
Proton image and momentum distributions from light-front
dynamics

Emanuel Ydrefors

Instituto Tecnológico de Aeronáutica (ITA), Brazil and
Institute of Modern Physics, China

Collaborators: T. Frederico and V. A. Karmanov

Reference: arXiv:2108.02146 [hep-ph]

Perceiving the Emergence of Hadron Mass through AMBER@CERN
(Online)

Sep 29, 2021

E. Ydrefors (ITA, Brazil) Proton LF 1 / 19



Introduction

In hadron physics, one of the most important remaining challenges is to describe
the dynamics and structure of the proton in terms of its basic constituents (quarks
and gluons).

The proton light-front wave function, defined on the null plane x+ = t + z = 0,
gives through the parton probability densities access to various observables.
For example:

Electromagnetic form factors
The parton distribution function
Generalized parton distribution functions

Additionally, the double parton scattering cross section depends on the double
parton distribution function (DPDF) [1]:

D(x1, x2,~η⊥) =
∞

∑
n=3

Dn(x1, x2,~q⊥) =
∞

∑
n=3

∫ d2k1⊥
(2π)2

d2k2⊥
(2π)2

{
∏

i 6=1,2

∫ d2ki⊥
(2π)2

∫ 1

0
dxi

}

×δ

(
1−

n

∑
i=1

xi

)
δ

(
n

∑
i=1

~ki⊥

)
Ψ†

n(x1,~k1⊥ +~η⊥, x2,~k2⊥ −~η⊥, ...)Ψn(x1,~k1⊥, x2,~k2⊥, ...) ,

(1)

The first of Mellin moments of DPDF has recently been calculated within lattice
QCD [2].

[1] B. Blok et al, PRD 83 (2011) 071501 (R).

[2] G. S. Bali, JHEP09 (2021) 106.

E. Ydrefors (ITA, Brazil) Proton LF 2 / 19



Motivation: Why another model of the proton?

The LF wave function is defined on the LF plane, i.e. solely in Minkowski space.
In that sense it is not directly available in Euclidean space.

One alternatice approach is based on Light-front Hamiltonian, e.g. BLFQ (talk by
Xingbo Zhao). However, it is usually to limited to a few Fock sectors.

This motivated us to develop a dynamical three-body model directly in
Minkowski space, allowing to compute observables on the LF, ultimately
including the full BS amplitude.

As a first step, Fock basis truncated to valence order and spin degree-of-freedom
not included.

The quark-quark transition amplitude has a pole representing the s-wave diquark
introduced through the zero-range interaction between two of the quarks. In that
sense it is an effective low-energy model.

The proton structure will be explored through the LF wave function and its
Ioffe-time representation. Results for the momentum distributions will also be
presented.
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Three-body model
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Three spinless particles of mass m. Spectator + pair of interacting particles. Factor
of two due to symmetry of wave function with respect to exchange of the particles.

In the present work a zero-range interaction with four-leg-vertex iλ used. Then,
for the two-body amplitude (see figure)

iF (M2
12)) = iλ + (iλ)2B + (iλ)3B2 + ... =

1
(iλ)−1 −B(M2

12)
(2)

with

B(M2
12) =

∫ d4k
(2π)4

i
(k2 −m2 + iε)

i
[(k− P)2 −m2 + iε]

(3)

Regularized and renormalized by fixing a diquark pole in the scattering
amplitude.
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Three-body Faddeev-Bethe-Salpeter equation with zero interaction

Faddeev-Bethe-Salpeter (FBS) equation with zero interaction [1]:

v(q, p) = 2iF (M2
12)
∫ d4k

(2π)4
i

k2 −m2 + iε
i

(p− q− k)2 −m2 + iε
v(k, p) (4)

Currently, bare propagators for the quarks.

v(q, p) is one of the Faddeev components of the total vertex function.

Di-quark concept introduced via assuming a pole in F (M2
12), corresponding

either to a two-body bound (a > 0) or scattering (a < 0) state, where a denotes the
scattering length

F (M2
12), where M2

12 = (p− q)2, given by

F (M2
12) =

Θ(−M2
12)

1
16π2y log 1+y

1−y −
1

16πma

+
Θ(M2

12)Θ(4m2 −M2
12)

1
8π2y′ arctan y′ − 1

16πma
+

Θ(M2
12 − 4m2)

y′′

16π2 log 1+y′′
1−y′′ −

1
16πma −

iy′′
16π

,

(5)

The FBS equation was recently solved including the infinite number of Fock
components in Euclidean [2] and Minkowski [3] space.

