Perceiving the Emergence of Hadron Mass through AMBER@CERN

27 - 29 September 2021 CERN, Geneve - Switzerland

Meson Beams for EIC

(Theory/phenomenology motivation)

Michael Doering

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Content

- Baryons
 - Spectroscopy
 - Analysis efforts
 - Meson vs photon-induced reactions
- Mesons
 - Properties of broad mesons
 - Lattice QCD

Several slides by Maxim Mai Deborah Roenchen Moskow Amaryan, ...

Work supported by:

Department of Energy, DOE DE-AC05-06OR23177 & DE-SC0016582

HPC support by JSC grant *jikp07*

National Science Foundation Grant No. PHY 2012289

Main references

Physics opportunities with meson beams

William J. Briscoe, Michael Döring, Helmut Haberzettl, D. Mark Manley, Megumi Naruki, Igor I. Strakovsky and Eric S. Swanson

Eur. Phys. J. A (2015) **51**: 129

DOI 10.1140/epja/i2015-15129-5

[follow-up] (2021)

Physics Opportunities with Meson Beams for EIC

Strange Hadron Spectroscopy with Secondary KL Beam in Hall D

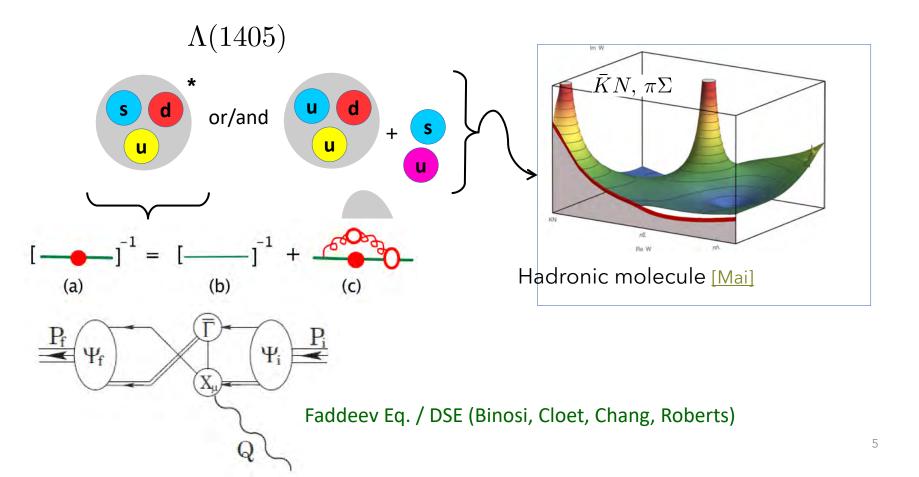
KLF Collaboration • Moskov Amaryan (Old Dominion U.) Show All(152) Aug 18, 2020

[Preprint link]

[Paper link]

Light Hadrons accessible with meson beams

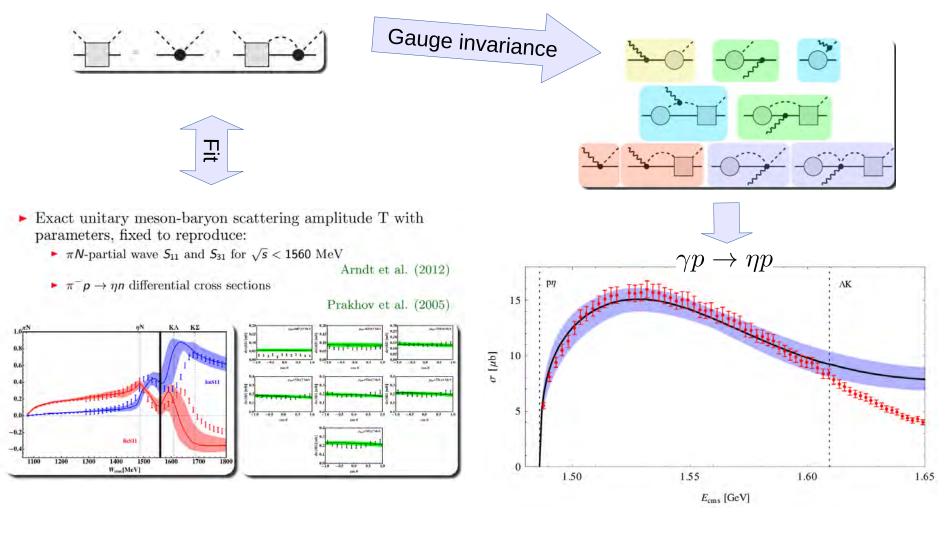
$\Delta(1232)3/2^-$ First excited baryon discovered Standard Breit-Wigner (BW) resonance [Crede]	$\pi_1(1600)$ Isovector exotic (COMPASS/ GlueX,) [Meyer]	$f_0(500)$ " σ " Debated whether resonance or not, intricate connection to chiral dynamics; non-BW [Pelaez]
$N(1440)1/2^+$, "Roper" Enigmatic; absent in many Lattice QCD and quark model calculations; non-BW [Burkert]	$\Lambda(1405)$ Two pole structure complicated production [Mai]	[Baru]
$N(1535)1/2^-, N(1650)1/2^-$ Nearby, overlapping resonances with same quantum numbers	$N(1900)3/2^+$ Recently discovered in large experimental baryon searches for "missing resonance"	$a_1(1260)$ Clean production; three-body dynamics


Excited Baryons - Models

How many are there?

