

Strange quarks in pions – and up-down quarks A view from the Nambu-Jona-Lasinio model

Fabio L. Braghin

Instituto de Física - Federal University of Goiás, Goiânia, Brazil

27th September 2021 Perceiving the Emergence of Hadron Mass through AMBER@ CERN- VI

OUTLINE

- Motivations

* global properties (eg. Masses) usually are well described by NJL model/CQM = to assess strangeness (sea quarks) component of the pion mass

- NJL model and related issues: Quark-antiquark polarization and flavor dependent coupling constants Rather for global properties

- Results and different ways of weighting strange-quark/antiquark contribution for the light u,d quark and pion masses

- Final remarks

F.L.B. arXiv:2109.02203 [hep-ph]]. Phys. Rev. D 103 (2021) no.9, 094028

Pions/kaons as (quasi) Goldstone boson Probed in AMBER

How (in a broad way) do fundamental degrees of freedom (flavor)

 survive and show up in hadron and nuclear observables?

NJL has an appeal to make possible an analytical treatment With clear identification of relation between degrees of freedom Many groups in the 1980-2010's Dynamical approach should help with link to QCD $NJL \sim GCM \sim SDE (RL)$

 Constituent Quark Model (CQM) And extensions

Weinberg Large Nc CQM: F.L.B. Eur.Phys.J.A 52 (2016) 5, 13, arXiv:1601.04916

Quark masses (from the HIggs) are much smaller than needed to describe hadron masses

S**ea quarks in the NJL**

Are encoded in the quark-condensates

Difficult to generate asymmetry d-anti-d

 $\langle \bar{q}_R q_L + \bar{q}_L q_R \rangle \simeq -(250 MeV)^3$

From constituent quarks M^* u ~ 360 MeV $M*d \sim 370$ MeV $M₅$ ~ 510 MeV

Most of Hadrons Spectra support or suggest the idea For global properties (pion may be an exception)

> It can receive corrections: **Diquarks** Virtual n-quarks states from Fock space etc

Constituent quarks: two main possible contributions Usually considered separatedly Maybe "competing" contributions

Calculation based on Global Color Model For example byC.D. Roberts, R.T. Cahill, J. Praschifka, P.C. Tandy, Flavor (i,j = $0,..N_f^2$) dependent couplings $\mathcal{L}_{NJL} = G_{ij}(\bar{\psi}\lambda_i\psi)(\bar{\psi}\lambda_j\psi) + [G_{ij} + \bar{G}_{ij}](\bar{\psi}\lambda_i i\gamma_5 \psi)(\bar{\psi}\lambda_j i\gamma_5 \psi)$

Flavor independent **Contribution**

 $+$ Flavor dependent contribution

$$
G_{ij} = G_{ji}
$$
, $G_{22} = G_{11}$, $G_{55} = G_{44}$, $G_{77} = G_{66}$.
CP
+
U(1) invariance

Point of Reference

Mechanism for masses considered here Basically: Dynamical chiral symmetry breaking

Although it may involve other mechanism **Since** - coupling constants are assumed to be large - Gluon with effective masses

Solution for scalar condensat GAP / Schwinger Dyson eqs.

 $\frac{\partial S_{eff}}{\partial \phi_{q}}=0.$

Chiral scalar condensate = it corrects quark mass = DChSB But it easily takes into account $\tilde{M}^* = m + \langle S \rangle (P_R \tilde{U} + P_L \tilde{U}^{\dagger})$ Other effects such as trace anomaly

Vacuum becomes infinitely degenerated

Scalar field is eliminated by chiral rotation, With resulting non linear pion dynamics

Scalar mesons: Unsolved problem not considered - exotic states?

Mixing: change of basis quark mass eigenstate X meson mass eigenstate

$$
1 \Big| G_{ij} (\bar{\psi} \lambda_i \psi)(\bar{\psi} \lambda_j \psi) = G_{f_1 f_2} (\bar{\psi} \psi)_{f_1} (\bar{\psi} \psi)_{f_2}
$$

 $\rightarrow G_{08}$
 $\rightarrow G_{38}$
 $\pi^0 \leftrightarrow \eta \leftrightarrow \eta'$

