➢ Test Scifi tracker and also all detectors on muon beam at the CERN SPS H6 beamline - check electronics response

➢ Test with HCAL/Muon system on pion beam at the CERN SPS H8 beamline (Sep-Oct 2021) - calibration of E measurement with HCAL, important for MC tuning

➢ Detector installation on site started on Nov 1 and is currently ongoing
SND@LHC is on schedule and detector installation is ongoing
Plan to start taking data in 2022!
Detector optimized for neutrino searches in a region where they act as a probe of heavy (mostly charm) quark production
Searches for new particles, sensitivity under evaluation
A new era of collider neutrino physics is just starting!
Acknowledgements

This work is supported by the Bulgarian Ministry of Education and Science within the National Roadmap for Research Infrastructures 2020-2027, contract No. D01-374/18.12.2020
TI18 tunnel: former service tunnel connecting SPS to LEP

Symmetric to TI12, where FASER is located
- In situ background measurement performed by the FASER Collaboration

About 480m away from ATLAS IP:
- ~100m of rock serve as a shield
- Charged particles deflected by LHC magnets
• Exists a detailed FLUKA simulation of proton beams transport along the LHC
 • rate in SND@LHC acceptance: 2×10^4 particles/cm2/fb$^{-1}$
• Measured particle fluxes in TI18 for FASER during Run 2: $1.2-1.9 \times 10^4$ particles/cm2/fb$^{-1}$
• Backgrounds essentially composed of
 • Muons: only those with $E > 30$ GeV reach the detector:
 • veto detector to tag them
 • exchange emulsion every 25 fb$^{-1}$
 • Neutrons and K_Ls from muon DIS in rock: mimic neutrino NC
 • Thermal neutrons
 • Coming from proton beam interaction with the residual gas inside the LHC vacuum pipe, beam 2 contributes more
 • 50% are thermal neutrons at ~ 0.025 eV
 • Total flux is 2.8×10^8 particles/cm2/year
 • allows using non-radiation-hard electronic devices
 • place neutron shield around the emulsion detector

<table>
<thead>
<tr>
<th>particles/fb$^{-1}$</th>
<th>E>10 GeV</th>
<th>E>100 GeV</th>
<th>E>200 GeV</th>
<th>E>500 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_L</td>
<td>48</td>
<td>11.7</td>
<td>4.4</td>
<td>0.5</td>
</tr>
<tr>
<td>neutron</td>
<td>17</td>
<td>5.4</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>anti-neutron</td>
<td>12</td>
<td>3.3</td>
<td>1.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Off-axis position

- Detector is off-axis wrt the collision axis: neutrino yields depend on the pp beams crossing angle (±150 mrad)

<table>
<thead>
<tr>
<th>case</th>
<th>Upward beam crossing</th>
<th>Downward beam crossing</th>
<th>0 beam crossing angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>N observed v interactions wrt nominal (0 angle)</td>
<td>18%</td>
<td>-22%</td>
<td>-</td>
</tr>
<tr>
<td>η</td>
<td>7.3 – 9.0</td>
<td>7.1 – 8.3</td>
<td>7.2 – 8.6</td>
</tr>
</tbody>
</table>
Summary of physics results: expected precision

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \to \nu_e X$ cross-section</td>
<td>5%</td>
</tr>
<tr>
<td>Charmed hadron yield</td>
<td>5%</td>
</tr>
<tr>
<td>ν_e/ν_τ ratio for LFU test</td>
<td>30%</td>
</tr>
<tr>
<td>ν_e/ν_μ ratio for LFU test</td>
<td>10%</td>
</tr>
<tr>
<td>NC/CC ratio</td>
<td>5%</td>
</tr>
</tbody>
</table>
Physics performance: new physics searches

Mediator (V) production channels: \(pp \rightarrow V + X \)

\(V \rightarrow \chi \chi \)

Mediator decays to:

- proton bremsstrahlung
- decay of unflavoured mesons
- Drell-Yan process

\(\chi \) scattering off nucleons: number of events scales as \(\alpha_B^3 \)

\(m_\chi = m_V/3, \alpha_\chi = \alpha_B \)

Excluded by CDF, BES, E949 and BNL

\(\alpha_B = g_B^2/4\pi \)

\(J_\mu^B \) baryonic current:

\[J_\mu^B = \frac{1}{3} \sum \bar{q} \gamma_\mu q \]