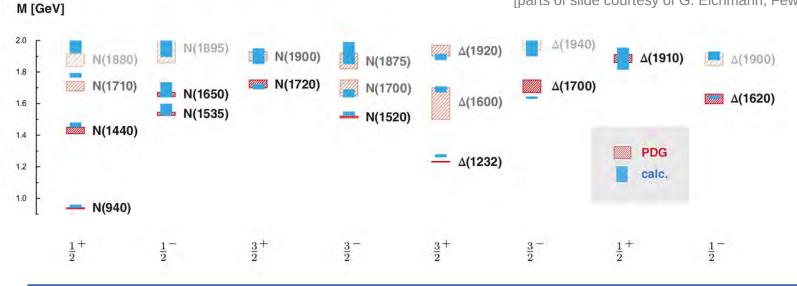
 \rightarrow missing resonance problem)

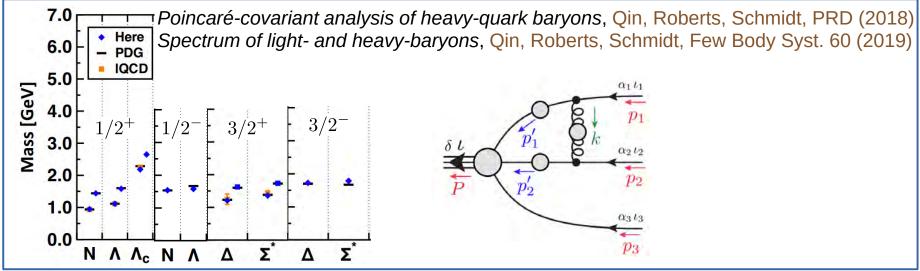
What are they?


 \rightarrow 2-quark/3-quark, hadron molecules, ...

Using ONLY meson-baryon degrees of freedom (no explicit quark dynamics):

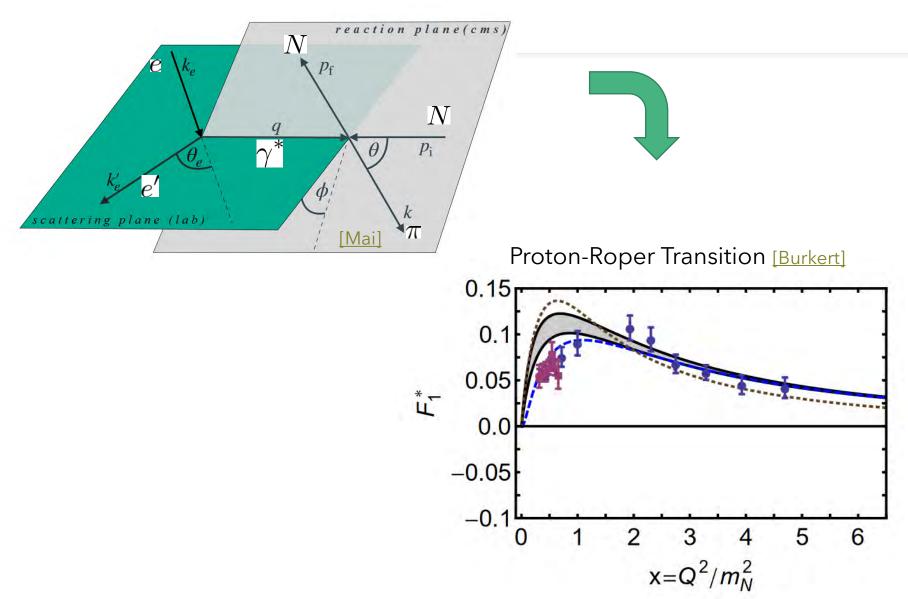
Manifestly gauge invariant approach based on full BSE solution


[Ruic, M. Mai, U.-G. Meissner PLB 704 (2011)]

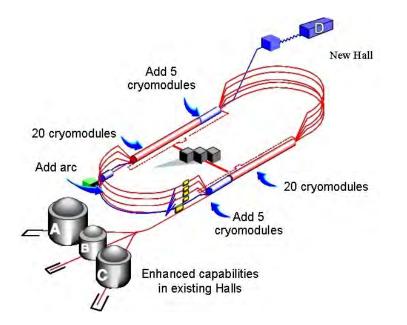


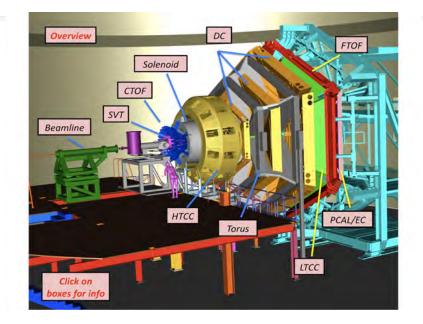
Results in dynamical quark picture

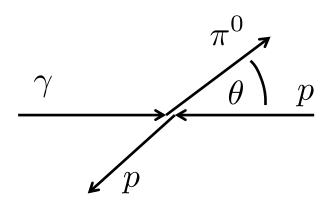
Quark-diguark with reduced pseudoscalar + vector diguarks: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)


[parts of slide courtesy of G. Eichmann, Few Body 2018]

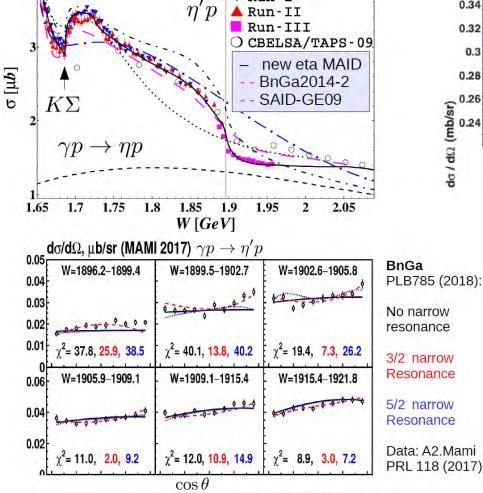
Electroproduction reveals resonance structure





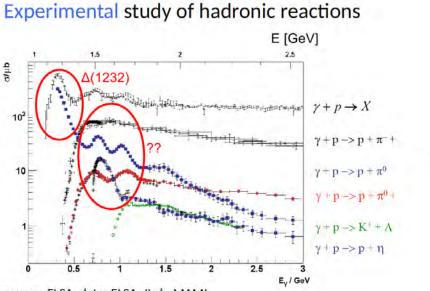

Photoproduction experiments

(Jlab, Mami, Elsa,...)

