# The proton radius (puzzle?) and its relatives C. Peset, A. Pineda, O. Tomalak, 2106.00695

Antonio Pineda

Universitat Autònoma de Barcelona & IFAE

Workshop: Perceiving the Emergence of Hadron Mass through AMBER@CERN-VI



- In the beginning God created the quarks (ordinary matter) and made them interact through the strong forces, the SU(3) group.
- And God said, "I do not understand a damn thing" so he said "Let there be light", and there was light, the U(1) gauge group.

We will study the strong interactions using light at very low energies:  $q^2 \rightarrow 0$ .

$$\langle p', s | J^{\mu} | p, s \rangle = \overline{u}(p') \left[ F_1(q^2) \gamma^{\mu} + i F_2(q^2) \frac{\sigma^{\mu\nu} q_{\nu}}{2m_p} \right] u(p) +$$
  
 $F_i(q^2) = F_i + \frac{q^2}{m_p^2} F'_i + \dots$ 



- In the beginning God created the quarks (ordinary matter) and made them interact through the strong forces, the SU(3) group.
- And God said, "I do not understand a damn thing" so he said "Let there be light", and there was light, the U(1) gauge group.

We will study the strong interactions using light at very low energies:  $q^2 \rightarrow 0$ .

$$\langle p', s | J^{\mu} | p, s \rangle = \bar{u}(p') \left[ F_1(q^2) \gamma^{\mu} + i F_2(q^2) \frac{\sigma^{\mu\nu} q_{\nu}}{2m_p} \right] u(p) +$$
  
 $F_i(q^2) = F_i + \frac{q^2}{m_p^2} F'_i + \dots$ 



- In the beginning God created the quarks (ordinary matter) and made them interact through the strong forces, the SU(3) group.
- And God said, "I do not understand a damn thing" so he said "Let there be light", and there was light, the U(1) gauge group.

We will study the strong interactions using light at very low energies:  $q^2 \rightarrow 0$ .

$$\langle p', s | J^{\mu} | p, s \rangle = \bar{u}(p') \left[ F_1(q^2) \gamma^{\mu} + i F_2(q^2) \frac{\sigma^{\mu\nu} q_{\nu}}{2m_p} \right] u(p) +$$
  
 $F_i(q^2) = F_i + \frac{q^2}{m_p^2} F'_i + \dots$ 



- In the beginning God created the quarks (ordinary matter) and made them interact through the strong forces, the SU(3) group.
- And God said, "I do not understand a damn thing" so he said "Let there be light", and there was light, the U(1) gauge group.

We will study the strong interactions using light at very low energies:  $q^2 \rightarrow 0$ .

$$egin{aligned} &\langle p', s | J^{\mu} | p, s 
angle = ar{u}(p') \left[ F_1(q^2) \gamma^{\mu} + i F_2(q^2) rac{\sigma^{\mu 
u} q_{
u}}{2 m_p} 
ight] u(p) + \ &F_i(q^2) = F_i + rac{q^2}{m_p^2} F_i' + ... \end{aligned}$$

#### Scales (and ratios)

$$\begin{split} m_{\rho} &\sim \Lambda_{\chi} \\ m_{\mu} &\sim m_{\pi} \sim m_{r} = \frac{m_{\mu}m_{\rho}}{m_{\rho}+m_{\mu}} \\ m_{r} & \alpha \sim m_{e} \\ \cdots \\ Q^{2} &\rightarrow 0 \end{split}$$

#### Tool: Effective Field Theories = Factorization

Why?: There is a hierarchy of different scales

EFTs are especially useful in these situations.

1) Perturbative calculations much easier and systematic.

2) Nonperturbative information is parameterized in a model independent way.

3) Power counting.

Effective Field Theory: Non-relativistic protons, photons and (non-relativistic) electron/muons.

#### Scales (and ratios)

 $egin{aligned} & m_p \sim \Lambda_\chi \ & m_\mu \sim m_\pi \sim m_\pi \sim m_r = rac{m_\mu m_p}{m_p + m_\mu} \ & m_r lpha \sim m_e \ & \cdots \ & Q^2 
ightarrow 0 \end{aligned}$ 

#### Tool: Effective Field Theories $\equiv$ Factorization

Why?: There is a hierarchy of different scales
EFTs are especially useful in these situations.
1) Perturbative calculations much easier and systematic.
2) Nonperturbative information is parameterized in a model independent way.

3) Power counting.

Effective Field Theory: Non-relativistic protons, photons and (non-relativistic) electron/muons.

#### Scales (and ratios)

 $egin{aligned} & m_p \sim \Lambda_\chi \ & m_\mu \sim m_\pi \sim m_\pi \sim m_r = rac{m_\mu m_p}{m_p + m_\mu} \ & m_r lpha \sim m_e \ & \cdots \ & Q^2 
ightarrow 0 \end{aligned}$ 

#### Tool: Effective Field Theories $\equiv$ Factorization

Why?: There is a hierarchy of different scales
EFTs are especially useful in these situations.
1) Perturbative calculations much easier and systematic.
2) Nonperturbative information is parameterized in a model independent way.

3) Power counting.

Effective Field Theory: Non-relativistic protons, photons and (non-relativistic) electron/muons.

Caswell-Lepage  $iD_0 = i\partial_0 + Z_\rho e A^0$ ,  $i\mathbf{D} = i\nabla - Z_\rho e \mathbf{A}$ 

$$\mathcal{L}_{
m NRQED} = -rac{1}{4}F^{\mu
u}F_{\mu
u} + +rac{d_2}{m_{
ho}^2}F_{\mu
u}D^2F^{\mu
u}$$

$$+ \psi_{p}^{\dagger} \Biggl\{ iD_{0} + \frac{c_{k}}{2m_{p}} \mathbf{D}^{2} + \frac{c_{4}}{8m_{p}^{3}} \mathbf{D}^{4} + \frac{c_{F}^{(p)}}{2m_{p}} \boldsymbol{\sigma} \cdot e\mathbf{B} + \frac{c_{D}^{(p)}}{8m_{p}^{2}} \left(\mathbf{D} \cdot e\mathbf{E} - e\mathbf{E} \cdot \mathbf{D}\right) \\ + i \frac{c_{S}^{(p)}}{8m_{p}^{2}} \boldsymbol{\sigma} \cdot \left(\mathbf{D} \times e\mathbf{E} - e\mathbf{E} \times \mathbf{D}\right) + c_{A_{1}}^{(p)} e^{2} \frac{\mathbf{B}^{2} - \mathbf{E}^{2}}{8m_{p}^{3}} - c_{A_{2}}^{(p)} e^{2} \frac{\mathbf{E}^{2}}{8m_{p}^{3}} \Biggr\} \psi_{p}$$

+(leptons)

$$-\frac{c_3^{(pe)}}{m_p m_e}\psi_p^{\dagger}\psi_p\psi_e^{\dagger}\psi_e + \frac{c_4^{(pe)}}{m_p m_e}\psi_p^{\dagger}\sigma\psi_p\psi_e^{\dagger}\sigma\psi_e + \cdots.$$

Dictionary (relation Wilson coefficients with low energy constants):  $c_F^{(\rho)} \rightarrow \mu_p$  anomalous magnetic moment (low energy constant)  $c_D \rightarrow r_p$  proton radius (quasi low energy constant)  $c_{A_i}^{(\rho)} \rightarrow \alpha_E, \beta_M$  Proton polarizabilities (quasi low energy constant)  $c_{3/4}^{(\rhoe)} \rightarrow$  Two-photon exchange ...

$$\begin{split} \langle p', \boldsymbol{s} | J^{\mu} | \boldsymbol{p}, \boldsymbol{s} \rangle &= \bar{u}(p') \left[ F_1(q^2) \gamma^{\mu} + iF_2(q^2) \frac{\sigma^{\mu\nu} q_{\nu}}{2m_p} \right] u(\boldsymbol{p}) \,, \\ F_i(q^2) &= F_i + \frac{q^2}{m_p^2} F_i' + \dots \\ G_E(q^2) &= F_1(q^2) + \frac{q^2}{4m_p^2} F_2(q^2) \,, \qquad G_M(q^2) = F_1(q^2) + F_2(q^2) \,. \\ &= 6 \frac{d}{dq^2} G_{E,p}(q^2) |_{q^2=0} \end{split}$$

$$\begin{split} \langle p', s | J^{\mu} | p, s \rangle &= \bar{u}(p') \left[ F_1(q^2) \gamma^{\mu} + iF_2(q^2) \frac{\sigma^{\mu\nu} q_{\nu}}{2m_p} \right] u(p) \,, \\ F_i(q^2) &= F_i + \frac{q^2}{m_p^2} F_i' + \dots \\ G_E(q^2) &= F_1(q^2) + \frac{q^2}{4m_p^2} F_2(q^2) \,, \qquad G_M(q^2) = F_1(q^2) + F_2(q^2) \,. \\ &= 6 \frac{d}{dq^2} G_{E,p}(q^2) |_{q^2=0} \end{split}$$

$$\begin{split} \langle p', s | J^{\mu} | p, s \rangle &= \bar{u}(p') \left[ F_1(q^2) \gamma^{\mu} + i F_2(q^2) \frac{\sigma^{\mu\nu} q_{\nu}}{2m_p} \right] u(p) \,, \\ F_i(q^2) &= F_i + \frac{q^2}{m_p^2} F_i' + \dots \\ G_E(q^2) &= F_1(q^2) + \frac{q^2}{4m_p^2} F_2(q^2) \,, \qquad G_M(q^2) = F_1(q^2) + F_2(q^2) \,. \\ &= 6 \frac{d}{dq^2} G_{E,p}(q^2)|_{q^2=0} \end{split}$$

$$\begin{split} \langle p', s | J^{\mu} | p, s \rangle &= \bar{u}(p') \left[ F_1(q^2) \gamma^{\mu} + i F_2(q^2) \frac{\sigma^{\mu\nu} q_{\nu}}{2m_p} \right] u(p) \,, \\ F_i(q^2) &= F_i + \frac{q^2}{m_p^2} F_i' + \dots \\ G_E(q^2) &= F_1(q^2) + \frac{q^2}{4m_p^2} F_2(q^2) \,, \qquad G_M(q^2) = F_1(q^2) + F_2(q^2) \,. \\ r_p^2 &= 6 \frac{d}{dq^2} G_{E,p}(q^2)|_{q^2=0} \end{split}$$

$$\begin{split} \langle p', s | J^{\mu} | p, s \rangle &= \bar{u}(p') \left[ F_1(q^2) \gamma^{\mu} + iF_2(q^2) \frac{\sigma^{\mu\nu} q_{\nu}}{2m_p} \right] u(p) \,, \\ F_i(q^2) &= F_i + \frac{q^2}{m_p^2} F_i' + \dots \\ G_E(q^2) &= F_1(q^2) + \frac{q^2}{4m_p^2} F_2(q^2) \,, \qquad G_M(q^2) = F_1(q^2) + F_2(q^2) \,. \\ r_p^2(\nu) &= 6 \frac{d}{dq^2} G_{E,p}(q^2)|_{q^2=0} \\ \text{Infrared divergent!} \to \text{Wilson coefficient} \end{split}$$



$$\begin{split} \langle p', s | J^{\mu} | p, s \rangle &= \bar{u}(p') \left[ F_1(q^2) \gamma^{\mu} + iF_2(q^2) \frac{\sigma^{\mu\nu} q_{\nu}}{2m_p} \right] u(p) \,, \\ F_i(q^2) &= F_i + \frac{q^2}{m_p^2} F_i' + \dots \\ G_E(q^2) &= F_1(q^2) + \frac{q^2}{4m_p^2} F_2(q^2) \,, \qquad G_M(q^2) = F_1(q^2) + F_2(q^2) \,, \\ r_p^2(\nu) &= 6 \frac{d}{dq^2} G_{E,p}(q^2)|_{q^2=0} = \frac{3}{4} \frac{1}{m_p^2} \left( c_D^{(p)}(\nu) - 1 \right) \\ c_D(\nu) &= 1 + 2F_2 + 8F_1' = 1 + 8m_p^2 \left. \frac{dG_{p,E}(q^2)}{dq^2} \right|_{q^2=0} \,, \end{split}$$

