DATA DRIVEN EXTRACTION OF PROTON'S VALENCE QUARK RATIO

DANIELE BINOSI ECT* - FONDAZIONE BRUNO KESSLER

Perceiving the Emergence of Hadron Mass through AMBER@CERN 6 SEPTEMBER 27 - SEPTEMBER 29 2021

Proton **STRUCTURE**

Nature's lowest-mass **bound-state** in the scattering of two *u*-quarks and one *d*-quark

Quantum ChromoDynamics

describes the proton's wave function Ψ

Knowledge of Ψ yields proton's gluons and quarks number density distributions

DISTRIBUTION FUNCTIONS

Powerful discriminator between competing descriptions of proton structure:

ratio of *u* and *d* quark densities in the far-valence domain

Consider DIS reactions from neutron and proton targets ratio of Poincaré-invariant structure functions

$$\frac{F_2^n(x)}{F_2^p(x)} = \frac{u_v(x) + 4d_v(x) + 6d_s(x) + \Sigma(x)}{4u_v(x) + d_v(x) + 6u_s(x) + \Sigma(x)}$$

valence

Sea distributions negligible on $x \ge 0.2$

$F_2^n(x)$	$x \ge 0.2$	$1 + 4d_v(z)$
$\overline{F_2^p(x)}$		$4+d_v(a)$

d/u ratio fixed point under QCD evolution at x = 1Nachtmann bounds:

 $1/4 \le F_2^n(x)/F_2^p(x) \le 4$

WHAT DO DATA ENCODE ABOUT **PROTON'S STRUCTURE?**

EXPERIMENT (2)

sea

Main problem: construction of a free neutron target

Use the *deuteron* (BONuS); large systematic uncertainties beyond $x \gtrsim 0.7$ due to characterisation of proton-neutron interactions

Perform DIS measurement on ³He and ³H and take ratio of scattering rates (MARATHON)

Nuclear interaction effects largely cancel; handling of radioactive ³He target challenging

0.9

SPM **SMOOTHING**

Schlessinger, PR 167 (1968)

elementary (functions) examples

LARGE DATASETS

randomly choose $4 < M \leq N/2$ points reduce (binomial) number of interpolators introducing physical constraints (absence of poles) **IN THE PRESENCE OF ERRORS?** direct interpolation does not work requires **smoothing** with **roughness penalty**: seek $g \in \mathbb{S}$ minimising $\mathsf{P}(g, \lambda) = \lambda$ smoothing par. data fidelity g is the *natural spline* interpolant **THEOREM:**

of nodes $\{x_i\}$

optimal smoothing parameter determined via generalised cross validation Craven and Wahba, NM 31 (1978)

use **bootstrap** procedure to generate replicas accounting for statistical errors in data when extrapolating

 $(x_i, y_i, \sigma_i) \to (x_i, \mathcal{N}(y_i, \sigma_i))$

SPM parameter extraction

Chen et al., PRD 99 (2019)

$$\int_{a}^{b} \mathrm{d}x \, [g''(x)]^2$$

roughness penalty

Reinsch, NM 10 (1967)

General algorithm to extrapolate a certain parameter from given noisy experimental datasets.

generate (10³) replicas for the given experimental central values and error smooth each replica with associated optimal λ set $\{M_j = 5 + j \mid j = 1, \dots, n_M\}$ for a suitable n_M fix M_j and get a number of monotonic SPM interpolators for each replica determine the replicas' parameter value (averaging over the obtained curves) construct the (normal) distribution of the replicas' (10³) extracted parameter; extract the mean p^{M_j} and standard deviation $\sigma_p^{M_j}$

final result

$$p \pm \sigma; \qquad p = \sum_{j=1}^{n_M} \frac{p^{M_j}}{n_M}; \qquad \sigma_p = \left[\sum_{j=1}^{n_M} \frac{(\sigma_p^{M_j})^2}{n_M^2} + \sigma_{s_M}^2\right]$$
standard c
of p^{M_j} dist

does it really work? \checkmark is it robust? ✓ If you want to disprove a result, show first you can replicate it

build replicas of the observable of known parameter values p^*

DATA GENERATORS

Generate data from a variety of models: functional forms; parametrisations of experimental data; "real-world" calculations

CHECKS

 \forall *M*/generators/kinematics:

Gaussianity of p distribution \checkmark robustness of p extraction \checkmark

p extraction robust if

 $|\delta p| < \sigma_p \quad \checkmark$

RMSE independent from generator \checkmark

Proton **STRUCTURE**

MARATHON dataset 21 data equally spaced in x $0.225 \le x \le 0.825$

$$\left. \begin{array}{c} \sigma_h / \sigma_t \\ F_2^n / F_2^p \\ d_v / u_v \end{array} \right\} \stackrel{x \cong 0}{\equiv} \left\{ \begin{array}{c} 1.026 \pm 0.139 \\ 0.962 \pm 0.245 \\ 1.323 \pm 0.706 \end{array} \right.$$

$$\begin{cases} \sigma_h / \sigma_t \\ F_2^n / F_2^p \\ d_v / u_v \end{cases} \end{cases} \stackrel{x \cong^1}{=} \begin{cases} 0.754 \pm 0.052 \\ 0.437 \pm 0.085 \\ 0.227 \pm 0.100 \end{cases}$$

$$\lim_{x \to 1} \frac{d_v(x)}{u_v(x)} = 0$$

consistent with sea-quark dominance at low x

$$\frac{F_2^n(x)}{F_2^p(x)} = \frac{2\mathcal{R}_{ht} - F_2^h/F_2^t}{2F_2^h/F_2^t - \mathcal{R}_{ht}}$$
$$\mathcal{R}_{ht}(x=1) = 1.019(13)$$

0.230 ± 0.057

 $F_2^n / F_2^p |_{x \to 1}^{\text{SPM \& DIS} - \text{A}} = 0.454 \pm 0.047$

Lower Nachtmann bound excluded at a fairly high level of accuracy: Ψ cannot contain scalar-diquarks only!

Agrees with:

Farrar et al, PRL 35 (1975); Brodsky et al, NPB 441 (1995)

uncorrelated SU(4) spin-flavour proton wave function and helicity conservation in high-Q² interactions

Poincaré-covariant Faddeev equation approach giving rise to scalar and vector diquarks correlations with dynamically determined strengths

Segovia et al, FBS 55 (2014); Xu et al, PRD 92 (2015)