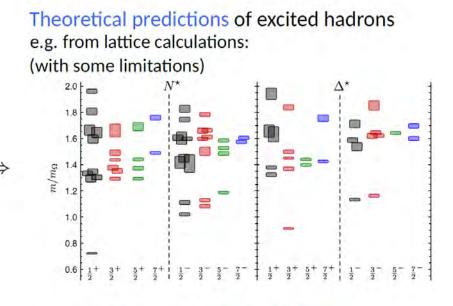


$\pi N \to \pi N$ A2 MAMI, PRL 118 (2017) S₁₁(1895) EPECUR/SAID PRC 93 (2016) Run-I $0.34 = 0 = 88^{\circ}$ 1.720 θ = 90° 11.720 0.32 0.3 0.28 0.26 0.24 (Js/qm) ⊖p / ⊖p 686 W[GeV] [CBELSA/TAPS EPJA 53 (2017)] 2.05 2 σ_n BnGa W=1902.6-1905.8 10 Werthmüller et al. PLB785 (2018): this work - BnGa No narrow σ [μb] resonance $\gamma n \rightarrow \eta n$ χ^2 = 19.4, 7.3, 26.2 3/2 narrow Resonance W=1915.4-1921.8 5/2 narrow Resonance

a nord to the last

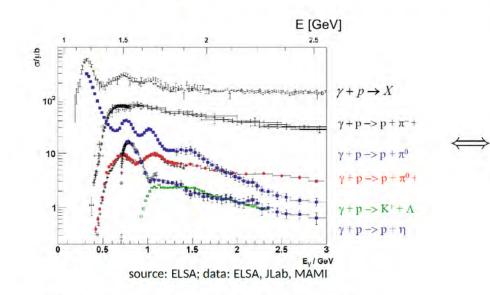

1500 1600 1700 1800 1900 2000 2100

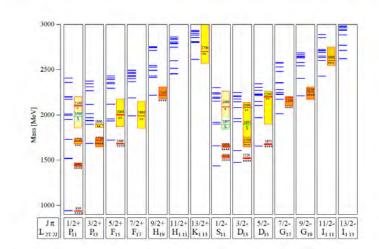
W [MeV]



Baryons in photoproduction

source: ELSA; data: ELSA, JLab, MAMI




 $m_{\pi} = 396$ MeV [Edwards et al., Phys.Rev. D84 (2011)]

$$\gamma^{(*)}N \to \begin{cases} \pi N\\ \eta N, \ K\Lambda, \ K\Sigma, \omega N, \phi N, \dots\\ \pi \pi N, \pi \eta N, \dots \end{cases}$$

From experimental data to the resonance spectrum

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Different modern analyses frameworks:

- unitary isobar models: unitary amplitudes + Breit-Wigner resonances MAID, Yerevan/JLab, KSU, JM model (πN& π π N)
- (multi-channel) K-matrix: GWU/SAID, BnGa (phenomenological), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3d scattering eq., off-shell intermediate states ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn
- other groups: JPAC (high energies), Mainz-Tuzla-Zagreb PWA (MAID + fixed-t dispersion relations, L+P), Gent, truncated PWA

PDG Changes

- Changes from one PDG edition to another
- New states in red
- Upgrade existing states
- Removal older & lower rated states
- All changes come from Partial-wave analysis (PWA) of photoninduced reactions.

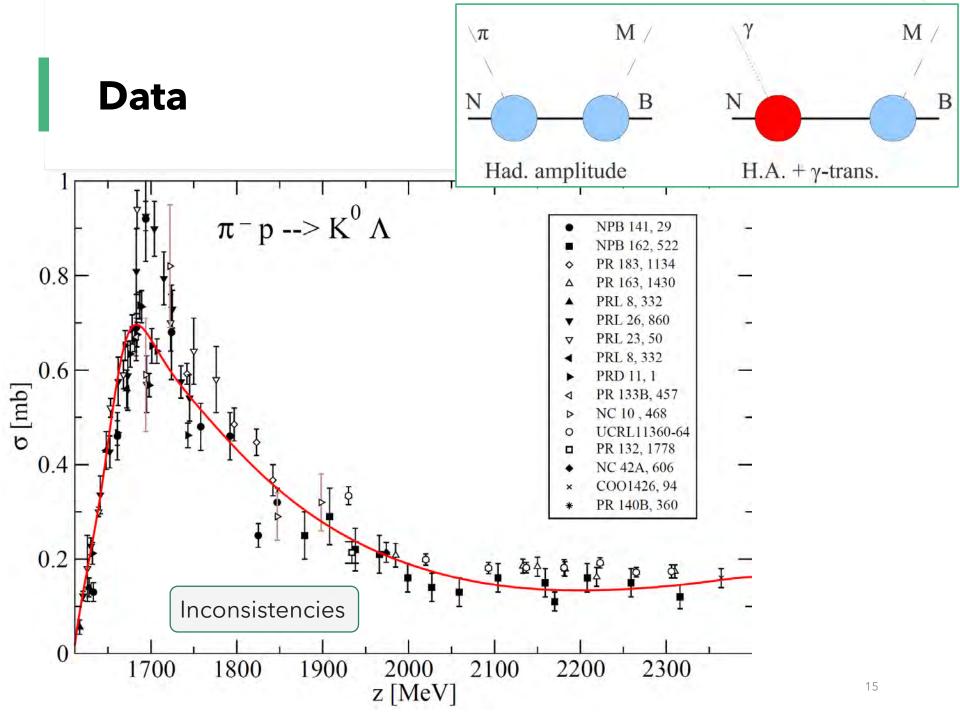
Table from [Crede]