 $G_{ij} = G_{ij}(M_u^*, M_d^*, M_s^*).$

 $G_{f_1f_2} \rightarrow M_u^*(M_d, M_s)$

 $\rightarrow M_d^*(M_u, M_s)$

 $\rightarrow M_s^*(M_u, M_d)$

 $M_f^* - m_f = G_{ff} Tr (S_{0,f}(0)),$

2

 $G_{i\neq j} \rightarrow G_{03}$ Mixing between

Coupling constant that measure The strangeness-asymmetry

 $(M2)$ $x_s G_{88} = 10 \ GeV^{-2}$, $(M3)$ $x_s G_{88} = G_{88} GeV^{-2}$

This is not Instanton induced mechanism

It is quark-antiquark-polarization

Gap or SDE equations

$$
1 - 2G_{ij}I_{f_1f_2}^{ij}(P_0^2 = -M_{PS}^2, \vec{P}^2 = 0) = 0,
$$

Bethe-Salpeter at the Born level

For Numerical estimates

These effective propagators include a Quark-gluon (running) coupling constant value (GAP eq. for DChSB)

$$
D_2(k) = g^2 R_T(k) = \frac{8\pi^2}{\omega^4} D e^{-k^2/\omega^2} + \frac{8\pi^2 \gamma_m E(k^2)}{\ln \left[\tau + (1 + k^2/\Lambda_{QCD}^2)^2\right]},
$$

Transversal Propagator from Tandy- Maris / Chang-Xin

Fitting from SDE at RL level

where $\gamma_m = 12/(33 - 2N_f)$, $N_f = 4$, $\Lambda_{QCD} = 0.234 \text{GeV}$, $m_t = 0.5 GeV, D = 0.55^3/\omega$ (GeV²) and $\omega = 0.5 GeV$.

$$
\tau = e^2 - 1, \ E(k^2) = [1 - exp(-k^2/[4m_t^2])/k^2,
$$

$$
D_{\alpha=5,6}(k) = g^2 R_{L,\alpha}(k) = \frac{K_F}{(k^2 + M_\alpha^2)^2},
$$

Cornwall effective propagator - confining

 $(M_5 = 0.8 \text{ GeV})$ $K_F = (0.5\sqrt{2}\pi)^2/0.6 \,\text{GeV}^2,$ $M_6 = M_6(k^2) = \frac{0.5}{1 + k^2/\omega_c^2} \text{GeV}$ for $\omega_6 = 1 \text{GeV}$.

Fitting of the parameters

 $\sqrt{2}$

$$
G_0 = 10 \mathrm{GeV}^{-2}
$$

Point of Reference

Coupling constant Guu Up quark gap equation

(M2) $x_s G_{88} = 10 \ GeV^{-2}$,
(M3) $x_s G_{88} = G_{88} \ GeV^{-2}$,

Chiral limit

Up dressed/constituent quark mass

Neutral-charged pion (strong) mass difference

 $(M2)$ $x_s G_{88} = 10 \ GeV^{-2}$, $(M3)$ $x_s G_{88} = G_{88} GeV^{-2},$

Gasser-Leutwyler/Donogue: ~ 0.1 MeV

Role of the strangeness asymmetry G88

$$
\Delta_s^{2,3} = T_{ff}(M3) - T_{ff}(M2),
$$

$$
(M2) \t xsG88 = 10 GeV-2,
$$

$$
(M3) \t xsG88 = G88 GeV-2,
$$

Other observables

Quark condensates with too large values Because of the large coupling constant:

For low coupling constants: further difficulties with numerical convergence

Pion decay constant It depends very strongly on Ms* (probably this is a too much large variation – model-dependence)

Sigma terms

Renormalization of coupling constant involves different strange quark mass dependencies

For some set of parameters: positive or negative s-sigma terms (u,d quarks and pion) [Lattice calculations (Bali et al, 2012) indicated it should be small- large uncertanties

pi0-eta mixing From Strangeness content of the pion?To estimate mesons mixings: use of auxiliary field method

Chi-squared For 9 observables (2 fitting observables) - Dependence of pion observables on the strange quark (effective) mass \rightarrow to assess strange sea quarks contribution for the pion observables (mass, coupling constants and decay constant)

- eta and etaprime: they mix with pi0 \rightarrow need of higher precision processes with pi0 exchange

Quark-antiquark polarization offers another mechanism for mesons mixings

- By using the same method: to assess up-quark contribution to K0 and down-quark contribution for K+-

- In this simpler level of calculation: (strange) quark-antiquark contents are the same

HOW TO ASSESS each component hadron/pion masses:

- momentum dependencies
- spatial distributions?

- are there pion interactions rather sensitive to strange quarks not to up/down quarks? (eg. pi0-eta-eta' mixing)

PLANNED OR ON-GOING

- parton strangeness content in the pion
- light mesons mixings
- etc

Thank you for your attention!

$$
\begin{array}{rcl}\n\Delta_{chL}^f & \simeq & M_f - M_{ch.L.}, \\
\Delta_{G_{ij}}^f & \simeq & M_f^* - M_f,\n\end{array}
$$

Deviation from the chiral limit

up/down quark masses

F

 $\Delta_{chL}^f \quad \simeq \quad M_f - M_{ch.L.},$