Standard definition (corresponds to the experimental number):

$$egin{aligned} r_{
ho}^2 &= rac{3}{4} rac{1}{m_{
ho}^2} \left( c_D(
u) - c_{D,point-like}(
u) 
ight) \ &\mathcal{C}_{D,point-like} = 1 + rac{lpha}{\pi} \left( rac{4}{3} \ln rac{m_{
ho}^2}{
u^2} 
ight) \end{aligned}$$

$$\begin{split} \langle p', s | J^{\mu} | p, s \rangle &= \bar{u}(p') \left[ F_1(q^2) \gamma^{\mu} + iF_2(q^2) \frac{\sigma^{\mu\nu} q_{\nu}}{2m_p} \right] u(p) \,, \\ F_i(q^2) &= F_i + \frac{q^2}{m_p^2} F_i' + \dots \\ G_E(q^2) &= F_1(q^2) + \frac{q^2}{4m_p^2} F_2(q^2) \,, \qquad G_M(q^2) = F_1(q^2) + F_2(q^2) \,. \\ r_p^2(\nu) &= 6 \frac{d}{dq^2} G_{E,p}(q^2)|_{q^2=0} = \frac{3}{4} \frac{1}{m_p^2} \left( c_D^{(p)}(\nu) - 1 \right) \\ c_D(\nu) &= 1 + 2F_2 + 8F_1' = 1 + 8m_p^2 \left. \frac{dG_{p,E}(q^2)}{d\,q^2} \right|_{q^2=0} \,, \end{split}$$

Standard definition (corresponds to the experimental number):

$$r_{p}^{2} = \frac{3}{4} \frac{1}{m_{p}^{2}} \left( c_{D}(\nu) - c_{D,point-like}(\nu) \right)$$
$$c_{D,point-like} = 1 + \frac{\alpha}{\pi} \left( \frac{4}{3} \ln \frac{m_{p}^{2}}{\nu^{2}} \right)$$

$$\begin{split} \langle p', s | J^{\mu} | p, s \rangle &= \bar{u}(p') \left[ F_1(q^2) \gamma^{\mu} + iF_2(q^2) \frac{\sigma^{\mu\nu} q_{\nu}}{2m_p} \right] u(p) \,, \\ F_i(q^2) &= F_i + \frac{q^2}{m_p^2} F_i' + \dots \\ G_E(q^2) &= F_1(q^2) + \frac{q^2}{4m_p^2} F_2(q^2) \,, \qquad G_M(q^2) = F_1(q^2) + F_2(q^2) \,, \\ r_p^2(\nu) &= 6 \frac{d}{dq^2} G_{E,p}(q^2)|_{q^2=0} = \frac{3}{4} \frac{1}{m_p^2} \left( c_D^{(p)}(\nu) - 1 \right) \\ c_D(\nu) &= 1 + 2F_2 + 8F_1' = 1 + 8m_p^2 \left. \frac{dG_{p,E}(q^2)}{d\,q^2} \right|_{q^2=0} \,, \end{split}$$

Standard definition (corresponds to the experimental number):

$$r_{\rho}^{2} = \frac{3}{4} \frac{1}{m_{\rho}^{2}} \left( c_{D}(\nu) - c_{D,point-like}(\nu) \right)$$
$$c_{D,point-like} = 1 + \frac{\alpha}{\pi} \left( \frac{4}{3} \ln \frac{m_{\rho}^{2}}{\nu^{2}} \right)$$

# Theoretical setup (muonic hydrogen)

We use an effective field theory, Potential Non-Relativistic QED, which describes the muonic hydrogen dynamics and profits from the hierarchy  $m_{\mu} \gg m_{\mu} \alpha \gg m_{\mu} \alpha^2$ 

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - \frac{\alpha}{r}\right)\psi(\mathbf{r}) = 0$$

 $\begin{cases} (v_0 - \frac{1}{2m_r} - \frac{1}{r}) \psi(\mathbf{r}) = \mathbf{0} \\ + \text{corrections to the potential} \\ + \text{interaction with ultrasoft photons} \end{cases} \text{ potential NRQED } \mathbf{E} \sim mv^2$ 

# Theoretical setup (muonic hydrogen)

We use an effective field theory, Potential Non-Relativistic QED, which describes the muonic hydrogen dynamics and profits from the hierarchy  $m_{\mu} \gg m_{\mu} \alpha \gg m_{\mu} \alpha^2$ 

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - \frac{\alpha}{r}\right)\psi(\mathbf{r}) = 0$$

 $\begin{cases} (v_0 - \frac{1}{2m_r} - \frac{1}{r}) \psi(\mathbf{r}) = 0 \\ + \text{corrections to the potential} \\ + \text{interaction with ultrasoft photons} \end{cases} \text{ potential NRQED } E \sim mv^2$ 

 $NRQED(m_{\mu}\alpha) \rightarrow pNRQED$ 

| INTRODUCTION | pNRQED         | HADRONIC CONTRIBUTIONS |  | CONCLUSIONS |
|--------------|----------------|------------------------|--|-------------|
|              | 00000000000000 |                        |  |             |

Matching NRQED to pNRQED



#### Hydrogen/Positronium/muonium Tree level













**Order**  $1/m^2$ 

$$\begin{split} \tilde{V}^{(b)} &= \frac{\pi \alpha}{2} \left[ Z_{\rho} \frac{c_{D}^{(\mu)}}{m_{\mu}^{2}} + Z_{\mu} \frac{c_{D}^{(\rho)}}{m_{\rho}^{2}} \right] ,\\ \tilde{V}^{(c)} &= -i2\pi \alpha \frac{(\mathbf{p} \times \mathbf{k})}{\mathbf{k}^{2}} \cdot \left\{ Z_{\rho} \frac{c_{S}^{(\mu)} \mathbf{s}_{1}}{m_{\mu}^{2}} + Z_{\mu} \frac{c_{S}^{(\rho)} \mathbf{s}_{2}}{m_{\rho}^{2}} \right\} ,\\ \tilde{V}^{(d)} &= -Z_{\mu} Z_{\rho} 16\pi \alpha \left( \frac{d_{2}^{(\mu)}}{m_{\mu}^{2}} + \frac{d_{2}^{(\tau)}}{m_{\tau}^{2}} + \frac{d_{2,NR}}{m_{\rho}^{2}} \right) ,\\ \tilde{V}^{(e)} &= -Z_{\mu} Z_{\rho} \frac{4\pi \alpha}{m_{\mu} m_{\rho}} \left( \frac{\mathbf{p}^{2}}{\mathbf{k}^{2}} - \frac{(\mathbf{p} \cdot \mathbf{k})^{2}}{\mathbf{k}^{4}} \right) ,\\ \tilde{V}^{(f)} &= -\frac{i4\pi \alpha}{m_{\mu} m_{\rho}} \frac{(\mathbf{p} \times \mathbf{k})}{\mathbf{k}^{2}} \cdot (Z_{\rho} c_{F}^{(\mu)} \mathbf{s}_{1} + Z_{\mu} c_{F}^{(\rho)} \mathbf{s}_{2}) ,\\ \tilde{V}^{(g)} &= \frac{4\pi \alpha c_{F}^{(1)} c_{F}^{(2)}}{m_{\mu} m_{\rho}} \left( \mathbf{s}_{1} \cdot \mathbf{s}_{2} - \frac{\mathbf{s}_{1} \cdot \mathbf{k} \mathbf{s}_{2} \cdot \mathbf{k}}{\mathbf{k}^{2}} \right) ,\\ \tilde{V}^{(h)} &= -\frac{1}{m_{\rho}^{2}} \left\{ (c_{3}^{\rho l_{1}} + 3c_{4}^{\rho l_{1}}) - 2c_{4}^{\rho l_{1}} \mathbf{S}^{2} \right\} . \end{split}$$



$$ilde{V}_{1 loop}^{(b,c)} = rac{4 Z_{\mu}^2 Z_{p}^2 lpha^2}{3 m_{\mu} m_{p}} \left( \log rac{\mathbf{k}^2}{\mu^2} + 2 \log 2 - 1 
ight) \, .$$



$$ilde{V}_{1\text{loop}}^{(b,c)} = rac{4Z_{\mu}^2 Z_{
ho}^2 lpha^2}{3m_{\mu}m_{
ho}} \left(\log rac{\mathbf{k}^2}{\mu^2} + 2\log 2 - 1
ight)\,.$$

| INTRODUCTION | pNRQED                                  | HADRONIC CONTRIBUTIONS |  | CONCLUSIONS |
|--------------|-----------------------------------------|------------------------|--|-------------|
|              | 000000000000000000000000000000000000000 |                        |  |             |

#### Muonic Hydrogen: electron vacuum polarization



Figure: Leading correction to the Coulomb potential due to the electron vacuum polarization.  $\mathbf{k} = \mathbf{p} - \mathbf{p}'$  and  $k_0 = E_1 - E_1'$ .