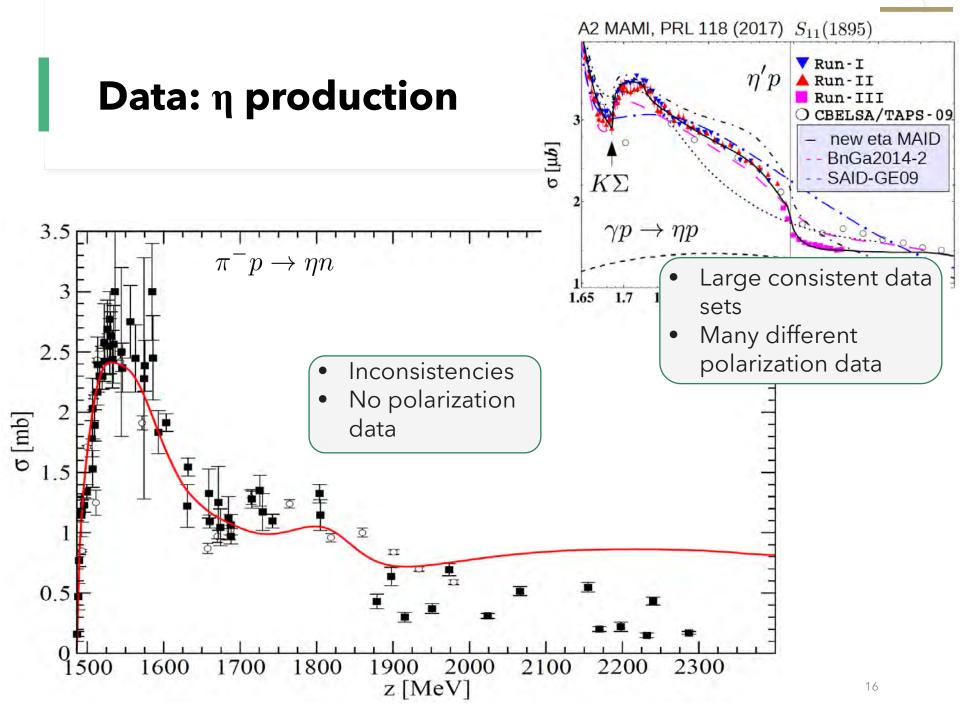
Table 9. (Colour online)	Baryon Summary	Table for N^*	and Δ	resonances	including
recent changes from PDC	2010 2 to PDG	2012 🔟.			

	recent changes from FDG 2010 [2] to FDG 2012 [1].						
N^*	$J^P(L_{2I,2J})$	2010	2012	$ \Delta $	$J^P(L_{2I,2J})$	2010	2012
p	$1/2^+(P_{11})$	* * **	* * **	$\Delta(1232)$	$3/2^+(P_{33})$	* * **	* * **
n	$1/2^+(P_{11})$	* * **	* * **	$\Delta(1600)$	$3/2^+(P_{33})$	* * *	* * *
N(1440)	$1/2^+(P_{11})$	* * **	* * **	$\Delta(1620)$	$1/2^{-}(S_{31})$	* * **	* * **
N(1520)	$3/2^{-}(D_{13})$	* * **	* * **	$\Delta(1700)$	$3/2^{-}(D_{33})$	* * **	* * **
N(1535)	$1/2^{-}(S_{11})$	* * **	* * **	$\Delta(1750)$	$1/2^+(P_{31})$	*	*
N(1650)	$1/2^{-}(S_{11})$	* * **	* * **	$\Delta(1900)$	$1/2^{-}(S_{31})$	**	**
N(1675)	$5/2^{-}(D_{15})$	* * **	* * **	$\Delta(1905)$	$5/2^+(F_{35})$	* * **	* * **
N(1680)	$5/2^+(F_{15})$	* * **	* * **	$\Delta(1910)$	$1/2^+(P_{31})$	* * **	* * **
N(1685)			*				
N(1700)	$3/2^{-}(D_{13})$	***	***	$\Delta(1920)$	$3/2^+(P_{33})$	* * *	***
N(1710)	$1/2^+(P_{11})$	* * *	* * *	$\Delta(1930)$	$5/2^{-}(D_{35})$	* * *	* * *
N(1720)	$3/2^+(P_{13})$	* * **	* * **	$\Delta(1940)$	$3/2^{-}(D_{33})$	*	**
N(1860)	$5/2^+$		**				
N(1875)	$3/2^{-}$		* * *				
N(1880)	$1/2^+$		**				
N(1895)	$1/2^{-}$		**				1.5.5
N(1900)	$3/2^+(P_{13})$	**	***	$\Delta(1950)$	$7/2^+(F_{37})$	* * **	* * **
N(1990)	$7/2^+(F_{17})$	**	**	$\Delta(2000)$	$5/2^+(F_{35})$	**	**
N(2000)	$5/2^+(F_{15})$	**	**	$\Delta(2150)$	$1/2^{-}(S_{31})$	*	*
N(2080)	D_{13}	**		$\Delta(2200)$	$7/2^{-}(G_{37})$	*	*
N(2090)	S_{11}	*		$\Delta(2300)$	$9/2^+(H_{39})$	**	**
N(2040)	$3/2^{+}$		*				
N(2060)	$5/2^{-}$		**				
N(2100)	$1/2^{+}(P_{11})$	*	*	$\Delta(2350)$	$5/2^{-}(D_{35})$	*	*
N(2120)	$3/2^{-}$		**			1	
N(2190)	$7/2^{-}(G_{17})$	* * **	* * **	$\Delta(2390)$	$7/2^+(F_{37})$	*	*
N(2200)	D_{15}	**		$\Delta(2400)$	$9/2^{-}(G_{39})$	**	**
N(2220)	$9/2^+(H_{19})$	* * **	* * **	$\Delta(2420)$	$11/2^+(H_{3,11})$	* * **	* * **
N(2250)	$9/2^{-}(G_{19})$	* * **	* * **	$\Delta(2750)$	$13/2^{-}(I_{3,13})$	**	**
N(2600)	$11/2^{-}(I_{1,11})$	* * *	***	$\Delta(2950)$	$15/2^+(K_{3,15})$	**	**
N(2700)	$13/2^+(K_{1,13})$	**	**				