[1] T. Frederico, PLB 282 (1992) 409
[2] E. Ydrefors et al, PLB 770 (2017) 131

[3] E. Ydrefors et al, PLB 791 (2019) 276
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Valence LF equation

After the LF projection, i.e. introducing k± = k0 ± kz and integrating over k−, one
obtains the three-body LF equation [1, 2]:

Γ(x, k⊥) =
F (M2

12)

(2π)3

∫ 1−x

0

dx′

x′(1− x− x′)

∫ ∞

0

d2k′⊥
M2

0 −M2
N

Γ(x′, k′⊥) (6)

with the squared free three-body mass

M2
0 = (k′2⊥ + m2)/x′ + (k2

⊥ + m2)/x + ((k′⊥ + k⊥)2 + m2)/(1− x− x′) (7)

The three-body valence LF wave function is given by

Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥) =
Γ(x1,~k1⊥) + Γ(x2,~k2⊥) + Γ(x3,~k3⊥)√

x1x2x3(M2
N −M2

0(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥))
, (8)

where due to momentum conservation: x3 = 1− x2 − x3 and~k3⊥ = −~k1⊥ −~k2⊥.

[1] J. Carbonell and V.A. Karmanov, PRC 67 (2003) 037001

[2] T. Frederico, PLB 282 (1992) 409
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Results for the vertex function

Model m [MeV] a [m−1] M2 [MeV] MN/m rF1 [fm]

I 317 -1.84 - 2.97 0.97
II 362 3.60 681 2.60 0.72
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Two different values of a considered, with negative and positive a, fitted to
reproduce the experimental Dirac form factor (up to ∼ 1 GeV2). For the model
with a bound diquark the obtained value of the di-quark mass same as a recent
Lattice QCD calculation.

The proton structure contained in the vertex function Γ(x, k⊥). As seen for the
bound diquark case it has a node at roughly x = 0.8.
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As studied in PLB 770 (2017) 131, it exists a lower-lying unphysical solution with
M2

N < 0. This is the relativistic analog of the well-known Thomas collapse. But,
contrary to the non-relativistic case the unphysical state has a finite energy, due to
a short-range repulsion of purely relativistic origin.

Difference between valence LF result and full BS solution, due to a contribution
coming from an infinite number of diagrams involving anti-particles, which can
be interpreted as an effective three-body force.
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Distribution amplitude
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The distribution amplitude is defined as

φ(x1, x2) =
∫

d2k1⊥d2k2⊥Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥). (9)

It shows the dependence of the wave function on the momentum fractions for the
case when the quarks share the same position.

For the two considered cases similar results.

E. Ydrefors (ITA, Brazil) Proton LF 9 / 19



Ioffe-time image of the valence state

Alternatively, the proton can be studied in the on the null-plane, in terms of the
transverse position (~bi⊥) and the Ioffe-time x̃i = b−i p+. The image of the proton is
then obtained through the Fourier transform of the proton LF wave function.

For simplicity, we consider here the case~b1⊥ =~b2⊥ =~0⊥, and then one has

Φ(x̃1, x̃2) ≡ Ψ̃3(x̃1,~0⊥, x̃2,~0⊥) =
∫ 1

0
dx1 eix̃1 x1

∫ 1−x1

0
dx2 eix̃2 x2 φ(x1, x2) , (10)
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For x̃2 = 0 the two parameter sets give almost identical results.

For x̃2 = 10 and x̃1 >= 10 a rather dramatic decrease of the amplitude is seen.
Similar behavior for the two parameter sets.

An exponential damping is seen with respect to the relative distance in Ioffe-time
between the two quarks. We expect this damping to be even more significant if
confinement is incorporated, as its more effective at large distances.
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Electromagnetic form factor

The valence contribution to the Dirac form factor is given by

F1(Q2) =

{
3

∏
i=1

∫ d2ki⊥
(2π)2

∫ 1

0
dxi

}
δ

(
1−

3

∑
i=1

xi

)
δ

(
3

∑
i=1

~kf
i⊥

)
×Ψ†

3(x1,~kf
1⊥, ...)Ψ3(x1,~ki

1⊥, ...),

(11)

where Q2 =~q⊥ ·~q⊥ and the magnitudes of the momenta read∣∣∣~kf(i)
i⊥

∣∣∣2 =
∣∣∣~ki⊥ ±

~q⊥
2

xi

∣∣∣2 =~k2
i⊥ +

Q2

4
x2

i ±~ki⊥ ·~q⊥xi (i = 1, 2), (12)

and ∣∣∣~kf(i)
3⊥

∣∣∣2 =
∣∣∣±~q⊥

2
(x3 − 1)−~k1⊥ −~k2⊥

∣∣∣2 =

(1− x3)
2 Q2

4
± (1− x3)~q⊥ · (~k1⊥ +~k2⊥) + (~k1⊥ +~k2⊥)

2.
(13)
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Fit exp. data, Z. Ye et al

a = −1.84/m, m = 317 MeV

a = 3.60/m, m = 362 MeV

Both parameters give a fair reproduction of experimental data for low Q2,
i.e Q2 < 1GeV2, where the model should be applicable.