$$ilde{V}^{(0)}\equiv -4\pi Z_{\mu}Z_{
ho}lpha_V(k)rac{1}{\mathbf{k}^2},$$

$$\alpha_{\rm eff}(k) = \alpha \frac{1}{1 + \Pi(-\mathbf{k}^2)},$$

where

$$\Pi(k^2) = \alpha \Pi^{(1)}(k^2) + \alpha^2 \Pi^{(2)}(k^2) + \alpha^3 \Pi^{(3)}(k^2) + \dots$$

$$\alpha_{V}(k) = \alpha_{eff}(k) + \sum_{\substack{n,m=0\\n+m=even>0}} Z^{n}_{\mu} Z^{m}_{\rho} \alpha^{(n,m)}_{eff}(k) = \alpha_{eff}(k) + \delta\alpha(k), \qquad \delta\alpha(k) = O(\alpha^{4})$$

| INTRODUCTION | pNRQED                                  | HADRONIC CONTRIBUTIONS |  | CONCLUSIONS |
|--------------|-----------------------------------------|------------------------|--|-------------|
|              | 000000000000000000000000000000000000000 |                        |  |             |

Muonic Hydrogen: electron vacuum polarization



Figure: Leading correction to the Coulomb potential due to the electron vacuum polarization.  $\mathbf{k} = \mathbf{p} - \mathbf{p}'$  and  $k_0 = E_1 - E_1'$ .

$$ilde{V}^{(0)} \equiv -4\pi Z_{\mu} Z_{
ho} lpha_V(k) rac{1}{\mathbf{k}^2},$$

$$\alpha_{eff}(k) = \alpha \frac{1}{1 + \Pi(-\mathbf{k}^2)},$$

where

$$\Pi(k^2) = \alpha \Pi^{(1)}(k^2) + \alpha^2 \Pi^{(2)}(k^2) + \alpha^3 \Pi^{(3)}(k^2) + \dots$$

$$\alpha_{V}(k) = \alpha_{eff}(k) + \sum_{\substack{n,m=0\\n+m=even>0}} Z_{\mu}^{n} Z_{\rho}^{m} \alpha_{eff}^{(n,m)}(k) = \alpha_{eff}(k) + \delta\alpha(k), \qquad \delta\alpha(k) = O(\alpha^{4})$$

**Order**  $1/m^2$ 

$$\begin{split} \tilde{V}^{(b)} &= \frac{\pi \alpha_{eff}(\mathbf{k})}{2} \left[ Z_{\rho} \frac{c_{D}^{(\mu)}}{m_{\mu}^{2}} + Z_{\mu} \frac{c_{D}^{(\rho)}}{m_{\rho}^{2}} \right] ,\\ \tilde{V}^{(c)} &= -i2\pi \alpha_{eff}(\mathbf{k}) \frac{(\mathbf{p} \times \mathbf{k})}{\mathbf{k}^{2}} \cdot \left\{ Z_{\rho} \frac{c_{S}^{(\mu)} \mathbf{s}_{1}}{m_{\mu}^{2}} + Z_{\mu} \frac{c_{S}^{(\rho)} \mathbf{s}_{2}}{m_{\rho}^{2}} \right\} \\ \tilde{V}^{(d)} &= -Z_{\mu} Z_{\rho} 16\pi \alpha \left( \frac{d_{2}^{(\mu)}}{m_{\mu}^{2}} + \frac{d_{2}^{(\tau)}}{m_{\tau}^{2}} + \frac{d_{2,NR}}{m_{\rho}^{2}} \right) ,\\ \tilde{V}^{(e)} &= -Z_{\mu} Z_{\rho} \frac{4\pi \alpha_{eff}(\mathbf{k})}{m_{\mu} m_{\rho}} \left( \frac{\mathbf{p}^{2}}{\mathbf{k}^{2}} - \frac{(\mathbf{p} \cdot \mathbf{k})^{2}}{\mathbf{k}^{4}} \right) ,\\ \tilde{V}^{(f)} &= -\frac{i4\pi \alpha_{eff}(\mathbf{k})}{m_{\mu} m_{\rho}} \frac{(\mathbf{p} \times \mathbf{k})}{\mathbf{k}^{2}} \cdot (Z_{\rho} c_{F}^{(\mu)} \mathbf{s}_{1} + Z_{\mu} c_{F}^{(\rho)} \mathbf{s}_{2}) ,\\ \tilde{V}^{(g)} &= \frac{4\pi \alpha_{eff}(\mathbf{k}) c_{F}^{(p)} c_{F}^{(\mu)}}{m_{\mu} m_{\rho}} \left( \mathbf{s}_{1} \cdot \mathbf{s}_{2} - \frac{\mathbf{s}_{1} \cdot \mathbf{k} \mathbf{s}_{2} \cdot \mathbf{k}}{\mathbf{k}^{2}} \right) ,\\ \tilde{V}^{(h)} &= -\frac{1}{m_{\rho}^{2}} \left\{ (c_{3} + 3c_{4}) - 2c_{4} \mathbf{S}^{2} \right\} . \end{split}$$



Figure: Leading correction to the Coulomb potential due to the electron vacuum polarization.  $\mathbf{k} = \mathbf{p} - \mathbf{p}'$  and  $k_0 = E_1 - E_1'$ .

$$\begin{split} \delta \tilde{V}_E &= -\frac{Z_\mu Z_\rho e^2}{4m_\mu m_\rho} \frac{(\mathbf{p}^2 - \mathbf{p}'^2)^2}{\mathbf{k}^2} \frac{\alpha}{\pi} m_e^2 \int_4^\infty d(q^2) \frac{1}{(m_e^2 q^2 + \mathbf{k}^2)^2} u(q^2) \,. \\ u(q^2) &= \frac{1}{3} \sqrt{1 - \frac{4}{q^2}} \left(1 + \frac{2}{q^2}\right) \,. \end{split}$$

Muonic hydrogen Lamb shift:  $\Delta E_L \equiv E(2P_{3/2}) - E(2S_{1/2})$  and hyperfine splitting:  $\Delta E_{HF} \equiv E(nS_{3/2}) - E(nS_{1/2})$ 

$$\begin{split} L_{pNRQED} &= \int d^3 \mathbf{r} d^3 \mathbf{R} dt S^{\dagger}(\mathbf{r},\mathbf{R},t) \Biggl\{ i \partial_0 - \frac{\mathbf{p}^2}{2m_r} \\ &- V(\mathbf{r},\mathbf{p},\sigma_1,\sigma_2) + e \mathbf{r} \cdot \mathbf{E}(\mathbf{R},t) \Biggr\} S(\mathbf{r},\mathbf{R},t) - \int d^3 \mathbf{r} \frac{1}{4} F_{\mu\nu} F^{\mu\nu} , \\ V(\mathbf{r},\mathbf{p},\sigma_1,\sigma_2) &= V^{(0)}(r) + \frac{V^{(1)}(r)}{m_{\mu}} + \frac{V^{(2)}(r)}{m_{\mu}^2} + \dots \end{split}$$

Observable: Spectrum or decays Corrections to the Green Function  $(h_s^{(0)} = \mathbf{p}^2/m + V^{(0)})$ 

$$G_s(E) = P_s \frac{1}{h_s^{(0)} - H_l - E} P_s = G_s^{(0)} + \delta G_s \qquad G_s^{(0)}(E) = \frac{1}{h_s^{(0)} - E}$$

A) Ultrasoft loops (lamb shift-like): x · E ←

B) Quantum mechanics perturbation theory←





Vacuum polarization effects:  $O(m_r \alpha^3)$ 



Figure: Leading correction to the Coulomb potential due to the electron vacuum polarization.  $\mathbf{k} = \mathbf{p} - \mathbf{p}'$  and  $k_0 = E_1 - E'_1$ .

1-loop static potential

$$E_{LO} = \langle n | \delta V | n \rangle = 205.0074 \text{ meV} = \mathcal{O}(m_r \alpha^3)$$

 $E_L \propto \beta_0$ . Measure of (Non)-Asymptotically free theory!

Ultrasoft effects:  $\mathcal{O}(m\alpha^5)$ 



 $\Delta E = -0.6677 \ meV$ 

$$\mathcal{O}(m\alpha^5 \frac{m_{\mu}}{m_{p}}): \qquad \Delta E = -0.045 \ meV$$

All (soft+ultrasoft):

 $\Delta E = -0.71896 \text{ meV}.$ 

Start the overlap with hadronic effects.

| INTRODUCTION | pNRQED                                  | HADRONIC CONTRIBUTIONS |  | CONCLUSIONS |
|--------------|-----------------------------------------|------------------------|--|-------------|
| 000000       | 000000000000000000000000000000000000000 |                        |  |             |

#### Hadronic corrections

$$rac{\delta V^{(2)}(r)}{m_{\mu}^2} 
ightarrow rac{1}{m_p^2} D_d^{had.} \delta^3(\mathbf{r}) 
ightarrow \Delta E \sim rac{1}{m_p^2} D_d^{had.} (m_r lpha)^3$$
 $D_d^{(
ho\mu)} = -c_3 - 16\pi lpha d_2 + rac{\pi lpha}{2} c_D^{(
ho)}$ 

$$rac{\delta V^{(2)}(r)}{m_{\mu}^2} 
ightarrow rac{1}{m_{
ho}^2} D_d^{had.} (\mathbf{S}_1 + \mathbf{S}_2)^2 \delta^3(\mathbf{r})$$

 $D_s^{had.} = 2c_4$   $c_3, c_4, d_2, c_D^{(p)}, \dots \text{ matching coefficients of NRQED.}$   $\delta \mathcal{L} = \dots + \frac{d_2}{m_p^2} F_{\mu\nu} D^2 F^{\mu\nu} - e \frac{c_D}{m_p^2} N_p^{\dagger} \nabla \cdot \mathbf{E} N_p - \frac{c_3}{m_p^2} N_p^{\dagger} N_p \mu^{\dagger} \mu + \frac{c_4}{m_p^2} N_p^{\dagger} \sigma N_p \mu^{\dagger} \sigma \mu$ 

| INTRODUCTION | pNRQED            | HADRONIC CONTRIBUTIONS |  | CONCLUSIONS |
|--------------|-------------------|------------------------|--|-------------|
|              | 00000000000000000 |                        |  |             |

### Muonic hydrogen

$$\begin{split} \Delta E_L &= 206.0243 \,\mathrm{meV} \\ &- \left[\frac{1}{\pi} \frac{m_r^3 \alpha^3}{8}\right] \frac{\alpha}{M^2} \frac{r_p^2}{\mathrm{fm}^2} \left[47.3525 + 35.1491 \alpha + 47.3525 \alpha^2 \ln(1/\alpha)\right] \\ &+ \left[\frac{1}{\pi} \frac{m_r^3 \alpha^3}{8}\right] \frac{1}{M^2} \left[\boldsymbol{c}_3^{\mathrm{had}} + 16\pi \alpha \boldsymbol{d}_2^{\mathrm{had}}\right] \\ &+ \mathcal{O}(m_r \alpha^6) \,. \end{split}$$