The role of meson beams in baryon spectroscopy

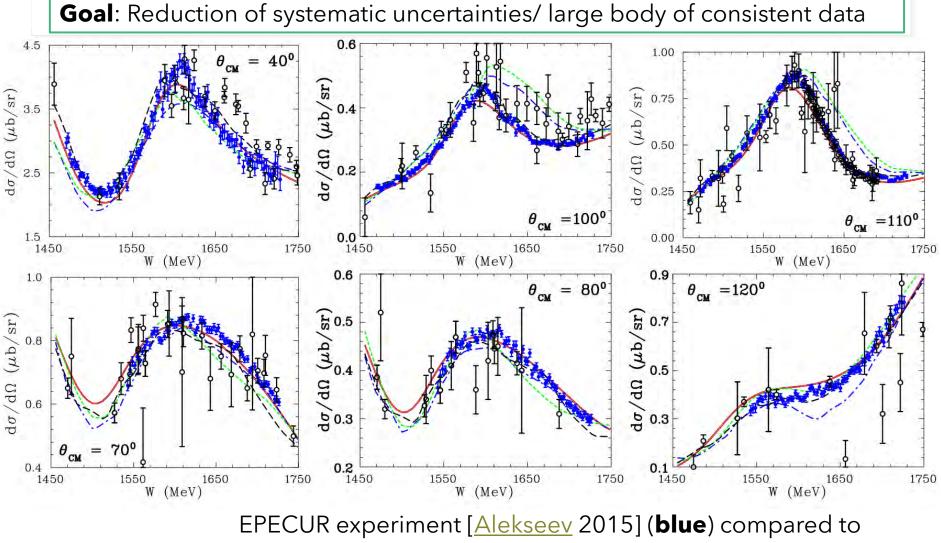
(Non-strange, light baryon sector)

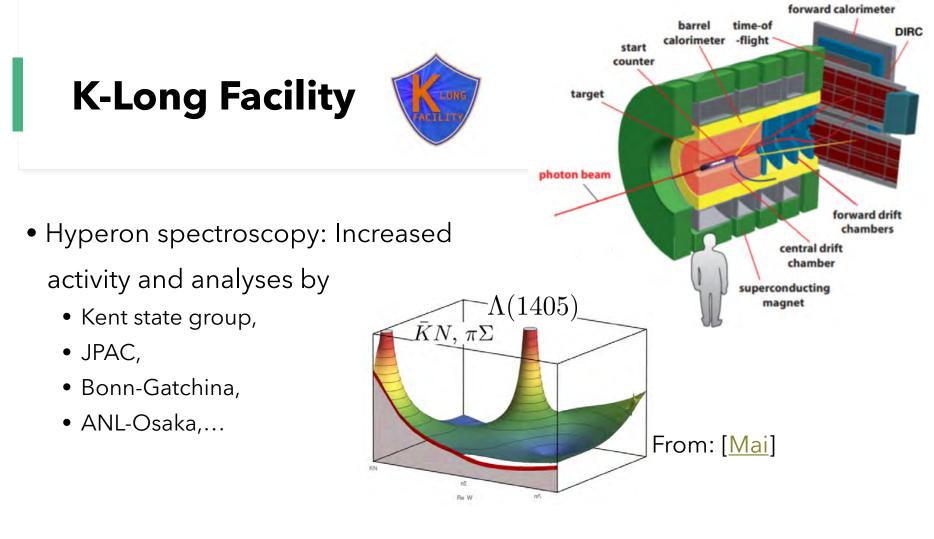

- Pion-induced reactions $\pi N \to \begin{cases} \pi N \\ \eta N, \ K\Lambda, \ K\Sigma \\ \pi \pi N, \pi \eta N, \dots \end{cases}$ Data!
 - **Two** complex amplitudes (g,h)


Photon-induced reactions

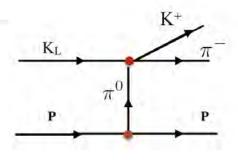
$$\gamma^{(*)}N \rightarrow \begin{cases} \pi N\\ \eta N, \ K\Lambda, \ K\Sigma\\ \pi\pi N, \pi\eta N, \dots \end{cases}$$
$$\begin{cases} \pi N\\ \eta N, \ K\Lambda, \ K\Sigma\\ \pi\pi N, \pi\eta N, \dots \end{cases} \leftrightarrow \begin{cases} \pi N\\ \eta N, \ K\Lambda, \ K\Sigma\\ \pi\pi N, \pi\eta N, \dots \end{cases}$$

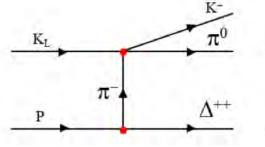
- Final-state interaction as sub-process
- Four (photo) or six (electro) complex amplitudes (CGNL, ...)

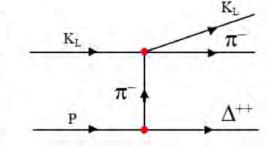

Photon-induced reactions have more d.o.f. and their analysis depends on meson-induced reaction data (except complete experiment).



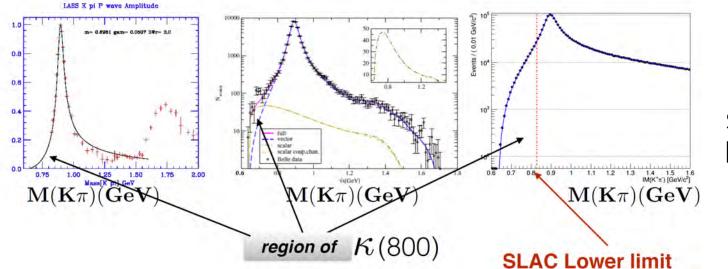
Example of recent improvements


previous measurements (**black**)




- Strange meson spectroscopy
 - Broader physics scope [Proposal]
- To accomplish physics program, 200 days running is approved