The diquark case give also quite good agreement for moderate Q2. But, this
should be viewed with caution since the scaling laws of the QCD are not built-in.
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Momentum distributions
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We define the single parton distribution function (PDF) as

f1(x1) =
1

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥|Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)|2 =

I11 + I22 + I33 + I12 + I13 + I23.
(14)

with the Faddeev contributions

Iii =
1

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥

Γ2(xi,~ki⊥)

x1x2x3(M2
N −M2

0(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥))2

Iij =
2

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥

Γ(xi,~ki⊥)Γ(xj,~kj⊥)

x1x2x3(M2
N −M2

0(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥))2
; i 6= j.

(15)

Evolution of the PDF will be performed in the near future.
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The valence double parton distribution function (DPDF) is given by

D3(x1, x2;~η⊥) =
1

(2π)6

∫
d2k1⊥d2k2⊥

×Ψ†
3(x1,~k1⊥ +~η⊥; x2,~k2⊥ −~η⊥; x3,~k3⊥)Ψ3(x1,~k1⊥; x2,~k2⊥; x3,~k3⊥).

(16)

Fourier transform of D3(x1, x2,~η⊥) in ~η⊥ gives the probability of finding the
quarks 1 and 2 with momentum fractions x1 and x2 at a relative distance~y⊥
within the proton.

In the figure is shown results for η⊥ = 0. For the case of virtual diquark (left
panel) a rather narrow distribution is obtained due to the small binding energy.
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Transverse momentum densities
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The single quark transverse momentum density in the forward limit and
integrated in the longitudinal momentum is associated with the probability
density to find a quark with momentum k⊥.
It can be computed as:

L1(k1⊥) =
k1⊥
(2π)6

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 2π

0
dθ1

∫
d2k2⊥|ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)|2.

(17)
For model I (solid line) a more narrow distribution is seen compared to model II
(dashed line), because the radius is larger.
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The corresponding two-quark one reads

L2(k1⊥, k2⊥) =
k1⊥k2⊥
(2π)6

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 2π

0
dθ1

∫ 2π

0
dθ2

× |ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)|2.
(18)

The more compact configuration of model II is reflected in the wider distribution,
and the probability density peak is consistent with the results for the one-quark
distribution.

L1 and L2 only depend on transverse variabels, and should thus be the same in
Minkowski and Euclidean spaces. It thus makes a comparison with approaches
such as Lattice QCD or DSE feasible.
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Work in progress: Going beyond the valence order

The three-body FBS equation with zero-range interaction, including the infinite
number of Fock components, was solved by direct integration in Minkowski space
in Ref. [1]. However, the solution was quite difficult from numerical point of view.
However, like in the two-body case, the Nakanishi integral representation be used
for vertex function:

v(q; p) =
∫ 2/3

−4/3
dz
∫ ∞

0

dγg(γ, z)
γ− k2 − (p · q)z− iε

(19)

For the two-body scattering amplitude

F (M2
12) =

∫ ∞

4m2
dγ

ρ(γ)

M2
12 − γ + iε

(20)

with the spectral function

ρ(γ) = − θ(s− 4m2)

16π2
y′′(

y′′
16π2 log 1+y′′

1−y′′ −
1

16πma

)2
+
(

y′′
16π

)2 (21)

Construction of the integral equation for g(γ, z) and its solution is under
development.

[1] E. Ydrefors et al, PLB 791 (2019) 276
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Conclusions

We have, in this work, studied the proton in a simple but fully dynamical valence
LF model based on a zero-range interaction.

The model is based on the concept of a strongly interacting diquark, either virtual
or bound.

We have studied the structure of the proton by computing the LF wave function in
its Ioffe-time representation and also momentum distributions.

However, the model is rather crude since e.g. the spin degree of freedom hasn’t
been included yet. But is a first step towards studying the proton directly in
Minkowski space.
Future plans:

Generalization to the infinite set of Fock components (The Faddeev-Bethe-Salpeter
equation solved in PLB 791 (2019) 276)
Implementation of a more realistic interaction (gluon exchange)
Inclusion of spin degree of freedom
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