### Hydrogen

$$E_{n\ell j}^{(\mathrm{fs})} = m_r [f_{nj} - 1 + \frac{(Z\alpha)^2}{2n^2}] - \frac{m_r^2}{2(m_e + M)} [f_{nj} - 1]^2 + E_{n\ell j}^{\mathrm{EFT}} + E_{n\ell j}^{(6)} + E_{n\ell j}^{(7)} + E_{n\ell j}^{(8)},$$
  
where  $f_{nj} = [1 + (Z\alpha)^2(n - \delta)^{-2}]^{-1/2}$  (with  $\delta = j + \frac{1}{2} - [(j + \frac{1}{2})^2 - (Z\alpha)^2]^{1/2}).$ 

$$\begin{split} E_{n\ell j}^{\rm EFT} &= \frac{m_r (Z\alpha)^4}{2n^3} \left( \frac{1}{j + \frac{1}{2}} - \frac{3}{4n} + \frac{m_r}{(m_e + M)} \frac{1}{4n} \right) \\ &+ \frac{(Z\alpha)^4}{8n^3} \left[ m_r \left( \frac{3}{n} - \frac{8}{2\ell + 1} \right) - \frac{m_r^3}{m_e M} \left( \frac{1}{n} + \frac{8}{2\ell + 1} + \frac{32\alpha}{3\pi} \frac{(m_e Z + M)^2}{m_e M} \ln R(n, \ell) \right) \right] \\ &+ \left[ \frac{\pi\alpha}{2m_e M} \left( \frac{Zc_D^{(e)}M}{m_e} + \frac{c_D^{(p)}m_e}{M} \right) - 16\pi Z\alpha \left( \frac{d_2^{(e)}}{m_e^2} + \frac{d_2^{(\mu)}}{m_\mu^2} + \frac{d_2}{M^2} \right) - \frac{c_3}{M^2} \right. \\ &+ \frac{2\pi Z\alpha}{m_e M} \left( 1 + \frac{4\alpha Z}{3\pi} - \frac{7Z\alpha}{3\pi} \left( \frac{1}{2n} - H_n + \ln \frac{\nu n}{2\alpha m_r Z} \right) \right) \\ &+ Z\alpha^2 \left( \frac{1}{m_e} + \frac{Z}{M} \right)^2 \left( \frac{10}{9} - \frac{4}{3} \ln \frac{\alpha^2 m_r Z^2}{\nu} \right) \right] \frac{(\alpha m_r Z)^3}{\pi n^3} \delta_{\ell 0} \\ &+ \left[ X_{LS_e} \left( \frac{Zc_F^{(e)}}{m_e M} + \frac{Zc_S^{(e)}}{2m_e^2} \right) + \frac{Z}{2m_e M} \left( (\ell^2 + \ell) - \frac{7Z\alpha}{3\pi} \right) \right] \frac{2(1 - \delta_{\ell 0})}{(\ell^2 + \ell)(2\ell + 1)} \frac{\alpha(Z\alpha m_r)^3}{n^3} \end{split}$$

| INTRODUCTION | pNRQED           | HADRONIC CONTRIBUTIONS |           |      | CONCLUSIONS |
|--------------|------------------|------------------------|-----------|------|-------------|
| 000000       | 0000000000000000 | 0000000                | 000000000 | 0000 | 00          |

HOW to determine the Two-Photon Exchange correction?

- Dispersion relations + modelling
- lattice (not yet)

▶ ....

► Chiral perturbation theory (→ (non-analytic) m<sub>q</sub> dependence, N<sub>c</sub> dependence)

 $HBET(m_{\pi}/m_{\mu}) \rightarrow NRQED(m_{\mu}\alpha) \rightarrow pNRQED$
HBET  $(m_{\pi})$ 

 $\mathcal{L}_{\textit{HBET}} = \mathcal{L}_{\gamma} + \mathcal{L}_{\textit{I}} + \mathcal{L}_{\textit{I}\pi} + \mathcal{L}_{(\textit{N}, \Delta)} + \mathcal{L}_{(\textit{N}, \Delta)\textit{I}} + \mathcal{L}_{(\textit{N}, \Delta)\pi} + \mathcal{L}_{(\textit{N}, \Delta)\textit{I}\pi},$ 

$$\mathcal{L}_{\gamma} = -\frac{1}{4}F^{2} + \frac{d_{2}}{m_{p}^{2}}F_{\mu\nu}D^{2}F^{\mu\nu} + \cdots$$
$$\mathcal{L}_{\pi} = \frac{F_{\pi}^{2}}{4}\operatorname{Tr}\left[D_{\mu}UD^{\mu}U\right] + \cdots \qquad U = u^{2} = e^{i\frac{\Pi}{F_{\pi}}}$$
$$\mathcal{L}_{N} = N^{\dagger}(iv^{\mu}\nabla_{\mu} + g_{A}u_{\mu}S^{\mu})N + \cdots + (\Delta) + \cdots - e\frac{C_{D}}{m_{p}^{2}}N_{p}^{\dagger}\nabla \cdot \mathbf{E}N_{p}$$
$$D_{\mu} = \partial_{\mu} + ieQA_{\mu} \qquad \nabla_{\mu} = \partial_{\mu} + \Gamma_{\mu} \qquad u_{\mu} = iu^{\dagger}(\nabla_{\mu}U)u$$
$$\Gamma_{\mu} = \frac{1}{2}\left\{u^{\dagger}(\partial_{\mu} + ieQA_{\mu})u + u(\partial_{\mu} + ieQA_{\mu})u^{\dagger}\right\}$$
$$\mathcal{L}_{N,I} = \frac{1}{m_{p}^{2}}\sum_{i}c_{3,R}^{pl_{i}}\bar{N}_{p}\gamma^{0}N_{p}\bar{l}_{i}\gamma^{0}l_{i} + \frac{1}{m_{p}^{2}}\sum_{i}c_{4,R}^{pl_{i}}\bar{N}_{p}\gamma^{i}N_{p}\bar{l}_{i}\gamma_{j}l_{i}$$
$$\delta\mathcal{L} = \cdots + \frac{d_{2}}{m_{0}^{2}}F_{\mu\nu}D^{2}F^{\mu\nu} - e\frac{C_{D}}{m_{0}^{2}}N_{p}^{\dagger}\nabla \cdot \mathbf{E}N_{p} - \frac{C_{3}}{m_{0}^{2}}N_{p}^{\dagger}N_{p}\mu^{\dagger}\mu + \frac{C_{4}}{m_{0}^{2}}N_{p}^{\dagger}\sigma N_{p}\mu^{\dagger}\sigma\mu$$

INTRODUCTION PNRQED HADRONIC CONTRIBUTIONS HYPERFINE e-p SCATTERING CONCLUSIONS

HBET  $(m_{\pi})$ 

 $\mathcal{L}_{\textit{HBET}} = \mathcal{L}_{\gamma} + \mathcal{L}_{\textit{I}} + \mathcal{L}_{\pi} + \mathcal{L}_{(\textit{N}, \Delta)} + \mathcal{L}_{(\textit{N}, \Delta)\textit{I}} + \mathcal{L}_{(\textit{N}, \Delta)\pi} + \mathcal{L}_{(\textit{N}, \Delta)\textit{I}\pi},$ 

$$\mathcal{L}_{\gamma} = -\frac{1}{4}F^{2} + \frac{d_{2}}{m_{p}^{2}}F_{\mu\nu}D^{2}F^{\mu\nu} + \cdots$$
$$\mathcal{L}_{\pi} = \frac{F_{\pi}^{2}}{4}\operatorname{Tr}\left[D_{\mu}UD^{\mu}U\right] + \cdots \qquad U = u^{2} = e^{i\frac{\Pi}{F_{\pi}}}$$
$$\mathcal{L}_{N} = N^{\dagger}(iv^{\mu}\nabla_{\mu} + g_{A}u_{\mu}S^{\mu})N + \cdots + (\Delta) + \cdots - e\frac{C_{D}}{m_{p}^{2}}N_{p}^{\dagger}\nabla \cdot \mathbf{E}N_{p}$$
$$D_{\mu} = \partial_{\mu} + ieQA_{\mu} \qquad \nabla_{\mu} = \partial_{\mu} + \Gamma_{\mu} \qquad u_{\mu} = iu^{\dagger}(\nabla_{\mu}U)u$$
$$\Gamma_{\mu} = \frac{1}{2}\left\{u^{\dagger}(\partial_{\mu} + ieQA_{\mu})u + u(\partial_{\mu} + ieQA_{\mu})u^{\dagger}\right\}$$
$$\mathcal{L}_{N,l} = \frac{1}{m_{p}^{2}}\sum_{i}c_{3,R}^{pl_{i}}\bar{N}_{p}\gamma^{0}N_{p}\bar{l}_{i}\gamma^{0}l_{i} + \frac{1}{m_{p}^{2}}\sum_{i}c_{4,R}^{pl_{i}}\bar{N}_{p}\gamma^{i}N_{p}\bar{l}_{i}\gamma_{j}l_{i}$$
$$\delta\mathcal{L} = \cdots + \frac{d_{2}}{m_{p}^{2}}F_{\mu\nu}D^{2}F^{\mu\nu} - e\frac{C_{D}}{m_{p}^{2}}N_{p}^{\dagger}\nabla \cdot \mathbf{E}N_{p} - \frac{C_{3}}{m_{p}^{2}}N_{p}^{\dagger}N_{p}\mu^{\dagger}\mu + \frac{C_{4}}{m_{p}^{2}}N_{p}^{\dagger}\sigma N_{p}\mu^{\dagger}\sigma\mu$$







#### **TWO-PHOTON EXCHANGE correction**



#### $m_{\mu}$ extra suppression+ $\chi$ PT (Model independent) Power-like chiral enhanced ( $\rightarrow \chi$ PT can predict the leading order!

$$c_{3}^{\text{had}} \sim \alpha^{2} \frac{m_{\mu}}{m_{\pi}} + \mathcal{O}\left(\alpha^{2} \frac{m_{\mu}}{\Lambda_{OCD}}\right) \qquad \delta E \sim \mathcal{O}(m_{\mu}\alpha^{5} \times \frac{m_{\mu}^{2}}{\Lambda_{\chi}^{2}} \times \frac{m_{\mu}}{m_{\pi}})$$
  
Error ( $\Delta = M_{\Delta} - M_{\rho} \sim 300 \text{ MeV}$ ): LO  $\times \frac{m_{\pi}}{\Delta} \simeq \text{LO} \times \frac{1}{2}$   
 $\Rightarrow c_{3}^{\text{had}} = \alpha^{2} \frac{m_{\mu}}{m_{\pi}} 47.2(23.6)$ 



#### **TWO-PHOTON EXCHANGE correction**



 $m_{\mu}$  extra suppression+ $\chi$ PT (Model independent) Power-like chiral enhanced ( $\rightarrow \chi$ PT can predict the leading order!)