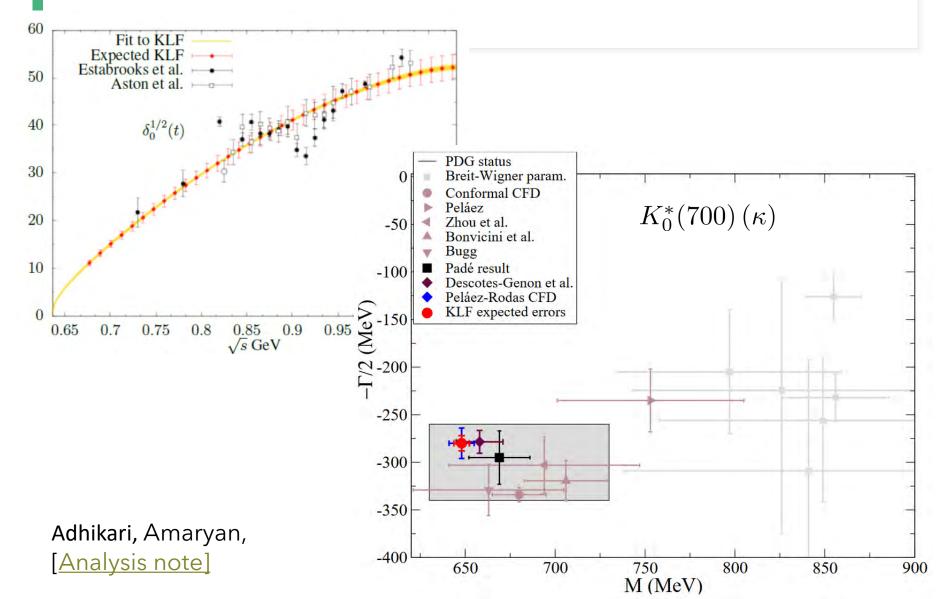
Example: Broad scalar resonances


SLAC

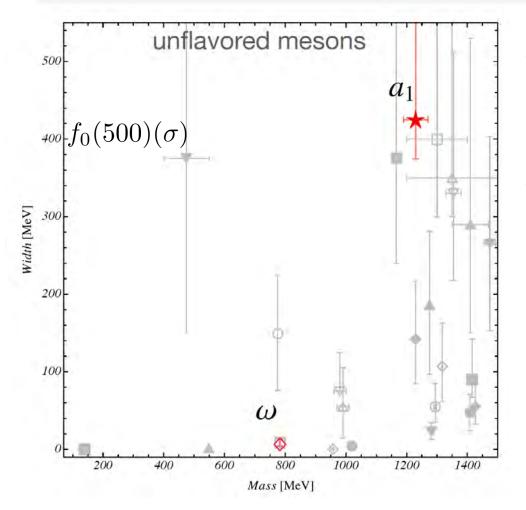
 $K^-\pi^+ \to K^-\pi^+$

Belle $au o K \pi
u_{ au}$

KLF

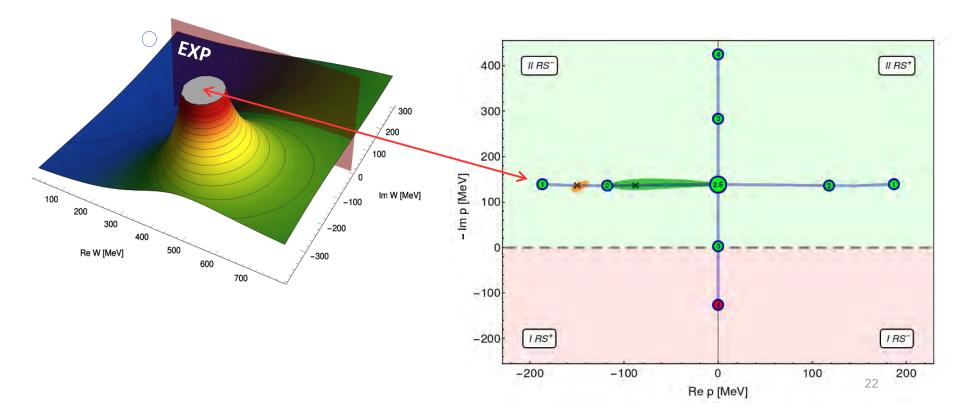

$$K_L \pi^0 \to K^+ \pi^-$$

Slide: [<u>M. Amaryan</u>]



(KLF:) Projected precision

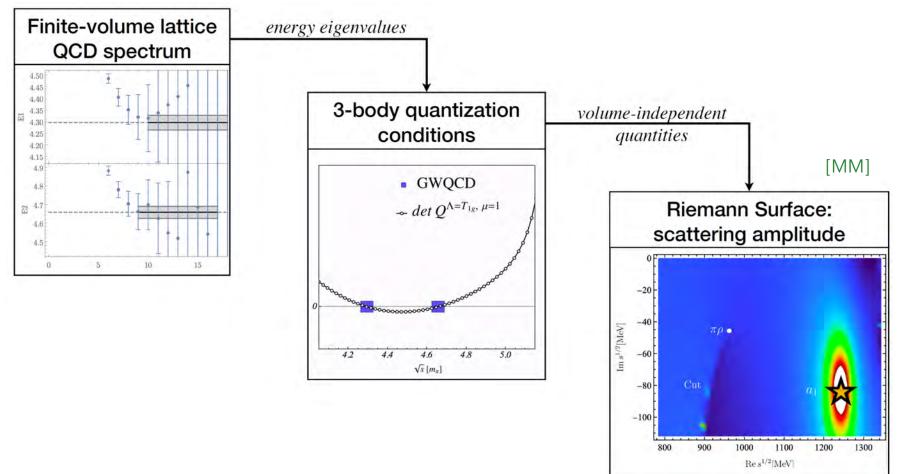
Light unflavored mesons- lattice QCD



- Extensive work on 2-body coupled channel resonances from lattice QCD (HadSpec collaboration, BGR group, Bonn group, ...) [Briceno]
- Calculations on three-body systems starting to emerge [Hansen] [Mai]

Chiral trajectories in lattice QCD

- A lattice calculation at M_{π} =227 MeV and 315 MeV [GWQCD, <u>1803.02897</u>]
- σ becomes a (virtual) bound state @ $M_{\pi} = (345) 415 \text{ MeV}$



Extraction of a_1 (1260) from lattice QCD

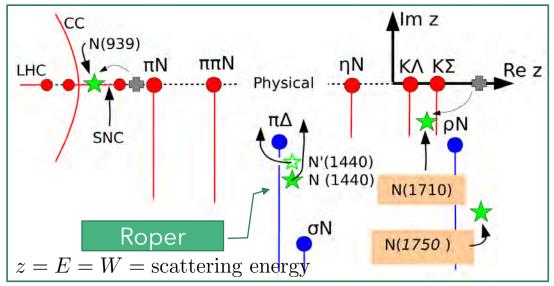
[Mai/GWQCD]

• First extraction of three-body resonance from 1st principles

(including explicit three-body dynamics).

