Laying out the Cooling Demonstrator

Science & Technology Facilities Council ISIS Neutron and Muon Source

C. T. Rogers ISIS Rutherford Appleton Laboratory

Overview

- Starting to work on conceptual layout for the cooling demonstrator
 - Finding an area at CERN
 - Establish basic lattice
 - Establish feasibility of collimation system
 - Establish compatibility with nuSTORM/enubet

Site option - Rui Ximenes (CERN)

TT10 line option (recap)

First ideas proposed by Marco C. in the 1st Community meeting. **TT10 line option seen as most attractive** (Roberto L. presentation).

- O(80kW) should be easily feasible by going sufficiently underground.
- 4 MW does not appear to be a showstopper in this layout, but detailed studies will have to be performed.
- Future upgrades towards a collider and HP-SPL should be compatible with this layout.
- Experience with other facilities available
- Important to collect all requirements at this stage in order to be able to provide a first cost estimate by end of 2021 as requested by the study

UON Collider

Overall layout - Rui Ximenes (CERN)

Conceptual layout

MUC Demonstrator VERY Conceptual layout \rightarrow To be taken with a "grain of salt"

CERN TT10 branch

flexible at this stage

Cooling channel concept

cience & Technology Facilities Council

SIS Neutron and Muon Source

- Ongoing discussion:
 - What should be the peak field?
 - Lowest emittance @ 13 T
 - ~9 T may be cheaper
 - It is an MRI field
 - Needs consideration
- Plan for ~ 10 cryostats
 - Each containing ~ 5 cells
- Lattice well-established
 - Needs optimisation
 - Needs modification/engineering

Input beam for cooling channel

Collimation System

- Concept
 - Chicane to do a first momentum selection
 - Collimation lattice
 - Section of RF to do time selection
 - Need about 20-30 MeV → guess about 50 MV here
 - Pions are decaying as we go how much of a mess does this make?
 - (Nb: pion lifetime is about 8 metres at 200-300 MeV)
 - What about electron impurities?
- How clean do we need the beam to be?

Collimation System

Initial beam distribution

Beam distribution before RF

Beam distribution half way along RF

Beam distribution end of RF

Beam distribution middle of chicane

Beam distribution end of chicane

Beam distribution end of chicane

Comment

- Conclusions:
 - Transverse emittance is about right
 - Longitudinal emittance is still too high
 - Need some more RF
 - Is a solenoid chicane really useful here?
 - Good for large transverse emittance
 - Maybe transverse emittance is manageable