$$c_{3}^{\text{had}} \sim \alpha^{2} \frac{m_{\mu}}{m_{\pi}} + \mathcal{O}\left(\alpha^{2} \frac{m_{\mu}}{\Lambda_{QCD}}\right) \qquad \delta E \sim \mathcal{O}(m_{\mu}\alpha^{5} \times \frac{m_{\mu}^{2}}{\Lambda_{\chi}^{2}} \times \frac{m_{\mu}}{m_{\pi}})$$
  
for  $(\Delta = M_{\Delta} - M_{\rho} \sim 300 \text{ MeV})$ : LO  $\times \frac{m_{\pi}}{\Delta} \simeq \text{LO} \times \frac{1}{2}$   
 $c_{3}^{\text{had}} = \alpha^{2} \frac{m_{\mu}}{m} 47.2(23.6)$ 



#### **TWO-PHOTON EXCHANGE correction**



 $m_{\mu}$  extra suppression+ $\chi$ PT (Model independent) Power-like chiral enhanced ( $\rightarrow \chi$ PT can predict the leading order!)

$$\begin{split} c_{3}^{\text{had}} &\sim \alpha^{2} \frac{m_{\mu}}{m_{\pi}} + \mathcal{O}\left(\alpha^{2} \frac{m_{\mu}}{\Lambda_{QCD}}\right) \qquad \delta E \sim \mathcal{O}(m_{\mu}\alpha^{5} \times \frac{m_{\mu}^{2}}{\Lambda_{\chi}^{2}} \times \frac{m_{\mu}}{m_{\pi}}) \\ \text{Error}\left(\Delta = M_{\Delta} - M_{p} \sim 300 \text{ MeV}\right): \text{LO} \times \frac{m_{\pi}}{\Delta} \simeq \text{LO} \times \frac{1}{2} \\ &\rightarrow c_{3}^{\text{had}} = \alpha^{2} \frac{m_{\mu}}{m_{\pi}} 47.2(23.6) \end{split}$$

| INTRODUCTION | pNRQED          | HADRONIC CONTRIBUTIONS |  | CONCLUSIONS |
|--------------|-----------------|------------------------|--|-------------|
| 000000       | 000000000000000 | 00000000               |  |             |

# Large $N_c$ . Including the $\Delta$ particle Error:

$$rac{m_\mu}{\Delta} \sim \mathit{N_c} rac{m_\mu}{\Lambda_{QCD}} 
ightarrow \mathit{N_c} rac{m_\mu}{\Lambda_{QCD}} \sim rac{1}{3}$$



 $c_{3}^{\text{had}} \sim \alpha^{2} \frac{m_{\mu}}{m_{\pi}} \left[ 1 + \# \frac{m_{\pi}}{\Delta} + \cdots \right] + \mathcal{O} \left( \alpha^{2} \frac{m_{\mu}}{\Lambda_{QCD}} \right) = \alpha^{2} \frac{m_{\mu}}{m_{\pi}} \begin{cases} 47.2(23.6) & (\pi), \\ 56.7(20.6) & (\pi + \Delta), \end{cases}$ 

 $\Delta E_{\text{TPE}} = 28.59(\pi) + 5.86(\pi \& \Delta) = 34.4(12.5)\mu\text{eV}$  (Peset&AP).

| INTRODUCTION | pNRQED          | HADRONIC CONTRIBUTIONS |  | CONCLUSIONS |
|--------------|-----------------|------------------------|--|-------------|
| 000000       | 000000000000000 | 00000000               |  |             |

# Large $N_c$ . Including the $\Delta$ particle Error:

$$rac{m_\mu}{\Delta} \sim N_c rac{m_\mu}{\Lambda_{QCD}} o N_c rac{m_\mu}{\Lambda_{QCD}} \sim rac{1}{3}$$



 $c_{3}^{\text{had}} \sim \alpha^{2} \frac{m_{\mu}}{m_{\pi}} \left[ 1 + \# \frac{m_{\pi}}{\Delta} + \cdots \right] + \mathcal{O} \left( \alpha^{2} \frac{m_{\mu}}{\Lambda_{QCD}} \right) = \alpha^{2} \frac{m_{\mu}}{m_{\pi}} \begin{cases} 47.2(23.6) & (\pi), \\ 56.7(20.6) & (\pi + \Delta), \end{cases}$  $\Delta E_{\text{TPE}} = 28.59(\pi) + 5.86(\pi \& \Delta) = 34.4(12.5)\mu\text{eV} \quad (\text{Peset\&AP}) \,.$ 

(Model dependent+DR:  $\Delta E_{TPE} = 33(2)\mu eV$  (Birse-McGovern))

| INTRODUCTION | pNRQED | HADRONIC CONTRIBUTIONS |  | CONCLUSIONS |
|--------------|--------|------------------------|--|-------------|
| 000000       |        | 00000000               |  |             |

$$\Delta E_{ ext{TPE}} \sim m_\mu lpha^5 imes rac{m_\mu^2}{(4\pi F_\pi)^2} imes rac{m_\mu}{m_\pi} \sum_{n=0}^\infty c_n (N_c \sqrt{m_q})^n$$

$$\frac{\#}{\sqrt{m_q}} + ? + ?\sqrt{m_q} + \cdots$$

plus large N<sub>c</sub>

$$\frac{\#}{\sqrt{m_q}} + \left[ \# N_c + ? + \frac{?}{N_c} + \cdots \right] + \left[ \# N_c^2 + ? N_c + ? + \cdots \right] \sqrt{m_q} + \cdots$$

 $\textbf{?} \rightarrow \textbf{Size} \text{ of the counterterm in HBET}$ 

| INTRODUCTION | pNRQED | HADRONIC CONTRIBUTIONS |  | CONCLUSIONS |
|--------------|--------|------------------------|--|-------------|
|              |        | 00000000               |  |             |

## The proton radius in muonic and hydrogen spectroscopy (Lamb shift) Old Experimental measurements



## The proton radius in muonic and hydrogen spectroscopy (Lamb shift)

#### New Experimental measurements



## Hyperfine: Hydrogen and muonic hydrogen

#### Experiment:

 $E_{\rm hyd,HF}^{\rm exp}(1S) = 1420.405751768(1) \,\,{
m MHz}\,,$ 

 $E_{\mu\rho,\rm HF}^{\rm exp}(2S) = 22.8089(51)~{
m meV}$  .

Theory:

$$rac{\delta V^{(2)}(r)}{m_{\mu}^2} 
ightarrow rac{1}{m_{\rho}^2} D_d^{had.} (\mathbf{S}_1 + \mathbf{S}_2)^2 \delta^3(\mathbf{r})$$
 $D_d^{had.} = 2c_1$ 

c<sub>4</sub>, matching coefficient of NRQED.

 $HBET(m_{\pi}/m_{\mu}) \rightarrow NRQED(m_{\mu}\alpha) \rightarrow pNRQED$ 

$$\delta \mathcal{L} = \cdots - \frac{c_4}{m_p^2} N_p^{\dagger} \boldsymbol{\sigma} N_p \mu^{\dagger} \boldsymbol{\sigma} \mu$$

 INTRODUCTION
 pNRQED
 HADRONIC CONTRIBUTIONS
 HYPERFINE
 e-p SCATTERING
 CONCLUSIONS

 0000000
 000000000
 000000000
 00000000
 0000
 000
 000

## Hyperfine: Hydrogen and muonic hydrogen

#### Experiment:

 $E_{\rm hyd, HF}^{\rm exp}(1S) = 1420.405751768(1) \, {
m MHz} \, ,$ 

 $E_{\mu\rho,\rm HF}^{\rm exp}(2S) = 22.8089(51)~{
m meV}$ .

Theory:

$$egin{aligned} &rac{\delta V^{(2)}(r)}{m_{\mu}^2} 
ightarrow rac{1}{m_{
ho}^2} D_d^{had.} (\mathbf{S}_1 + \mathbf{S}_2)^2 \delta^3(\mathbf{r}) \ &D_s^{had.} = 2c_4 \end{aligned}$$

c<sub>4</sub>, matching coefficient of NRQED.

 $HBET(m_{\pi}/m_{\mu}) \rightarrow NRQED(m_{\mu}\alpha) \rightarrow pNRQED$ 

$$\delta \mathcal{L} = \cdots - \frac{c_4}{m_p^2} N_p^{\dagger} \sigma N_p \mu^{\dagger} \sigma \mu$$

| INTRODUCTION | pNRQED | HADRONIC CONTRIBUTIONS | HYPERFINE | CONCLUSIONS |
|--------------|--------|------------------------|-----------|-------------|
|              |        |                        | 00000000  |             |

c<sub>4</sub>, Spin-dependent effects



Figure: Symbolic representation (plus permutations) of the spin-dependent correction.

$$c_{4}^{\rho l} = -\frac{ig^{4}}{3} \int \frac{d^{D}k}{(2\pi)^{D}} \frac{1}{k^{2}} \frac{1}{k^{4} - 4m_{l}^{2}k_{0}^{2}} \left\{ A_{1}(k_{0}, k^{2})(k_{0}^{2} + 2k^{2}) + 3k^{2}\frac{k_{0}}{m_{\rho}}A_{2}(k_{0}, k^{2}) \right\}$$

Drell-Sullivan(67)

$$T^{\mu
u} = i \int d^4x \, e^{iq\cdot x} \langle p, s | T J^\mu(x) J^
u(0) | p, s 
angle \,,$$

which has the following structure ( $\rho = q \cdot p/m$ ):

$$\begin{split} T^{\mu\nu} &= \left( -g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) S_1(\rho,q^2) \\ &+ \frac{1}{m_{\rho}^2} \left( \rho^{\mu} - \frac{m_{\rho}\rho}{q^2} q^{\mu} \right) \left( \rho^{\nu} - \frac{m_{\rho}\rho}{q^2} q^{\nu} \right) S_2(\rho,q^2) \\ &- \frac{i}{m_{\rho}} \epsilon^{\mu\nu\rho\sigma} q_{\rho} s_{\sigma} A_1(\rho,q^2) \\ &- \frac{i}{m_{\rho}^3} \epsilon^{\mu\nu\rho\sigma} q_{\rho} ((m_{\rho}\rho) s_{\sigma} - (q \cdot s) \rho_{\sigma}) A_2(\rho,q^2) \end{split}$$

 $A_1$ ,  $A_2$  ( $\chi$ PT): Ji-Osborne; Peset-Pineda



#### Leading chiral logs to the hyperfine splitting



$$\delta V = 2 \frac{C_4}{m_p^2} \mathbf{S}^2 \delta^{(3)}(\mathbf{r}) \,.$$

INTRODUCTION

HYPERFINE

 $\delta {\it E_{HF}} \sim {\cal O}({\it m_\mu} lpha^5 imes rac{{\it m_\mu^2}}{{\it \Lambda_
u^2}} imes \ln {\it m_\pi})$ 