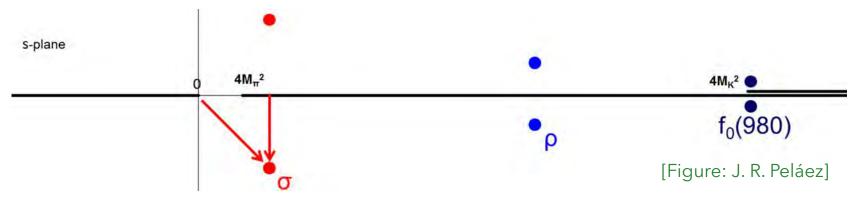
Summary

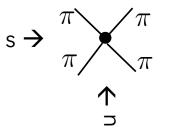
- Meson beams benefit baryon spectroscopy:
 - Directly: they induce the most elementary reactions
 - Indirectly: they are needed for the final-state interaction of photo-induced reactions
 - Non-strange & hyperon spectroscopy: complementary to photon-induced reactions
- Meson beams benefit spectroscopy and amplitude analysis of light mesons (highlight: broad scalar resonances)
- Many more aspects (not discussed):
 - Low-energy precision pion-nucleon physics
 - Inverse pion electroproduction
 - Glueballs,...
- Implementation at EIC: Initial ideas exist, see references in [preprint]
- See analysis notes/white paper/ proposal for experimental aspects


Spare slides

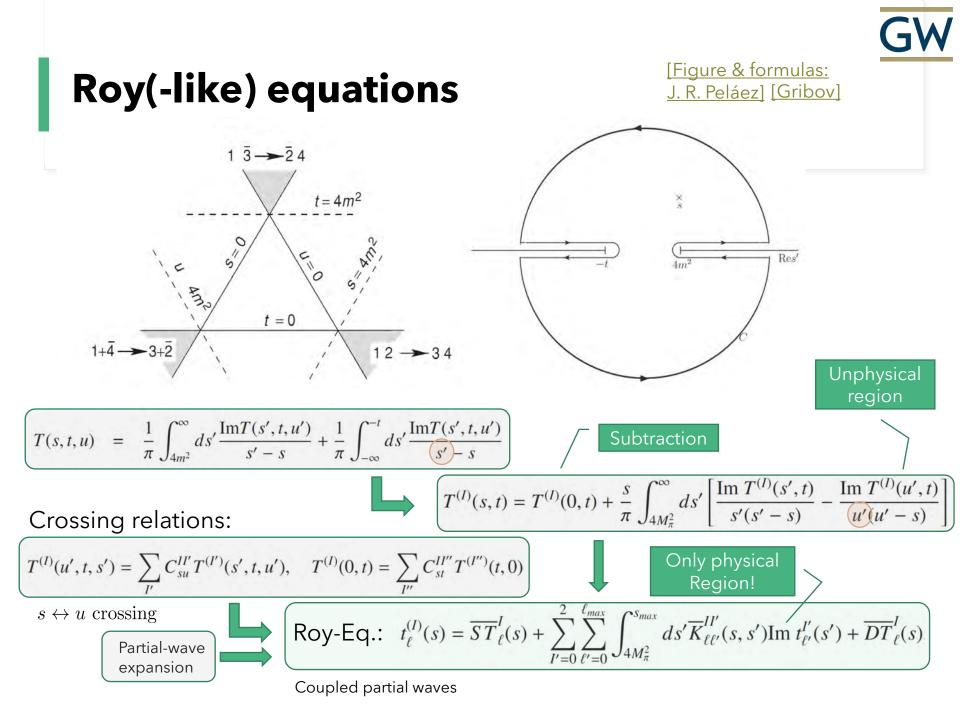
Hadronic resonances as poles

- Defining resonances as poles in amplitudes at complex energies provides meaningful definition
 - Real part of pole position 🖛 Mass
 - 2x Imaginary part of pole position 👄 Width


 - Analytic structure
 - Red: Real thresholds
 - Blue: sub-channel thres.
 - Why is Roper double?
 - What happens below threshold?

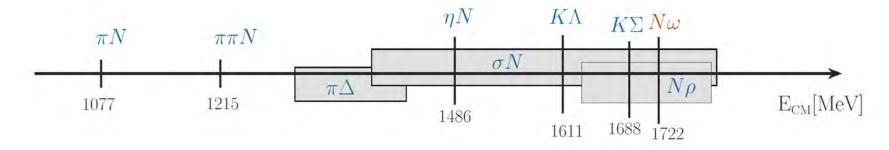


Right-hand and left-hand cuts


• Pole positions of wide resonances might be distorted if "left-hand cut" is not taken properly into account (and: analyticity in s, not \sqrt{s})

• Build in crossing symmetry manifestly through Roy-(like equations)

Advantage: $\pi\pi$ scattering in u-channel is still $\pi\pi$ πN : [Hoferichter]


JBW DCC approach (Jülich-Bonn-Washington)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

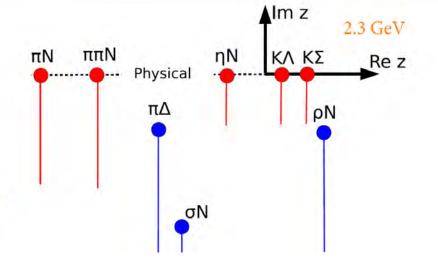
The scattering equation in partial-wave basis

$$\begin{aligned} \langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle &= \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \\ &\sum_{\gamma,L''S''}\int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle \end{aligned}$$

• channels ν , μ , γ :

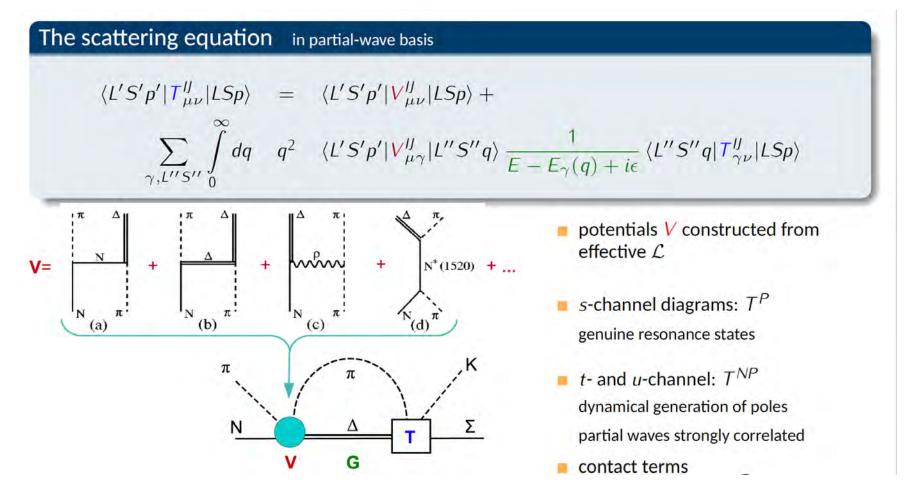
JBW DCC approach (Jülich-Bonn-Washington)

