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Emergence of mass in the gauge sector of QCD
J. M. Cornwall,  Phys. Rev. D26, 1453 (1982) ;  

Unequivocal signal of 
gluon mass  generation

Lattice QCD:  The gluon propagator saturates in the deep infrared

All mass is interaction
Richard  P. Feynman

A mass term in the Lagrangian
is forbidden by gauge invariance

A dynamical mechanism is needed

m2A2

A.C.Aguilar, D.Binosi, and J.P, Phys. Rev. D 78, 025010 (2008)



Schwinger mechanism

Schwinger dispelled the misconceptions surrounding
Gauge Invariance and Mass

A gauge boson may acquire a mass, even if the gauge symmetry
forbids a mass term at the level of the fundamental Lagrangian, 
provided that its vacuum polarization function develops a pole at 
zero momentum transfer.

��1(q2) = q2[1 +⇧(q2)]

J. S. Schwinger, Phys. Rev.125, 397 (1962); Phys.Rev.128, 2425 (1962)
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Schwinger-Dyson equation for
gauge boson propagator

If, for some reason
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massless colored excitations

“ longitudinally coupled ”:
Drop out from “on-shell” amplitudes and “lattice observables” 

Provide the necessary pole in the gluon vacuum polarization: 
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A.C.Aguilar, D. Ibanez, V. Mathieu, and J. P., Phys. Rev. D 85, 014018 (2012)

Schwinger mechanism in QCD
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The poles are 

��1(q2) = q2 + + +...

��1(0) = m2
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controlled by Bethe-Salpeter eq. 

A.C. Aguilar, D. Binosi, and J.P, Phys. Rev. D 95, no.3, 034017 (2017)

pole-free poles
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The Schwinger mechanism has a clear dynamical origin, 
and is compatible with all field theoretic principles and requirements, 
such as BRST symmetry and renormalizability

BUT

Is there some smoking-gun signal associated with its onset
(other than the infrared finiteness of the gluon propagator) ? 

In other words, is the mechanism falsifiable ?

ANSWER: YES
The displacement of the Ward identities satisfied by the vertices, 
in conjunction with lattice simulations, may confirm or rule out
the Schwinger mechanism

Pehraps a different mechanism is responsible for the emergence of a gluon mass …

QUESTION
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A toy example: scalar QED

Takahashi identity

Schwinger mechanism off 

q ! 0
Taylor expansion

Ward identity

Tensorial decomposition

Schwinger mechanism on

I�µ(q, r, p) = �µ(q, r, p) +
qµ
q2

C(q, r, p)

= D�1(p2)�D�1(r2)

The Takahashi identity does not change

q ! 0 Taylor expansion
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C(r2) = Lsg(r
2)� F (0)

⇢
W(r2)

r2
��1(r2) +
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dr2
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The real thing: three-gluon vertex
Non-Abelian Slavnov-Taylor identity: same idea, but more structure
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Form factor of the
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A.C. Aguilar, F. De Soto, M.N.Ferreira, 
J.P. , J.Rodriguez-Quintero, 
Phys. Lett. B818 (2021) 136352 
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inverse gluon propagator
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Computated from a 
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But, remember: 

C(r2) is computed from a special Bethe-Salpeter equation

The determination from the Ward identity must be 
compatible with the theoretical prediction

A.C.Aguilar, D. Ibanez, V. Mathieu, and J. P., Phys. Rev. D 85, 014018 (2012)
A.C.Aguilar, D.Binosi, C.T.Figueiredo and J.P., Eur. Phys. J. C78, no.3, 181 (2018)
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Conclusions

The Schwinger mechanism leaves its “imprint” on the Ward identity of the
three-gluon vertex, in the form of  “mismatches” among its ingredients

Using lattice inputs, we find a promising signal of about 3�
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Future tasks

Reduce lattice errors
in the region below 2 GeV

Refine the determination of W(r2)