The leading chiral logs can be determined for Hydrogen and muonic hydrogen hyperfine splitting (AP).

$$\begin{split} \mathcal{C}_{4}^{pl_{i}} &\simeq \left(1 - \frac{\mu_{p}^{2}}{4}\right) \alpha^{2} \ln \frac{m_{l_{i}}^{2}}{\nu^{2}} + \frac{b_{1,F}^{2}}{18} \alpha^{2} \ln \frac{\Delta^{2}}{\nu^{2}} \\ &+ \frac{m_{p}^{2}}{(4\pi F_{0})^{2}} \alpha^{2} \frac{2}{3} \left(\frac{2}{3} + \frac{7}{2\pi^{2}}\right) \pi^{2} g_{A}^{2} \ln \frac{m_{\pi}^{2}}{\nu^{2}} \\ &+ \frac{m_{p}^{2}}{(4\pi F_{0})^{2}} \alpha^{2} \frac{8}{27} \left(\frac{5}{3} - \frac{7}{\pi^{2}}\right) \pi^{2} g_{\pi N\Delta}^{2} \ln \frac{\Delta^{2}}{\nu^{2}} \\ \overset{(N_{c} \to \infty)}{\simeq} \alpha^{2} \ln \frac{m_{l}^{2}}{\nu^{2}} + \frac{m_{p}^{2}}{(4\pi F_{0})^{2}} \alpha^{2} \pi^{2} g_{A}^{2} \ln \frac{m_{\pi}^{2}}{\nu^{2}} \,. \end{split}$$

$$\begin{split} E_{\rm HF} &= 4 \frac{\mathcal{C}_4^{D_{l_i}}}{m_p^2} \frac{1}{\pi} (\mu_{l_i p} \alpha)^3 \sim m_{l_i} \alpha^5 \frac{m_{l_i}^2}{m_p^2} \times (\ln m_q, \ln \Delta, \ln m_{l_i}) \,. \\ c_4^{D_{l_i}} &= c_{4,\rm R}^{D_{l_i}} + c_{4,\rm point-like}^{D_{l_i}} + c_{4,\rm Born}^{D_{l_i}} + c_{4,\rm poi}^{D_{l_i}} + \mathcal{O}(\alpha^3) \,. \end{split}$$

INTRODUCTION

HADRONIC CONTRIBUTI

HYPERFINE

 $\delta {\it E_{HF}} \sim {\cal O}({\it m_\mu} lpha^5 imes rac{{\it m_\mu^2}}{{\it \Lambda_{_Y}^2}} imes \ln {\it m_\pi})$ 

The leading chiral logs can be determined for Hydrogen and muonic hydrogen hyperfine splitting (AP).

$$\begin{split} \mathcal{C}_{4}^{pl_{i}} &\simeq \left(1-\frac{\mu_{p}^{2}}{4}\right)\alpha^{2}\ln\frac{m_{l_{i}}^{2}}{\nu^{2}}+\frac{b_{1,F}^{2}}{18}\alpha^{2}\ln\frac{\Delta^{2}}{\nu^{2}}\\ &+\frac{m_{p}^{2}}{(4\pi F_{0})^{2}}\alpha^{2}\frac{2}{3}\left(\frac{2}{3}+\frac{7}{2\pi^{2}}\right)\pi^{2}g_{A}^{2}\ln\frac{m_{\pi}^{2}}{\nu^{2}}\\ &+\frac{m_{p}^{2}}{(4\pi F_{0})^{2}}\alpha^{2}\frac{8}{27}\left(\frac{5}{3}-\frac{7}{\pi^{2}}\right)\pi^{2}g_{\pi N\Delta}^{2}\ln\frac{\Delta^{2}}{\nu^{2}}\\ &\stackrel{(N_{c}\rightarrow\infty)}{\simeq}\alpha^{2}\ln\frac{m_{l}^{2}}{\nu^{2}}+\frac{m_{p}^{2}}{(4\pi F_{0})^{2}}\alpha^{2}\pi^{2}g_{A}^{2}\ln\frac{m_{\pi}^{2}}{\nu^{2}}\,. \end{split}$$

$$\begin{split} E_{\rm HF} &= 4 \frac{\mathcal{C}_4^{\mathcal{D}_l^i}}{m_\rho^2} \frac{1}{\pi} (\mu_{l_i \rho} \alpha)^3 \sim m_{l_i} \alpha^5 \frac{m_{l_i}^2}{m_\rho^2} \times (\ln m_q, \ln \Delta, \ln m_{l_i}) \,. \\ \mathcal{C}_4^{\mathcal{D}_l^i} &= \mathcal{C}_{4,\rm R}^{\mathcal{D}_l^i} + \mathcal{C}_{4,\rm point-like}^{\mathcal{D}_l^i} + \mathcal{C}_{4,\rm Born}^{\mathcal{D}_l} + \mathcal{C}_{4,\rm point}^{\mathcal{D}_l^i} + \mathcal{O}(\alpha^3) \,. \end{split}$$

Fixing  $c_4^{pe}$ . Hydrogen

Hydrogen. By fixing the scale  $\nu = m_{\rho}$  we obtain the following number for the total sum in the SU(2) case:

 $E_{
m HF, logarithms}(m_{
ho}) = -0.031 
m MHz$ ,

which accounts for approximately 2/3 of the difference between theory (pure QED) and experiment.

 $E_{\rm HF}(QED) - E_{\rm HF}(exp) = -0.046 \text{ MHz}.$ 

What is left gives the expected size of the counterterm. Experimentally what we have is  $c_{4,NR}^{pe} = -48.69(3)\alpha^2$  and  $c_{4,R}^{pe}(m_{\rho}) \simeq c_{4,R}^p(m_{\rho}) \simeq -16\alpha^2$ .

$$\mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\mu} = \mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}e} + [\mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\mu} - \mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}e}](\chi PT) + \mathcal{O}(\alpha).$$

$$C_{4,\text{point-like}}^{\rho\mu} - C_{4,\text{point-like}}^{\rhoe} = \left(1 - \frac{\kappa_{\rho}^2}{4}\right) \ln \frac{m_{\mu}^2}{m_e^2} + \frac{m_{\mu}^2}{m_{\rho}^2} \left(1 + \frac{\kappa_{\rho}}{2} (1 - \frac{\kappa_{\rho}}{6})\right) \ln \frac{m_{\mu}^2}{\nu_{\text{pion}}^2}$$
$$\simeq 2.09 - 0.09 = 2.00(9),$$

$$c_{4,\mathrm{pol}}^{
ho\mu} - c_{4,\mathrm{pol}}^{
ho
ho} ~=~ egin{cases} 0.17(9) & (\pi), \ 0.25(10) & (\pi\&\Delta)\,, \end{cases}$$

DR (Carlson et al)  $\sim -0.3(1.4)$ . Relativistic $\chi$ PT 0.08(27)/0.11(55)(Hagelstein et al)

$$egin{split} c^{
ho\mu}_{4, ext{Bom}} - c^{
hoe}_{4, ext{Bom}} &= -\int_0^\infty dp rac{1}{3p} G^{(1)}_M(-p^2) \ & imes \left[ \left( rac{p^2 \kappa_
ho}{m_\mu^2} + rac{32 m_\mu^4 - 8 m_\mu^2 p^2 (\kappa_
ho + 2) - 2 p^4 \kappa_
ho}{m_\mu^2 p \left( \sqrt{4 m_\mu^2 + p^2} + p 
ight)} + 8 
ight) - (m_\mu o m_e) 
ight] \,, \end{split}$$

 $G_M^{(1)}(\chi PT)$ : Gasser et al.; Bernard et al.

$$c_{4,\text{Born}}^{\rho\mu} - c_{4,\text{Born}}^{\rho e} = \begin{cases} 0 + 1.11(55) & (\pi), \\ 0 + 1.42(53) & (\pi\&\Delta). \end{cases}$$

$$\mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\mu} = \mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\boldsymbol{e}} + [\mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\mu} - \mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\boldsymbol{e}}](\chi \boldsymbol{PT}) + \mathcal{O}(\alpha) \,.$$

$$\begin{array}{ll} c_{4,\mathrm{point-like}}^{\rho\mu} - c_{4,\mathrm{point-like}}^{\rho e} & = & \left(1 - \frac{\kappa_{\rho}^2}{4}\right) \ln \frac{m_{\mu}^2}{m_{e}^2} + \frac{m_{\mu}^2}{m_{\rho}^2} \left(1 + \frac{\kappa_{\rho}}{2} (1 - \frac{\kappa_{\rho}}{6})\right) \ln \frac{m_{\mu}^2}{\nu_{\mathrm{pion}}^2} \\ & \simeq & 2.09 - 0.09 = 2.00(9) \,, \end{array}$$

$$c_{4,\mathrm{pol}}^{
ho\mu} - c_{4,\mathrm{pol}}^{
ho
ho} = egin{cases} 0.17(9) & (\pi), \ 0.25(10) & (\pi\&\Delta)\,, \end{cases}$$

DR (Carlson et al)  $\sim -0.3(1.4)$ . Relativistic $\chi$ PT 0.08(27)/0.11(55)(Hagelstein et al)

$$egin{split} c^{
ho\mu}_{4, ext{Bom}} - c^{
hoe}_{4, ext{Bom}} &= -\int_0^\infty dp rac{1}{3p} \, G^{(1)}_M(-p^2) \ & imes \left[ \left( rac{p^2 \kappa_
ho}{m_\mu^2} + rac{32 m_\mu^4 - 8 m_\mu^2 p^2 (\kappa_
ho + 2) - 2 p^4 \kappa_
ho}{m_\mu^2 p \left( \sqrt{4 m_\mu^2 + p^2} + p 
ight)} + 8 
ight) - (m_\mu o m_e) 
ight] \,, \end{split}$$

 $G_M^{(1)}(\chi PT)$ : Gasser et al.; Bernard et al.

$$c_{4,\text{Born}}^{\rho\mu} - c_{4,\text{Born}}^{\rho e} = \begin{cases} 0 + 1.11(55) & (\pi), \\ 0 + 1.42(53) & (\pi\&\Delta). \end{cases}$$

$$\mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\mu} = \mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\boldsymbol{e}} + [\mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\mu} - \mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\boldsymbol{e}}](\chi \boldsymbol{PT}) + \mathcal{O}(\alpha) \,.$$

$$\begin{aligned} c_{4,\text{point-like}}^{\rho\mu} - c_{4,\text{point-like}}^{\rhoe} &= \left(1 - \frac{\kappa_{\rho}^2}{4}\right) \ln \frac{m_{\mu}^2}{m_{e}^2} + \frac{m_{\mu}^2}{m_{\rho}^2} \left(1 + \frac{\kappa_{\rho}}{2} (1 - \frac{\kappa_{\rho}}{6})\right) \ln \frac{m_{\mu}^2}{\nu_{\text{point}}^2} \\ &\simeq 2.09 - 0.09 = 2.00(9) \,, \end{aligned}$$

$$c^{
ho\mu}_{4,{
m pol}}-c^{
hoe}_{4,{
m pol}} = egin{cases} 0.17(9) & (\pi), \ 0.25(10) & (\pi\&\Delta)\,, \end{cases}$$