The scattering equation in partial-wave basis

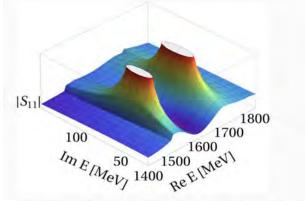

$$\langle L'S'p'|T^{II}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{II}_{\mu\nu}|LSp\rangle +$$

$$\sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{II}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{II}_{\gamma\nu}|LSp\rangle$$

3-body $\pi\pi N$ channel:


- **p**arameterized effectively as $\pi\Delta$, σN , ρN
- $\pi N/\pi\pi$ subsystems fit the respective phase shifts
- ightarrow branch points move into complex plane

Inclusion of branch points important to avoid false resonance signal!



JBW DCC approach (Jülich-Bonn-Washington)

Workflow: Resonance Couplings

Resonance states: Poles in the *T*-matrix on the 2nd Riemann sheet

[D. Roenchen, M. D., U.-G. Meißner, EPJ A 54, 110 (2018)

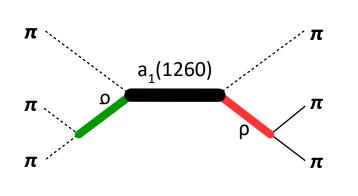
- $\operatorname{Re}(E_0) =$ "mass", $-2\operatorname{Im}(E_0) =$ "width"
- elastic πN residue $(|r_{\pi N}|, \theta_{\pi N \to \pi N})$, normalized residues for inelastic channels $(\sqrt{\Gamma_{\pi N}\Gamma_{\mu}}/\Gamma_{\text{tot}}, \theta_{\pi N \to \mu})$
- photocouplings at the pole: $\tilde{A}^{h}_{pole} = A^{h}_{pole} e^{i\vartheta^{h}}$, h = 1/2, 3/2

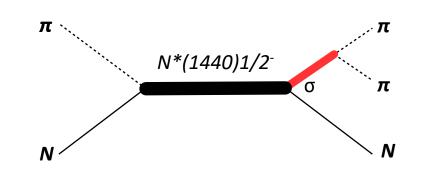
Inclusion of $\gamma p \rightarrow K^+ \Lambda$ in JüBo ("JuBo2017-1"): 3 additional states

	<i>z</i> ₀ [MeV]	$\frac{\Gamma_{\pi N}}{\Gamma_{\text{tot}}}$	$\frac{\Gamma_{\eta N}}{\Gamma_{\text{tot}}}$	$\frac{\Gamma_{K\Lambda}}{\Gamma_{tot}}$
N(1900)3/2+	1923 – <i>i</i> 108.4	1.5 %	0.78 %	2.99 %
N(2060)5/2 ⁻	1924 — <i>i</i> 100.4	0.35 %	0.15 %	13.47 %
$\Delta(2190)$:1/2+	2191 – <i>i</i> 103.0	33.12 %		

- N(1900)3/2⁺: s-channel resonances, seen in many other analyses of kaon photoproduction (BnGa), 3 stars in PDG
- N(2060)5/2⁻: dynamically generated, 2 stars in PDG, seen e.g. by BnGa
- $\Delta(2190 \ 1 \ 2^+$: dyn. gen., no equivalent PDG state

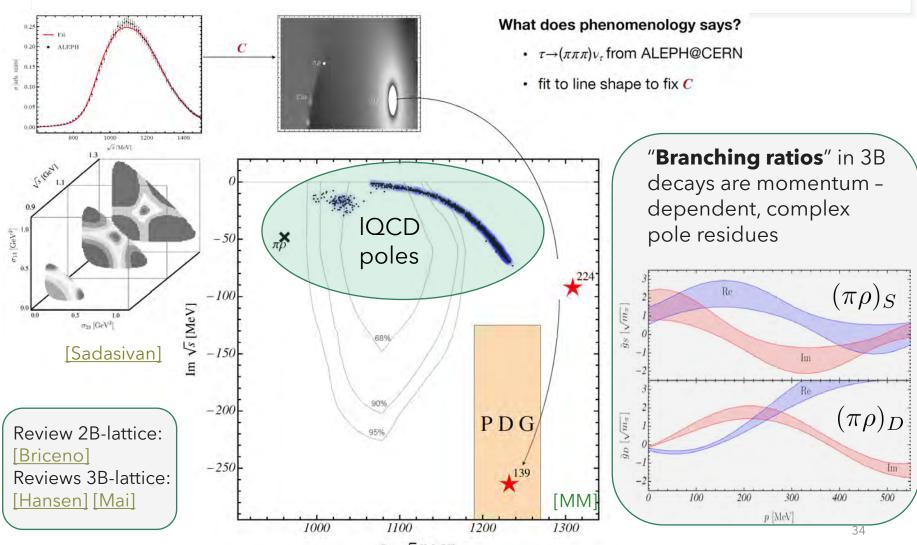
3. Three-body systems


Light mesons


π

π

- Important channel in GlueX @ Jlab: hybrids and exotics
 - Finite volume spectrum from lattice QCD: Lang (2014), Woss [HadronSpectrum] (2018) Hörz (2019), Culver (2020), Fischer (2020), Hansen (2020),...



- Roper resonance is debated for ~50 years in experiment. Can only be seen in PWA.
- 1st calculation w. meson-baryon operators on the lattice: Lang et al. (2017)

[Mai/GWQCD]

Extraction of a_1 (1260) from IQCD

Re \sqrt{s} [MeV]