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Emergence of mass in the gauge sector of QCD

9. M. Cornwall, Phys. Rev. D26, 1453 (1982); A.CAguilar, D.Binosi, and 1.8, Phys. Rev. D 78, 025010 (2008)

o Lattice QCD: The gluon propagator saturates in the deep infrared
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Al mass is interaction

Richard P. Feynman




Schwinger mechanism
9. 8. Schwinger, Phys. Rev.125, 397 (1962); Phys.Rev.128, 2425 (1962)

Schwinger dispelled the misconceptions surrounding
Gauge Invariance and Mass
A gauge boson may acquire a mass, even if the gauge symmetry
forbids a mass term at the level of the fundamental Lagrangian,

provided that its vacuum polarization function develops a pole at
zero momentum transfer.

Schwinger-Dyson equation for -1 -1 /.\
gauge boson propagator (m) = () + e




1 s massless colored excitations

Schwinger mechanism in QCD
’ controlled by Bethe-Salpeter eq.
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o The poles are “ longitudinally coupled ”: ¢*/q*, r"/r?, p* /p°
mmm)  Drop out from “on-shell” amplitudes and “lattice observables”

o  Provide the necessary pole in the gluon vacuum polarization:
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The Schwinger mechanism has a clear dynamical origin,
and is compatible with all field theoretic principles and requirements,
such as BRST symmetry and renormalizability
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The Schwinger mechanism has a clear dynamical origin,
and is compatible with all field theoretic principles and requirements,
such as BRST symmetry and renormalizability

BUT

Pehraps a different mechanism is responsible for the emergence of a gluon mass ...

QUESTION

Is there some smoRing-gun signal associated with its onset
(other than the infrared finiteness of the gluon propagator) ?

In other words, is the mechanism falsifiable ?

ANSWER; YES

The displacement of the Ward identities satisfied by the vertices,
in conjunction with lattice simulations, may confirm or rule out
the Schwinger mechanism




A toy example: scalar QED

Schwinger mechanism off
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The real thing: three-gluon vertex
Non-Abelian Slavnov-Taylor identity: same idea, but more structure
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The real thing: three-gluon vertex
Non-Abelian Slavnov-Taylor identity: same idea, but more structure
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Ward identity

A.C. Aguilar, F. De Soto, M.N. Ferreira,
J.P., J.Rodriguez-Quintero,
Phys. Lett. B818 (2021) 136352




The real thing: three-gluon vertex
Non-Abelian Slavnov-Taylor identity: same idea, but more structure
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“displacement”

A.C. Aguilar, C.O. Ambrosio, F. De Soto, M.N. Ferreira,
B.M. Oliveira, J.P and J. Rodriguez-Quintero,
Phys. Rev. D 104 no.5, 054028, (2021)

—Fit

¢ Lattice
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The real thing: three-gluon vertex
Non-Abelian Slavnov-Taylor identity: same idea, but more structure
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But, remember:

C(r?) is computed from a special Bethe-Salpeter equation

A.C. Aguilar, D. Ibanez, V. Mathieu, and J. P., Phys. Rev. D 85, 014018 (2012)
A.C.Aguilar, D.Binosi, C.T. Figueiredo and J.P., Eur. Phys. J. C78, no.3, 181 (2018)

=> The determination from the Ward identity must be

compatible with the theoretical prediction
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Conclusions

The Schwinger mechanism leaves its “imprint” on the Ward identity of the
three-gluon vertex; in the form of “mismatches” among its ingredients

Using lattice inputs, we find a promising signal of about 3 o

Future tasks

Reduce lattice errors
in the region below 2 GeV

Refine the determination of W(f,«2)
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