DR (Carlson et al)  $\sim -0.3(1.4).$  Relativistic $\chi PT$  0.08(27)/0.11(55)(Hagelstein et al)

$$egin{split} c^{
ho\mu}_{4, ext{Born}} - c^{
hoe}_{4, ext{Born}} &= -\int_0^\infty dp rac{1}{3p} G^{(1)}_M(-p^2) \ imes & \left[ \left( rac{p^2 \kappa_p}{m_\mu^2} + rac{32 m_\mu^4 - 8 m_\mu^2 p^2 (\kappa_p + 2) - 2 p^4 \kappa_p}{m_\mu^2 p \left( \sqrt{4 m_\mu^2 + p^2} + p 
ight)} + 8 
ight) - (m_\mu o m_e) 
ight] \,, \end{split}$$

 $G_M^{(1)}(\chi PT)$ : Gasser et al.; Bernard et al.

$$c_{4,\text{Born}}^{\rho\mu} - c_{4,\text{Born}}^{\rho e} = \begin{cases} 0 + 1.11(55) & (\pi), \\ 0 + 1.42(53) & (\pi \& \Delta). \end{cases}$$

$$\mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\mu} = \mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\boldsymbol{e}} + [\mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\mu} - \mathbf{C}_{4,\mathrm{TPE}}^{\boldsymbol{\rho}\boldsymbol{e}}](\chi \boldsymbol{PT}) + \mathcal{O}(\alpha) \,.$$

$$\begin{aligned} c^{\rho\mu}_{4,\text{point-like}} - c^{\rho e}_{4,\text{point-like}} &= \left(1 - \frac{\kappa_{\rho}^2}{4}\right) \ln \frac{m_{\mu}^2}{m_{e}^2} + \frac{m_{\mu}^2}{m_{\rho}^2} \left(1 + \frac{\kappa_{\rho}}{2} (1 - \frac{\kappa_{\rho}}{6})\right) \ln \frac{m_{\mu}^2}{\nu_{\text{point}}^2} \\ &\simeq 2.09 - 0.09 = 2.00(9) \,, \end{aligned}$$

$$c^{
ho\mu}_{4,{
m pol}} - c^{
hoe}_{4,{
m pol}} ~=~ egin{cases} 0.17(9) & (\pi), \ 0.25(10) & (\pi\&\Delta)\,, \end{cases}$$

DR (Carlson et al)  $\sim -0.3(1.4).$  Relativistic $\chi PT$  0.08(27)/0.11(55)(Hagelstein et al)

$$egin{split} c^{
ho\mu}_{4, ext{Bom}} - c^{
hoe}_{4, ext{Bom}} &= -\int_0^\infty dp rac{1}{3p} G^{(1)}_M(-p^2) \ imes & \left[ \left( rac{p^2 \kappa_
ho}{m_\mu^2} + rac{32 m_\mu^4 - 8 m_\mu^2 p^2 (\kappa_
ho + 2) - 2 p^4 \kappa_
ho}{m_\mu^2 p \left( \sqrt{4 m_\mu^2 + p^2} + p 
ight)} + 8 
ight) - (m_\mu o m_e) 
ight] \,, \end{split}$$

 $G_M^{(1)}(\chi \text{PT})$ : Gasser et al.; Bernard et al.

$$c_{4,\text{Born}}^{\rho\mu} - c_{4,\text{Born}}^{\rho e} = \begin{cases} 0 + 1.11(55) & (\pi), \\ 0 + 1.42(53) & (\pi \& \Delta). \end{cases}$$

| INTRODUCTION | pNRQED | HADRONIC CONTRIBUTIONS | HYPERFINE | CONCLUSIONS |
|--------------|--------|------------------------|-----------|-------------|
|              |        |                        | 000000000 |             |

#### Overall, combining the three contributions, we obtain

 $[c_{4,\text{TPE}}^{
ho\mu} - c_{4,\text{TPE}}^{
hoe}](\chi PT) = 3.68(72)$ 



Figure: Two-photon exchange contribution to the hyperfine splitting of the 2S muonic hydrogen. Peset-Pineda

Variation of this idea has later been applied using DR (Tomalak). Error  $\sim 1/2$ .

| INTRODUCTION | pNRQED | HADRONIC CONTRIBUTIONS | HYPERFINE | CONCLUSIONS |
|--------------|--------|------------------------|-----------|-------------|
| 000000       |        |                        | 00000000  |             |

| $\Delta$ , (ppm)                    | $\Delta_{\rm Z}$ | $\Delta^{\rm p}_{\rm R}$ | $\Delta_Z+\Delta_R^p$ | $\Delta_0^{\mathrm{pol}}$ | $\Delta_{\mathrm{HFS}}$ |
|-------------------------------------|------------------|--------------------------|-----------------------|---------------------------|-------------------------|
| this work, $\mu H r_E, r_M^W$       | -7415(84)        | 844(7)                   | -6571(87)             | 364(89)                   | -6207(127)              |
| this work, electron $r_E$ , $r_M^W$ | -7487(95)        | 844(7)                   | -6643(98)             | 364(89)                   | -6279(135)              |
| this work, $\mu H r_E, r_M^e$       | -7333(48)        | 846(6)                   | -6486(49)             | 364(89)                   | -6122(105)              |
| this work, electron $r_E$ , $r_M^e$ | -7406(56)        | 847(6)                   | -6559(57)             | 364(89)                   | -6195(109)              |
| Hagelstein et al. [59]              |                  |                          |                       | $-61^{+70}_{-52}$         |                         |
| Peset et al. [29]                   |                  |                          |                       |                           | -6247(109)              |
| Carlson et al. [28, 39]             | -7587            | 835                      | -6752(180)            | 351(114)                  | -6401(213)              |
| Martynenko et al. [38]              | -7180            |                          | -6656                 | 410(80)                   | -6246(342)              |
| Pachucki [7]                        | -8024            |                          | -6358                 | 0(658)                    | -6358(658)              |

Figure: From Tomalak, 2017

## The proton radius in e - p scattering (Future $\mu - p$ scattering)

#### Definition??

- very sensitive to low q<sup>2</sup> data: extrapolation from |q| ≥ 100 MeV to |q| = 0
- dependence on the fitting functions: normalization factors, full data set ...
- ► Bonn group with dispersion relations:  $r_{p} = 0.84^{+0.01}_{-0.01}$  fm.

 $Q^2 \rightarrow 0$  INVOLVES COULOMB RESUMMATION  $\rightarrow$  ATOMIC PHYSICS  $|\mathbf{q}| \sim m_{\mu} \alpha \sim m_{e} \sim 0.5$  MeV (muonic hydrogen)  $|\mathbf{q}| \sim m_{e} \alpha \sim 5.10^{-3}$  MeV (hydrogen) New scales:  $m_{\text{lenton}} \alpha$ ,  $m_{\text{lenton}} \alpha^2$ 

Nonrelativistic proton and lepton

$$\begin{split} & \left(\frac{d\sigma}{d\Omega}\right)_{\text{measured}} = Z^2 \left(\frac{d\sigma_{1\gamma}}{d\Omega}\right)_{\text{point-like}} + \frac{d\sigma_{\text{Mott}}}{d\Omega} \left[\delta_{\text{soft}}^{(\rho)} + Z^2 \left(\delta_{\text{soft}}^{(\mu)} + \delta_{\text{VP}}\right) + Z^3 \left(\delta_{\text{soft}}^{(\rho\mu)} + \delta_{\text{TPE}}\right) \\ & + \mathcal{O}(\alpha^2) + \mathcal{O}(\tau^2) \right]. \end{split}$$

$$\begin{split} \delta_{\text{soft}}^{(p)} &= \tau_p \left[ \beta^2 \left( c_F^{(p)\,2} - Z^2 \right) - Z \left( c_D^{(p)\overline{\text{MS}}}(\nu) - Z \right) + \frac{4}{3} \frac{Z^4 \alpha}{\pi} \left( 2 \ln \frac{2\Delta E}{\nu} - \frac{5}{3} \right) \right], \\ \delta_{\text{VP}} &= 32 \tau_\mu \left[ d_2^{(\mu)} + \frac{m_\mu^2}{M^2} d_2 + \frac{m_\mu^2}{m_\tau^2} d_2^{(\tau)} \right] \\ \delta_{\text{TPE}}^{\text{point-like}} &= \delta_{\text{pot}} + \delta_{\text{soft}} + \delta_{\text{hard}}^{\text{point-like}}. \\ d_s(\nu) &= -\frac{Z^2 \alpha^2}{m_{l_i}^2 - M^2} \left[ m_{l_i}^2 \left( \ln \frac{M^2}{\nu^2} + \frac{1}{3} \right) - M^2 \left( \ln \frac{m_{l_i}^2}{\nu^2} + \frac{1}{3} \right) \right], \\ \delta_{\text{hard}}^{\text{point-like}} &\longrightarrow \delta_{\text{hard}} = -\frac{Q^2}{2Mm_\mu} \left[ \frac{d_s(\nu)}{\pi \alpha} - \frac{m_\mu}{M} \frac{c_3^{\text{had}}}{\pi \alpha} \right]. \end{split}$$

| INTRODUCTION | pNRQED          | HADRONIC CONTRIBUTIONS |           | e-p SCATTERING | CONCLUSIONS |
|--------------|-----------------|------------------------|-----------|----------------|-------------|
| 000000       | 000000000000000 | 0000000                | 000000000 | 0000           | 00          |

## $r_{p}$ determinations using electron-proton elastic scattering data





The proton radius in *ep* scattering from  $\chi$ PT Hessels, Horbatsch, AP

$$G_E(Q^2) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} Q^{2n} \langle r^{2n} \rangle$$

• Extrapolation from  $|\mathbf{q}| \sim 100$  MeV to  $|\mathbf{q}| = 0$ 

dependence on the fitting functions: normalization factors, full data set ...
 Higher moments diverge in the chiral limit

$$\langle r^{2k} \rangle \sim m_{\pi}^{2-2k}$$

Extrapolation controlled by  $\chi$ PT (at low  $Q^2$ ):  $r_p \sim 0.855$ . Bigger values for the moments produce larger values of  $r_p$ .



Effective Field Theories provide with a model independent, efficient and systematic (Power counting) approach to the dynamics of NR systems and a unified framework to determine the nonperturbative effects.

Rigorous connection between Quantum Field Theories (Wilson coefficients) and a NR Quantum-mechanical formulation of the NR systems (potentials). For instance. The proton radius is a Wilson coefficient of the effective theory. In general it is an scheme/scale dependent object.

The spin-independent TPE energy shift (and the associated error) is (and can only be) computed in a model independent way with  $\chi$ PT. Overall number consistent with determinations from a combined use of dispersion relations and models, but individual contributions are quite different. Unlike dispersion relations, no assumption on the high energy behavior.

 $\chi {\rm PT}$  predicts the chiral logs of the hyperfine splitting and the difference between hydrogen and muonic hydrogen.

Analytic understanding of the QCD dynamics:  $m_q$  and  $N_c$  dependence.

$$\Delta E_L^{\text{th}} = \left[ 206.0243(30) - 5.2270(7) \frac{r_p^2}{\text{fm}^2} + 0.0455(125) \right] \text{ meV} \,.$$

Effective Field Theories provide with a model independent, efficient and systematic (Power counting) approach to the dynamics of NR systems and a unified framework to determine the nonperturbative effects.

Rigorous connection between Quantum Field Theories (Wilson coefficients) and a NR Quantum-mechanical formulation of the NR systems (potentials). For instance. The proton radius is a Wilson coefficient of the effective theory. In general it is an scheme/scale dependent object.

The spin-independent TPE energy shift (and the associated error) is (and can only be) computed in a model independent way with  $\chi$ PT. Overall number consistent with determinations from a combined use of dispersion relations and models, but individual contributions are quite different. Unlike dispersion relations, no assumption on the high energy behavior.

 $\chi {\rm PT}$  predicts the chiral logs of the hyperfine splitting and the difference between hydrogen and muonic hydrogen.

Analytic understanding of the QCD dynamics:  $m_q$  and  $N_c$  dependence.

$$\Delta E_L^{\text{th}} = \left[ 206.0243(30) - 5.2270(7) \frac{r_p^2}{\text{fm}^2} + 0.0455(125) \right] \text{ meV} \,.$$

Effective Field Theories provide with a model independent, efficient and systematic (Power counting) approach to the dynamics of NR systems and a unified framework to determine the nonperturbative effects.

Rigorous connection between Quantum Field Theories (Wilson coefficients) and a NR Quantum-mechanical formulation of the NR systems (potentials). For instance. The proton radius is a Wilson coefficient of the effective theory. In general it is an scheme/scale dependent object.

The spin-independent TPE energy shift (and the associated error) is (and can only be) computed in a model independent way with  $\chi$ PT. Overall number consistent with determinations from a combined use of dispersion relations and models, but individual contributions are quite different. Unlike dispersion relations, no assumption on the high energy behavior.

 $\chi {\rm PT}$  predicts the chiral logs of the hyperfine splitting and the difference between hydrogen and muonic hydrogen.

Analytic understanding of the QCD dynamics:  $m_q$  and  $N_c$  dependence.

$$\Delta E_L^{\rm th} = \left[ 206.0243(30) - 5.2270(7) \frac{r_p^2}{{\rm fm}^2} + 0.0455(125) \right] \, {\rm meV} \, .$$

Effective Field Theories provide with a model independent, efficient and systematic (Power counting) approach to the dynamics of NR systems and a unified framework to determine the nonperturbative effects.

Rigorous connection between Quantum Field Theories (Wilson coefficients) and a NR Quantum-mechanical formulation of the NR systems (potentials). For instance. The proton radius is a Wilson coefficient of the effective theory. In general it is an scheme/scale dependent object.

The spin-independent TPE energy shift (and the associated error) is (and can only be) computed in a model independent way with  $\chi$ PT. Overall number consistent with determinations from a combined use of dispersion relations and models, but individual contributions are quite different.

Unlike dispersion relations, no assumption on the high energy behavior.

 $\chi \rm PT$  predicts the chiral logs of the hyperfine splitting and the difference between hydrogen and muonic hydrogen.

Analytic understanding of the QCD dynamics:  $m_q$  and  $N_c$  dependence.

$$\Delta E_L^{\rm th} = \left[ 206.0243(30) - 5.2270(7) \frac{r_p^2}{{\rm fm}^2} + 0.0455(125) \right] \, {\rm meV} \, .$$

Effective Field Theories provide with a model independent, efficient and systematic (Power counting) approach to the dynamics of NR systems and a unified framework to determine the nonperturbative effects.

Rigorous connection between Quantum Field Theories (Wilson coefficients) and a NR Quantum-mechanical formulation of the NR systems (potentials). For instance. The proton radius is a Wilson coefficient of the effective theory. In general it is an scheme/scale dependent object.

The spin-independent TPE energy shift (and the associated error) is (and can only be) computed in a model independent way with  $\chi$ PT. Overall number consistent with determinations from a combined use of dispersion relations and models, but individual contributions are quite different. Unlike dispersion relations, no assumption on the high energy behavior.

 $\chi \rm PT$  predicts the chiral logs of the hyperfine splitting and the difference between hydrogen and muonic hydrogen.

Analytic understanding of the QCD dynamics:  $m_q$  and  $N_c$  dependence.

$$\Delta E_L^{\text{th}} = \left[ 206.0243(30) - 5.2270(7) \frac{r_p^2}{\text{fm}^2} + 0.0455(125) \right] \text{ meV} \,.$$

Effective Field Theories provide with a model independent, efficient and systematic (Power counting) approach to the dynamics of NR systems and a unified framework to determine the nonperturbative effects.

Rigorous connection between Quantum Field Theories (Wilson coefficients) and a NR Quantum-mechanical formulation of the NR systems (potentials). For instance. The proton radius is a Wilson coefficient of the effective theory. In general it is an scheme/scale dependent object.

The spin-independent TPE energy shift (and the associated error) is (and can only be) computed in a model independent way with  $\chi$ PT. Overall number consistent with determinations from a combined use of dispersion relations and models, but individual contributions are quite different. Unlike dispersion relations, no assumption on the high energy behavior.

 $\chi {\rm PT}$  predicts the chiral logs of the hyperfine splitting and the difference between hydrogen and muonic hydrogen.

Analytic understanding of the QCD dynamics:  $m_q$  and  $N_c$  dependence.

$$\Delta E_L^{\rm th} = \left[ 206.0243(30) - 5.2270(7) \frac{r_p^2}{\rm fm^2} + 0.0455(125) \right] \, \rm meV \,.$$
## CONCLUSIONS

Effective Field Theories provide with a model independent, efficient and systematic (Power counting) approach to the dynamics of NR systems and a unified framework to determine the nonperturbative effects.

Rigorous connection between Quantum Field Theories (Wilson coefficients) and a NR Quantum-mechanical formulation of the NR systems (potentials). For instance. The proton radius is a Wilson coefficient of the effective theory. In general it is an scheme/scale dependent object.

The spin-independent TPE energy shift (and the associated error) is (and can only be) computed in a model independent way with  $\chi$ PT. Overall number consistent with determinations from a combined use of dispersion relations and models, but individual contributions are quite different. Unlike dispersion relations, no assumption on the high energy behavior.

 $\chi {\rm PT}$  predicts the chiral logs of the hyperfine splitting and the difference between hydrogen and muonic hydrogen.

Analytic understanding of the QCD dynamics:  $m_q$  and  $N_c$  dependence.

$$\Delta E_L^{\rm th} = \left[ 206.0243(30) - 5.2270(7) \frac{r_p^2}{\rm fm^2} + 0.0455(125) \right] \, \mathrm{meV} \,.$$

 $E_{\rm HF}(1S) = 182.623(27) \,\mathrm{meV}, \qquad E_{\rm HF}(2S) = 22.8123(33) \,\mathrm{meV}$ 

## CONCLUSIONS

Effective Field Theories provide with a model independent, efficient and systematic (Power counting) approach to the dynamics of NR systems and a unified framework to determine the nonperturbative effects.

Rigorous connection between Quantum Field Theories (Wilson coefficients) and a NR Quantum-mechanical formulation of the NR systems (potentials). For instance. The proton radius is a Wilson coefficient of the effective theory. In general it is an scheme/scale dependent object.

The spin-independent TPE energy shift (and the associated error) is (and can only be) computed in a model independent way with  $\chi$ PT. Overall number consistent with determinations from a combined use of dispersion relations and models, but individual contributions are quite different. Unlike dispersion relations, no assumption on the high energy behavior.

 $\chi {\rm PT}$  predicts the chiral logs of the hyperfine splitting and the difference between hydrogen and muonic hydrogen.

Analytic understanding of the QCD dynamics:  $m_q$  and  $N_c$  dependence.

$$\Delta E_L^{\text{th}} = \left[ 206.0243(30) - 5.2270(7) \frac{r_p^2}{\text{fm}^2} + 0.0455(125) \right] \text{ meV} \,.$$

 $E_{\rm HF}(1S) = 182.623(27) \,{
m meV}, \qquad E_{\rm HF}(2S) = 22.8123(33) \,{
m meV}$ 

- $r_p$  from muonic hydrogen. The most precise (TPE stopping factor).
- r<sub>p</sub> from hydrogen → Most new measurements agree with muonic hydrogen. Only Paris remain ?! (1S-3S discrepancy with MPQ collaboration?)

 r<sub>p</sub> from e<sup>-</sup>-p scattering not precise enough: Problems with extrapolations
 Better low energy (and add chiral constraints)
 Once this is taken into account agreement with proton radius value from muonic hydrogen within errors

#### $r_p$ from muonic hydrogen. The most precise (TPE stopping factor).

r<sub>p</sub> from hydrogen → Most new measurements agree with muonic hydrogen. Only Paris remain ?! (1S-3S discrepancy with MPQ collaboration?)

 r<sub>p</sub> from e<sup>-</sup>-p scattering not precise enough: Problems with extrapolations
 Better low energy (and add chiral constraints)
 Once this is taken into account agreement with proton radius value from muonic hydrogen within errors

- ▶  $r_p$  from muonic hydrogen. The most precise (TPE stopping factor).
- r<sub>p</sub> from hydrogen → Most new measurements agree with muonic hydrogen. Only Paris remain ?! (1S-3S discrepancy with MPQ collaboration?)

 r<sub>p</sub> from e<sup>-</sup>-p scattering not precise enough: Problems with extrapolations
 Better low energy (and add chiral constraints)
 Once this is taken into account agreement with proton radius value from muonic hydrogen within errors

- $r_p$  from muonic hydrogen. The most precise (TPE stopping factor).
- r<sub>p</sub> from hydrogen → Most new measurements agree with muonic hydrogen. Only Paris remain ?! (1S-3S discrepancy with MPQ collaboration?)

 r<sub>p</sub> from e<sup>-</sup>-p scattering not precise enough: Problems with extrapolations
 Better low energy (and add chiral constraints)
 Once this is taken into account agreement with proton radius value from muonic hydrogen within errors